
A Lightweight Architecture of an ECA Rule
Engine for Web Browsers

Emilian Pascalau1 and Adrian Giurca2

1Hasso Plattner Institute, Germany,
emilian.pascalau@hpi.uni-potsdam.de

2Brandenburg University of Technology, Germany,
giurca@tu-cottbus.de

Abstract. There is a large literature concerning rule engines (forward
chaining or backward chaining). During the last thirty years there were
various proposals such as RETE, TREAT and the derived Gator algo-
rithm. Significantly, RETE was embedded into various expert systems
such as Clips and its successor Jess, and Drools including in a number of
commercial rule engines and was extended various times including with
support for ECA rules. However, none of them is able to directly process
DOM Events. The goal of this paper is to present the architecture of a
forward chaining Event-Condition-Action (ECA) rule engine capable to
handle Document-Object-Model Events. This architecture is instantiated
into a JavaScript-based rule engine working with JSON rules.

1 Motivation

There is a large literature concerning rule engines (forward chaining or backward
chaining). During the last thirty years there were various proposals such as
RETE [6], TREAT [15] and the Gator algorithm [13] which is derived from the
other two. Significantly, RETE was embedded into various expert systems such
as Clips and its successor Jess[7], and Drools [18]. RETE [6] was extended various
times including with support for ECA rules [5].

However, none of them is able to directly process DOM Events. The goal
of this paper is to present the architecture of a forward chaining ECA rule
engine capable to handle Document-Object-Model Events. This architecture is
instantiated into a JavaScript-based rule engine working with JSON rules [10].

The main goals this design should address are:

– to move the reasoning process to the client-side resulting in reduced network
traffic and faster response;

– to handle complex business workflows;
– information can be fetched and displayed in anticipation of the user response;
– pages can be incrementally updated in response to the user input, including

the usage of cached data;
– to offer support for intelligent user interfaces;
– enable users to collaborate and share information on the WWW through

real-time communication channels (rule sharing and interchange);

Complex event processing (CEP), is a methodology of processing events tak-
ing into consideration processing multiple events with the goal of identifying
the meaningful events within a specific time-frame or event cloud. CEP employs
techniques such as detection of complex patterns, event correlation, event ab-
straction, event hierarchies, and relationships between events such as causality,
membership, and timing, and event-driven processes. A number of projects were
developed in the last ten years on these issues. However, there is one event on-
tology which offers large opportunities to be exploited in the context of actual
technologies such as Asynchronous JavaScript and XML (AJAX) [8] allowing the
development of intelligent Rich Internet Applications (RIAs) i.e. web applica-
tions that typically run in a web browser, and do not require software installation
([1]) - The Document Object Model Events (DOM Events). This event ontology1

provides a large amount of events types designed with two main goals: (1) the
design of an event system allowing registration of event listeners and describing
event flow through a tree structure (the DOM), and (2) defining standard mod-
ules of events for user interface control and notifications of document mutation,
including defined contextual information for each of these event modules.

This ontology is already implemented into browsers giving extremely pow-
erful capabilities to RIAs which use it. Nowadays, several Web 2.0 applications
use heavily AJAX in order to provide desktop-like behavior to the user. The
number of RIAs is increasing because of the broad bandwidth of today’s In-
ternet connections, as well as the availability of powerful and cheap personal
computers. However, traditional ways of programming Internet applications no
longer meet the demands of intelligent (rule-enabled) RIAs. For example a highly
responsive Web 2.0 application such as Google Mail, can be much easily person-
alized/customized using rules towards a declarative description of its behavior.

Implementing intelligent RIAs require reasoning possibilities inside the
browser. In addition, using Event-Condition-Action (ECA) Rules to represent
knowledge unveils the opportunity to design and run rule-based applications in
the browser.

2 The Architecture of an ECA Rule Engine for Web
Browsers

2.1 The Components View

As depicted in Figure 1, the complete system comprises the Event Manager,
Rule Repository, Inference Engine and Working Memory.

The main design goal of this architecture was to comply with the principles
of Software as a Service (SaaS) architectures [4]. Therefore, the main capabilities
considered in this design were:

– Distributed Architecture - all these components can act in different network
locations.

