
Capturing and Formalizing SAF Availability Management
Framework Configuration Requirements

A. Gherbi, P. Salehi, F. Khendek and A. Hamou-Lhadj

Electrical and Computer Engineering, Concordia University, Montréal, Canada
{gherbi, pe_saleh, khendek, abdelw}@ece.concordia.ca

Abstract - The Service Availability Forum (SAF) defines a set of middleware services to support
and enable high availability in a standardized manner. The Availability Management Framework
(AMF) is the service in charge of managing the high availability of the services provided by an
application under its control. In order to do so, the AMF service requires a configuration of the
application, referred to as an AMF configuration. We are currently defining a UML profile for the
modeling and analysis of AMF configurations. The configuration model and the runtime behavior
of an AMF service implementation as a middleware are both defined in the AMF specification. It is
not straightforward to extract from the large standard document the domain model, which requires
the isolation of the configuration time characteristics from the runtime characteristics of the AMF
service. In this paper, we report on our experience in designing a domain model for AMF
configurations; we discuss some of the challenges we encountered during this process.

Keywords: High-Availability, Service Availability Framework, Availability Management
Framework, Domain model, UML, OCL.

1 Introduction

Service Availability Forum (SAF) [1] is a consortium of telecommunication and computer
companies that defines and supports High-Availability (HA) standard specifications. In
particular, the SAF Application Interface Specification (AIS) [2] includes the
specification of the Availability Management Framework (AMF) service [3], which is the
SAF middleware service responsible of managing service availability through the
coordination of redundant resources.
To manage the availability of the services delivered by an application under its control, an
AMF service implementation requires a configuration, which describes the different
resources in use, their capabilities and limitations, their organization, relations, the
services to be provided, and their protection. The design and the upgrade of such
configurations have to be done very carefully in order to meet the high availability
requirement. We are undertaking a research project aiming at devising methods and
prototype tools for the design and analysis of AMF configurations as well as their
upgrade campaigns. In order to achieve this formally, we started with the definition of a
profile of the Unified Modeling Language (UML) [12] for AMF configurations.
The first step in the process of defining a UML profile is the elaboration of a domain
model [4]. This model captures the main concepts of the domain, their relationships and

Proceedings of DE@CAiSE'2009

constraints. Our main input for establishing the domain model is the AMF standard
specification [3]. This document defines informally an AMF configuration as well as the
runtime behavior of an AMF service implementation. The domain model consists of a
class diagram and a set of constraints expressed formally with the Object Constraint
Language (OCL) [11]. The main challenge in the design of this domain model is how to
capture properly the concepts and their relationships and model exactly what is an AMF
configuration, not more but not less?
During this process, we have been tempted to capture into the domain model every single
aspect, including runtime ones, either in the class diagram and/or using OCL constraints.
The close interaction with the domain expert allowed us to avoid some pitfalls that would
have led to over- or under-specification. The consequences would be a profile that
excludes perfectly valid AMF configurations due to over-specification of the
requirements including runtime characteristics or that accepts invalid AMF configurations
because of configuration requirements not taken into account.
Our main contributions in this paper are: (1) we provide a brief overview of the domain of
availability management as it is defined in the SAF specifications; (2) we briefly describe
the domain model of our UML profile; and (3) we discuss some of the challenges
encountered in the process of designing the domain model.
The remaining part of this paper is structured as follows. In Section 2, we introduce
some important AMF concepts used throughout the paper. In Section 3, we discuss the
main issue of categorizing AMF requirements into configuration time versus runtime, and
present a compilation of sample AMF requirements used throughout the paper. In Section
4, we describe the main characteristics of the domain model and we discuss some design
decisions. In Section 5, we share the main lessons learned with respect to the under/over-
specification problem through specific examples. In Section 6, we review related work
before concluding the paper.

2 AMF Specification and Concepts

SAF AIS [2] specifies a set of services including AMF. The AMF specification [3]
defines an API for availability management and an information model. This model
describes the organization of the resources and services, the different entities to be
managed by AMF in a running system, the types of these entities that describe common
features of the entities belonging to them, and the cluster nodes on which the entities are
deployed.

2.1 AMF Entities and Entity Types

The basic entity of an AMF configuration is an AMF component, which represents a set
of software and/or hardware resources that can provide some basic services referred to as
component service instances (CSIs). The components are logically grouped into service
units (SU) in order to combine their functionality into higher level services referred to as

Proceedings of DE@CAiSE'2009

service instances (SIs). In order to protect these services using redundancy, SUs are
grouped into service groups (SGs). An SG protects a set of SIs that are assigned to its
SUs in different roles. When a particular SI is assigned to an SU, its composing CSIs are
assigned to the components in the SU. The grouping of service groups forms an AMF
application. From a deployment perspective, each SU is deployed on an AMF node, thus
an SG is deployed on a node group. The set of all AMF nodes forms the AMF cluster.
The notion of type is introduced in the AMF specification to capture common
characteristics shared by all the entities that belong to the same type. In addition, the types
define also the relation between entities. For example the SU type specifies the set of
component types it contains, which defines components of what types must compose each
of the SUs of the SU type. However, not all the entities are typed. The typed entities (and
their corresponding types) are: the application (application type), the service group (SG
type), the service unit (SU type), the component (component type), the service instance
(service type), and the component service instance (CS type). The non-typed entities are:
the cluster and the node. In a complete AMF configuration each typed entity should refer
to its type.

2.2 Redundancy Models

AMF coordinates the redundant entities (SUs and their components) of an SG according
to a certain redundancy model. This defines the number of active SUs (respectively
components), the number of standby SUs (respectively components) to protect an SI
(respectively CSI). For each SI, AMF selects at runtime which SU shall act in which role
and makes the appropriate assignments via API callbacks to the components. In the AMF
specification [3], several redundancy models have been defined. These are the ‘No
redundancy’, 2N, N+M, N-Way, N-Way-Active redundancy models. For instance, in an
SG protecting a set of SIs according to the 2N model, at most one SU can be active for all
the SIs, and at most one other SU can be standby for all the SIs protected by the SG.

2.3 Component Capability Model

Within an SU, each component has its component capability model which is defined as a
triple (x, y, b), where x represents the maximum number of active CSI assignments and y
the maximum number of standby CSI assignments the component can have for a
particular component service type, and b determines whether it can support these roles
simultaneously or not. The redundancy model used by an SG should be consistent with
the capabilities of the components of its SUs. For example, a component that can have
only one active or only one standby CSI assignment at a time (1, 1, false) can be used in
an SG with a 2N redundancy model, but it is not valid for a SG with an N-way
redundancy model, where each of the SUs may be active for some SIs and standby for
others simultaneously, e.g. (n, m, true).

Proceedings of DE@CAiSE'2009

3 Categorizing AMF Requirements

Since the AMF specification is about defining what a valid AMF configuration is and
how it is manipulated at runtime by a compliant AMF service implementation, the first
step in our process is to distinguish clearly between configuration time and runtime
requirements. However, this is not straightforward and instead of two categories, the
requirements defined in the AMF standard specification can be organized into three
categories as shown in Fig. 1. The first category, configuration requirements, clearly
encloses the requirements defining what an AMF configuration is. These constraints can
be checked at configuration time. They should be reflected in the domain model in the
class diagram or using OCL constraints. The second category of requirements, run-time
requirements, is clearly related to the dynamic behavior of the AMF service and hence
need to be satisfied by any AMF-compliant middleware. These requirements are out of
the scope of our profile and therefore should not be captured either in the class diagram or
using OCL constraints.

Fig. 1. AMF Configuration vs. Run-time Requirements.