1 http://www.w3.org/TR/DOM-Level-3-Events/

http://www.w3.org/TR/DOM-Level-3-Events/

InferenceEngine

EventManager

WorkingMemory

RulesRepository

Fig. 1. Components View

– Event-driven architecture - We emphasize that both human agents and soft-
ware agents interact with this architecture by creating events i.e. the reason-
ing is event driven. Moreover, the architecture instantiation gets translated
into a full event driven engine.

This architecture is a live system i.e. an event-based system that is reactive
and proactive. It is reactive because it reacts based on the events it receives.
It is proactive because by itself generates events, that can be consumed also by
other entities being part of the whole system.

2.2 The Working Memory

In the database community the main goal of designing ECA engines was to pro-
vide generic functionality independent from the actual languages and semantics
of event detection, queries, and actions (see for example, [3] and [19]). However,
two main issues make the difference: (a) in the case of an ECA architecture the
Working Memory besides the usual standard facts it contains also event-facts
and (b) the distinction between facts and event-facts is that the last ones are
immediately consumed while traditionally facts are kept until specific deleting
actions are performed.

2.3 The Event Manager

During the last years there is an intense work either on defining design patterns
for complex event processing [17] or theoretical work on how Event-Condition-
Action rules can be combined with event algebras for specification of the event
part [2].

Our goal is to provide a light Event Manager capable to process faster simple
events without duration. Particularly, this architecture must handle DOM Level
3 Events. However, the extension points in the Event Manager make possible
future extensions for complex events processing if we will be able to provide
motivating use cases.

Basically the Event Manager (depicted in Figure 2) has an event vocabulary
and listen for events. Its main activity is to create an event queue to be processed
by the inference engine.

listenForWMEvents

addEventToQueue

consumeActionProcessorEvents

eventsQueue

resetEventQueue

ActionProcessor
events

To InferenceEngine

WM events

Inference
Engine

Consumed
events

Fig. 2. EventManager

The Event Manager keeps on catching Working Memory (WM) event-facts
and stores them in an event queue. In addition, it listens for two internal Action
Processor messages:

– busy - The Event Manager keeps on catching WM events and storing them
in the working queue of events.

– idle - The Action Processor informs that it is not working right now. The
Event Manager pro-actively takes control and send its own message to the
Inference Engine with the actual working queue of events. Each time an
event is caught by the Event Manager it tries to find out about the state of
the Action Processor. If there is no new message from the Action Processor it
keeps going on based on its actual knowledge of the Action Processor state.
It changes its knowledge when it receives a new message from the Action
Processor.

Finally, the manager handles the inference engine consumed events. Our
model looks for mandatory handling of engine consumed events as the default
mechanism to achieve the event consumption. Therefore if there are events which
are not processed/consumed by the inference engine they are kept by the man-
ager on its lifetime or until they are consumed by rules.

2.4 The Inference Engine

Our goal were not to use RETE and its variants (although influences exist)
but to build a lightweight engine. Our goals were not to embed strong efficient
execution algorithms rather to offer a simple, extensible and fast rule execution
engine. All these design goals were coming from our main goal: running rules in
the Web browser.

receiveEventsQueue

extractEvent
extractRule

addAction
yes

noRules

noMoreEvents
sendActions

match

Consumed Events

EventManager
events queue

action queue

Fig. 3. InferenceEngine

The basic activities inside the Inference Engine (see the Figure 3) are to con-
sume events (from the events queue delivered by the Event Manager) match rule
conditions (match) and deliver action queue to the Action Processor (sendActions).
Despite other architectures where the actions are consumed inside the inference
engine, we decided for a separate component since the Action Processor is not
just a blind action executor but is able to perform various consistency checks
after it has received its queue of actions. The rules intended to be handled by
this architecture are JSON Rules [10] (see 1 for a small rule example) which
provide priorities for handling rule order execution. Our engine does not provide
any conflict resolution mechanism i.e. does not handle any specificity, recency or
refractoriness principles, but it can be extended to support such mechanisms. Fi-
nally the engine has no formal semantics such as other expert systems paradigms
[14]. The syntax of a JSON rule is similar to JSON notation.

Example 1 (JSON Rule example).