The challenges in the AMF requirements stem from the third category, the overlapping
region in Fig. 1. Often the specification does not provide a clear cut as whether these are
configuration requirements or AMF service runtime related requirements. As a
configuration defines relations between the different entities involved, there is a
temptation to define all of them at configuration time. This is wrong as some of these
relations are defined only at runtime to allow more flexibility to the middleware
implementing the AMF service. Some of these relations defined at runtime are however
based on other related configuration time constraints to ensure that the configured
application will provide and protect the service independently from the decisions taken by
the AMF service implementation. Capturing and specifying these configuration time
constraints without the related runtime relationships between the entities is not
straightforward. Moreover, it is not clear which ones and to what extent these should be
captured in the domain model. Indeed, here we are facing the traditional over- vs. under-
specification problem. Over-specification occurs when we try to capture some
requirements in our domain model but these requirements are not configuration time and
related to the runtime behavior of the AMF service and to its manipulation of the

Proceedings of DE@CAiSE'2009

configuration. On the other hand, under-specification occurs when we mistakenly
consider a requirement as not checkable at configuration time. The consequence of such
misinterpretations is a profile that may exclude valid AMF configurations when we over
specify the requirements and/or that includes invalid configurations when all
configuration time requirements are not captured. In Section 5, we elaborate more on this
issue with specific examples.
Table 1 provides a set of requirements, taken from the standard, that we will use in the
next sections to illustrate different issues and some design decisions. In the column
Configuration/Run-time, we use the letter “C” to identify the requirements that we deem
belong to the configuration requirements subset and, hence, can be checked in the
configuration. The two other columns are used to indicate whether the requirement is
captured in the class diagram of the domain model, using OCL constraints, or both. These
issues are discussed further in the next sections. We use the letter “R” for the
requirements related to the dynamic behavior of the AMF service and therefore are out of
the scope of our profile. For the remaining set of requirements, identified with “?”, it is
not clear how to define the constraints that would allow to check their satisfaction at
configuration time without a risk of over-/under-specification.

4 An Overview of the Domain Model for AMF Configurations

The AMF profile is organized into packages for distinguishing between service, service
provider and deployment concepts as defined in the standard. The service package is for
the description of the concepts related to the definition of the services to be provided; the
service provider package is for the description of the (logical and physical) resources
defined in a system to provide services and their organization in terms of composition of
their functionalities or in terms of redundancy. The AMF specification emphasizes the
idea of service and service provider separation to enable the moving of services around
service providers. The deployment package is for the description of deployment concepts
such as clusters and nodes. Our profile overall architecture captures this idea as shown in
Fig. 2.

Fig. 2. AMF Profile Architecture.

Proceedings of DE@CAiSE'2009

Table 1. A Sample of AMF Requirements.

Proceedings of DE@CAiSE'2009

The domain model of the AMF profile is defined using a class diagram complemented
with a set of OCL constraints to capture the configuration requirements. The requirement
RQ 2 in Table 1, for instance, is captured explicitly in the model using a composition
relationship between the local service unit class and the local component class. This is
highlighted in the dashed region (A) in Fig. 3. Other requirements, such as RQ 19 in
Table 1, are more complicated to be captured in the class diagram. Indeed, RQ 19
involves a relationship between components and SG, which is not explicit in the class
diagram. The requirement is therefore expressed in OCL as follows:

context MagicAmfContainerComponent
inv: self.magicAmfLocalComponentMemberOf.
magicSaAmfSUMemberOf.
oclIsKindOf(MagicAmfN-WayActiveSG)

The domain model reflects component categories as defined in the specification, namely
SA-aware, container, contained, proxy, proxied, local, external and pre-instantiable
components. The class diagram in Fig. 3 shows the hierarchy of components for the first
seven categories. We model pre-instantiable components differently; we use a specific
configuration attribute, magicAmfCtIsPreinstantiable, at component type level (i.e., in the
MagicSaAmfComponentType class as shown in Fig. 3) instead of using a specific class
for this category of components. The rationale behind our decision is that modeling pre-
instantiable component category with a specific class would have required a further
specialization of the local proxied components into a new class that represents non-pre-
instantiable components. This is indeed necessary to account for the requirement RQ 15
in Table 1. Obviously, this would have complicated further the component hierarchy. As
a consequence of our modeling of the pre-instantiable component category, the
requirements RQ 13 and RQ14 in Table 1 are captured in OCL using this new
configuration attribute as follows:

context MagicSaAwareCompType
inv: self.magicSaAmfCtIsPreinstantiable = true

context MagicAmfNon-ProxiedNon-SaAwareCompType
inv: self.magicAmfCtIsPreinstantiable = false

Proceedings of DE@CAiSE'2009

Fig. 3. Partial Domain Model.

5 Over/Under-specification of the Domain Model

In this section, we discuss some aspects of AMF configuration constraints over/under-
specification, which we have encountered during the process of defining the domain
model. We limit, however, this discussion to only two situations because of the lack of
space.

5.1 Component Capability Model

The capability of a component, defined in the standard and introduced in Section 2,
depends on the target component service type (CsType). Therefore, we capture the
component capability model using two association classes as shown in the Fig. 4. The
first association class, called MagicSaAmfCtCsType, captures the fact that a component
type might support several CsTypes, each with different capability. The second is to
capture that the capability of a particular component of a component type is further
restricted with respect to a certain CsType by putting limitations on the number of active

Proceedings of DE@CAiSE'2009

and standby that a component can take. In our domain model, this second association
class is called MagicSaAmfCompCsType.

Fig. 4. Component Capability Model.

The issue related to the component capability shows up when the components grouped
into an SU support overlapping sets of CsTypes and, in addition, the capability models of
the components with respect to the common supported CsTypes are different. As stated in
RQ 4 in Table 1, an AMF service implementation uses the configuration time relationship
between components and CsTypes to assign CSIs to components. However, this
assignment of CSIs to components happens only at runtime and under the control of an
AMF service implementation. Different behaviors/runtime decisions of AMF for the same
configuration, i.e., different assignments of CSIs to components, may lead to different
availability levels. The configuration is not the right place where to control the
assignments and therefore the level of availability obtained from AMF and this is not a
configuration time decision.
We were tempted to capture and fix in our domain model these assignments at
configuration time. This was wrong, and this over-specification has been avoided with the
help of the domain expert.

5.2 Proxy and Proxied Components

Several requirements in the AMF specification relate proxy and their proxied
components. For instance, the requirement RQ 17 in Table 1 specifies a location
constraint between a proxy and a proxied component. In the initial version of our domain
model, we related formally proxy and proxied components with an association as shown

Proceedings of DE@CAiSE'2009

by the dashed association (A) in Fig. 5. The interactions with the domain expert showed
that this relationship is not a configuration time relationship and it is only at run-time that
an AMF service implementation selects and assigns a particular proxy component to a
particular proxied component according to the requirement RQ 4 in Table 1. This
association is therefore removed from our model as it represents a typical case of over-
specification, which fixes runtime relationships at configuration time.
The requirement RQ 16, on the other hand, specifies a configuration time relationship
between a proxy and a proxied component through the proxyCSI. This, however, needs to
be captured in our model and this is achieved with the association end
magicSaAmfCompProxyCSI of the association between MagicLocalProxiedComponent
and MagicSaCSI classes as shown in Fig. 5. This is a particular CSI through which a
proxy component is assigned the task of “proxying” a particular proxied component.
Consequently, the constraints on the proxy-proxied relationship, such as the requirement
RQ 17, can be expressed and checked at configuration time to the extent allowed by the
proxyCSI configuration attribute. At configuration time, we have to ensure that there is at
least a proxy component that is able to be the proxy component for the proxied
component. This constraint translates to the existence of a proxy component that supports
a component service type (CsType) to which the proxyCSI of the proxied component in
question belongs to. The domain model should capture this constraint otherwise we fall
into an under-specification case and may mistakenly consider as valid configurations that
do not satisfy AMF requirements.

Fig. 5. Proxy-proxied Component Relationship.

Several other situations like the ones related to container and contained components as
shown in Fig. 5 - dashed line (B) - are not discussed here due to space limitations.