{"id": "rule101",
"appliesTo": ["http://mail.yahoo.com/"],
"eventExpression": {"type": "click",

"target": "$X"
},

"condition": [
"$X:HTMLAnchorElement($hrefVal:href)",
"new RegExp(/showMessage\?fid=Inbox/).test($hrefVal)"

],
"actions":["append($X.textContent)"]

}

2.5 The Rules Repository

As we already know, the purpose of business rules repositories is to support the
business rule information needs of all the rule owners in a business rules-based

approach in the initial development of systems and their lifetime enhancement.
Specifically, the purpose of a business rules repository is to provide: (a) Support
for the rule-related requirements of all business, (b) Query and reporting capabil-
ity for impact analysis, traceability and business rule reuse including web-based
publication and (c) Security for the integrity of business rule and rule-related
information.

Parts of our previous work (see for example, [16]) introduced the architecture
of such a registry. Basically, inside this architecture, the Rules Repository is
responsible to handle loading and deploying of rule sets.

3 JSON Rules - Architecture Instantiation

We introduce the instantiation of our architecture in the JSON Rules context.
Recall from [10] that JSON Rules where introduced and defined to tackle a
particular environment which is the Web Browser. While the first part of this
work addresses the architectural issues from the Platform-Independent Model
(PIM) [12], [9] perspective, this part addresses it from the Platform-specific
Model (PSM) perspective.

According to the reference architecture for Web Browsers introduced in [11]
the system introduced here finds itself as part of the Rendering Engine. In the
general perspective the JSON Rules engine will come as part of the accessed
resource.

In the case of the Mozilla 2 browser’s architecture [11] the system might be
either part of the Rendering Engine or part of the UI Toolkit (XPFE3 - Mozilla’s
cross-platform front end) if the system is packed as a browser add-on. The second
approach gives greater flexibility since the UI of Mozilla browsers is XML based
and as such uses an extended version of the rendering engine used to display the
content of a specified resource. Based on this the JSON Rules engine introduced
here seams quite feasible to be used to change also the UI and behavior of the
browser itself.

The general components view depicted in Figure 1 gets instantiated in the
JSON Rules context as depicted in Figure 4.

Depicted in Figure 4 are the main packages of the JSON Rules engine. While
the engine and repository packages are self explanatory to some extent lang
package contains all the JSON Rules language entities. The utils package con-
tains entities dealing with different aspects such as: JSON parsing, or object
introspection and so on. The io package provides the necessary entities man-
aging IO operations. The engine package contains the following sub-packages:
eventmanager, actionprocessor, and matcher. The general flow of the whole
system is described in the Figure 5 (initially introduced in [10]).

engine

lang

repository

util

io

uses

uses uses

uses

uses

Fig. 4. Rule Engine - Packages

WorkingMemory
EventManager

RuleRepositoryInferenceEngine

Rule Loading

ListenForEvents

RulesLoaded

FireEvents

InformOfEventsComputePossibleRulesToFire

ChangeWorkingMemoryFireRules

Fig. 5. The Rule Engine State Diagram

3.1 Main System

The MainSystem (Figure 6) is the interface through which the inference engine
is accessed. As seen in the Figure 6 the only mandatory input is an Uniform
Resource Identifier (URI) pointing towards a rule repository, from where rules
will be loaded.

2 http://www.mozilla.com/
3 http://www.mozilla.org/xpfe/

http://www.mozilla.com/
http://www.mozilla.org/xpfe/

M
ai

nS
ys

te
m

run

repositoryURI

Fig. 6. MainSystem

Although not concretely depicted here through this interface a user could also
specify other settings such as different event type for which the event manager
should listen for.

Having specified a repository location the MainSystem performs the run ac-
tivity.

The lifetime of the rule engine is in the scope of the lifetime of the current
DOM inside the browser. Using the engine is simple. Firstly one must load the
engine e.g. this

<script type="text/javascript"
src="http://www.domain.com/jsonRulesEngine_Version.js">

</script>.

Secondly one must create an instance of the engine, for example:

var jsonRulesEngine=new org.jsonrules.JSONRulesMainSystem();

Having the engine instantiated, it is now possible to run it by calling run() with
the URI of location of the repository as input parameter:

jsonRulesEngine.run("http://www.domain.com/rulesRepo.txt");

In a basic application the main steps that happen are:

– When an event is raised, the EventManager catches that event. Then the
EventManager checks the ActionProcessor’s state.

– If the ActionProcessor is running, then EventManager stores the event in
the queue of events that the InferenceEngine must later on process.