Proceedings of DE@CAiSE'2009

6. Related Work

One of the UML profile standardized by the OMG [5] and which is related to our research
work is described in [6]. The study of this profile revealed however that it cannot be
mapped to the concepts introduced in the AMF standard specification. Consequently, we
could not use it as a leverage to define our profile. Another profile intended to support the
modeling and analysis of reliability and availability is described in [7]. This profile is
completely unrelated to the concepts defined in the AMF specification and hence cannot
be used to support the modeling and analysis of AMF configurations. As mentioned
earlier in this paper, the AMF specification defines what an AMF configuration is and the
behavior expected from an AMF service implementation. This has not been the common
path for most of the existing profiles that focus on formalizing general availability and
dependability concepts.
The authors in [8] describe an approach based on MDA to generate AIS configurations.
They present in particular a platform independent model (PIM) for AIS configurations.
Such PIM is not, however, supported with a specific UML profile that would provide a
comprehensive coverage of AMF concepts.
An UML profile related to HIDENETS [9] architecture and services is presented in [10].
The metamodel of this profile relates HIDENETS artifacts to some SAF AIS services
using “façade objects”. This metamodel does not specify any of the concepts relevant to
the AMF service or AMF configurations.

7 Conclusions

In this paper, we discussed our work in designing a profile for AMF configurations. We
introduced our approach and current results before elaborating on challenges of capturing
only necessary requirements into the domain model. These challenges are mainly due to
the fact that the AMF standard specification defines simultaneously what a valid AMF
configuration is and what the expected behavior from an AMF service implementation is.
An AMF configuration is defined at configuration time, while an AMF service
implementation decides at run-time of several assignments and relationships.
In our initial attempts in defining the domain model, we have been tempted to capture
more than what is required and go beyond configuration time requirements. Several
iterations with the domain expert have been necessary to distinguish between the different
categories of requirements in the AMF specification. Dropping the runtime requirements
from the domain model has led to other difficulties in specifying related configuration
requirements that are necessary for the definition of AMF configurations.
A straightforward application of the domain model is the validation of AMF
configurations. These are often built manually. The design of an AMF configuration is a
tedious and error prone task due to the large number of AMF requirements that have to be
taken into consideration. Consequently, checking the compliance of AMF configurations

Proceedings of DE@CAiSE'2009

against the AMF specification is crucial. We have implemented a prototype tool for the
validation of AMF configurations.
Our goal is to enable the rigorous modeling of AMF configurations and their analysis.
Our work in defining the complete profile is in progress. The analysis package will be
investigated and the dynamic behavior of the AMF service will be part of this package in
order to enable the analysis of AMF configurations.

Acknowledgements. This work has been partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and Ericsson Software Research. We
are very thankful to Dr. Maria Toeroe [Ericsson Inc., Montreal] who has been very
instrumental as domain expert during this modeling process.

References

[1] The Service Availability Forum http://www.saf.com
[2] Service Availability Forum, Application Interface Specification. SAI-Overview-B.04.01.
[3] Service Availability Forum, Application Interface Specification. Availability Management

Framework SAI-AIS-AMF-B.03.01.
[4] Bran Selic, A Systematic Approach to Domain-Specific Language Design Using UML,

Proceedings of the 10th IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC 2007), pages 2–9, IEEE Computer Society, 2007.

[5] Object Management Group (OMG): http://www.omg.org/
[6] OMG UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and

Mechanisms, Version 1.1, OMG formal/2008-04-05, 2008.
[7] Simona Bernardi, José Merseguer, A UML profile for dependability analysis of real-time

embedded systems, Proceedings of the 6th International Workshop on Software and
Performance, WOSP 2007.

[8] A. Kövi, D. Varró, An Eclipse-Based Framework for AIS Service Configurations. ISAS 2007.
LNCS, vol. 4526, pp. 110–126. Springer, 2007.

[9] HIDENETS Research Project, http://www.hidenets.aau.dk/
[10] HIDENETS, A UML Profile and Design Pattern Library, Deliverable D 5.1, 2007.
[11] OMG Object Constraint Language, Version 2.0, OMG Specification: formal/06-05-01, 2006.
[12] OMG, Unified Modeling Language (OMG UML), Infrastructure, V2.1.2, OMG formal/2007-

11-04, 2007.