– However if the ActionProcessor is idle then the EventManager sends a mes-
sage to the InferenceEngine containing the queue of events that must be
processed. The InferenceEngine responds back to the EventManager, and
informs it that it has received/consumed the queue such that the EventManager
can reset its own queue.

– Events are processed one by one. For each event rules triggered by that
event will be matched against the WorkingMemory. The action of each ex-
ecutable rule is added to the list of executable actions (to be processed by
the ActionProcessor) according with possible priority of rules.

– The list of executable actions it is send to the ActionProcessor, to execute
them.

3.2 Working Memory

As already introduced in [10] the WorkingMemory consists of the loaded DOM
for the current active resource. Recall that by resource we mean the content
which a browser loads in the form of a DOM representation from a specified
URI. WorkingMemory facts are based on the DOM content. Moreover, in the
context of our architecture, WorkingMemory is driven by events and contains
event-facts. This type of behavior is imposed by the event-based nature of the
DOM.

3.3 Event Manager

In addition to DOM Level 3 Events, the DOM specification provides the neces-
sary interfaces through which an user-defined event can be created. However, in
general, DOM events are simple events even though users could create their own
events. There is also the possibility to use and define complex events by means
of user defined APIs such as Yahoo YUI4, Dojo toolkit5 etc. To deal with such
user defined APIs the EventManager uses the concept of adapter. An adapter
can be written for each API and in this way events defined using those APIs
could also be tackled by the EventManager.

Another significant aspect of the browser based instantiation is that the whole
flow is by nature sequential. Actual browsers’ JavaScript engines are sequential,
and because of this, so is the whole engine introduced here. However in the
eventuality of a browser with capabilities to run parallel JavaScript tasks then
the general architecture could be instantiated following the ability to run parallel
tasks.

3.4 Inference Engine

Figure 7 depicts the interaction between the MainSystem and the InferenceEngine.
The InferenceEngine receives a page object form the MainSystem. Its subcom-
ponents (EventManager, ActionProcessor, Matcher) are also instantiated and
in this manner the system becomes alive by listening and throwing events.

3.5 Rule Repository

While a more detailed perspective on rule repositories has been already intro-
duced in [16] here we use a simplified version of that. Rules defined in the repos-
4 http://developer.yahoo.com/yui/
5 http://www.dojotoolkit.org/

http://developer.yahoo.com/yui/
http://www.dojotoolkit.org/

M
ai

nS
ys

te
m

In
fe

re
nc

eE
ng

in
e

run

instantiateInferenceEngine

page

page

Fig. 7. System-InferenceEngine

M
ai

nS
ys

te
m

R
ul

eR
ep

os
ito

ry

repositoryURI

run

instantiateRepository

loadRules

getRulesForURL

W
or

ki
ng

M
em

or
y

getURL

giveURL

page

URL

getRulesForURL

URL ruleSet

listenForEvents

Fig. 8. RuleRepository

itory refer to a specific URI. This means that a specific rule can be used in the
context of a specific resource. Rules referring to the same URI are grouped in
rule sets.

Figure 8 depicts the interaction between the MainSystem and the
RuleRepository. Basically, the MainSystem triggers a RuleRepository instance.
The repository loads the rules from the repositoryURI specified location. Read-
ers may notice that the repository might contain rules that do not refer to the
current active resource. As such the MainSystem requests the URI of the cur-
rent resource from the WorkingMemory. Based on that URI it requests from the
repository the rule set referring to the current resource. Finally, based on this
information (i.e. the URI of the current resource and the rule set associated) the
MainSystem creates a Page object which will be used by the InferenceEngine.

4 Conclusion

This paper describes the general architecture of an ECA rule-based and forward
chaining engine for web browsers. The design of such an engine derives from the
goal to perform intelligent RIAs. The instantiation of the architecture results
in a JavaScript-based ECA rule engine capable to load and execute ECA rule
sets in the browser. This way we achieve a main goal: Implementing intelligent
RIAs require reasoning possibilities inside the browser. The next steps related to
this research are: (1) to investigate the capabilities of this engine to handle rule-
based mashups on the Web and (2) to analyze scalability of the engine against
the main browsers.

References

1. Jeremy Allaire. Macromedia Flash MXA next-generation rich client. http://www.
adobe.com/devnet/flash/whitepapers/richclient.pdf, March 2002.

2. Erik Behrends, Oliver Fritzen, Wolfgang May, and Franz Schenk. Embedding
Event Algebras and Process for ECA Rules for the Semantic Web. Fundamenta
Informaticae, 82(3):237–263, 2008.

3. Erik Behrends, Oliver Fritzen, Wolfgang May, and Daniel Schubert. An ECA
Engine for Deploying Heterogeneous Component Languages in the Semantic Web.
In Current Trends in Database Technology - EDBT Worshops, pages 887–898, 2006.

4. Keith Bennett, Paul Layzell, David Budgen, Pearl Brereton, Linda Macaulay,
and Malcolm Munro. Service-Based Software: The Future for Flexible Soft-
ware. In Proceedings of the Seventh Asia-Pacific Software Engineering Confer-
ence (APSEC2000), pages 214 – 221. IEEE Computer Society, 2000. http:

//www.bds.ie/Pdf/ServiceOriented1.pdf.
5. Bruno Berstel. Extending the RETE Algorithm for Event Management. In TIME,

pages 49–51, 2002.
6. Charles Forgy. Rete – A Fast Algorithm for the Many Pattern / Many Object

Pattern Match Problem. Artificial Intelligence, 19:17–37, 1982.
7. E. Friedman-Hill. Jess The Rule Engine for the Java Platform. http://www.

jessrules.com/jess/docs/Jess71p2.pdf, November 2008.

http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf
http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf
http://www.bds.ie/Pdf/ServiceOriented1.pdf
http://www.bds.ie/Pdf/ServiceOriented1.pdf
http://www.jessrules.com/jess/docs/Jess71p2.pdf
http://www.jessrules.com/jess/docs/Jess71p2.pdf

8. Jesse James Garrett. Ajax: A new approach to web applications. http://www.

adaptivepath.com/ideas/essays/archives/000385.php, February 2005.
9. Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven Architecture

and Ontology Development. Springer Verlag, 2006.
10. A. Giurca and E. Pascalau. JSON Rules. In Proceedings of the Proceedings of 4th

Knowledge Engineering and Software Engineering, KESE 2008, volume 425, pages
7–18. CEUR Workshop Proceedings, 2008.

11. Alan Grosskurth and Michael W. Godfrey. A Reference architecture for web
browsers. In Proceedings of the 21st IEEE international conference on software
maintenance (ICSM’05), page 661664. IEEE Computer Society, 2005. http:

//grosskurth.ca/papers/browser-archevol-20060619.pdf.
12. Object Management Group. MDA Guide Version 1.0.1. http://www.omg.org/

docs/omg/03-06-01.pdf, 2003.
13. E. Hanson and M. Hasan. Gator: An optimized discrimination network for active

database rule condition testing. Technical report, 1993.
14. Antoni Ligeza. Logical Foundations for Rule-Based Systems, volume 11 of Studies

in Computational Intelligence. Springer Verlag, 2nd edition edition, 2006.
15. D. Miranker. Treat: A better match algorithm for AI production systems. In

Proceedings of the AAAI’87 Conference, 1987.
16. Emilian Pascalau and Adrian Giurca. Towards enabling SaaS for Business Rules. In

Business Process, Services Computing and Intelligent Service, pages 207–222, 2009.
http://bpt.hpi.uni-potsdam.de/pub/Public/EmilianPascalau/ism2009.pdf.

17. Adrian Paschke. Design Patterns for Complex Event Processing. CoRR,
abs/0806.1100, 2008.

18. Mark Proctor, Michael Neale, Michael Frandsen, Sam Griffith Jr., Edson Tirelli,
Fernando Meyer, and Kris Verlaenen. Drools 4.0.7. http://downloads.jboss.

com/drools/docs/4.0.7.19894.GA/html_single/index.html.
19. Marco Seiriö and Mikael Berndtsson. Design and Implementation of an ECA Rule

Markup Language. In RuleML, pages 98–112, 2005.

http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://grosskurth.ca/papers/browser-archevol-20060619.pdf
http://grosskurth.ca/papers/browser-archevol-20060619.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/EmilianPascalau/ism2009.pdf
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html

	A Lightweight Architecture of an ECA Rule Engine for Web Browsers
	Emilian Pascalau and Adrian Giurca

