
A Data Structure for the Refactoring of
Multimodal Knowledge

Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe

Institute for Computer Science, University of Würzburg, Germany
{reutelshoefer, baumeister, puppe}@informatik.uni-wuerzburg.de

Abstract. Knowledge often appears in different shapes and formalisms,
thus available as multimodal knowledge. This heterogeneity denotes a
challenge for the people involved in today’s knowledge engineering tasks.
In this paper, we discuss an approach for refactoring of multimodal
knowledge on the basis of a generic tree-based data structure. We ex-
plain how this data structure is created from documents (i.e., the most
general mode of knowledge), and how different refactorings can be per-
formed considering different levels of formality.

1 Introduction

In today’s knowledge engineering tasks knowledge at the beginning of a project
is often already available in various forms and formalisms distributed over mul-
tiple sources, for instance plain text, tables, flow-charts, bullet lists, or rules. We
define this intermixture of different shapes of knowledge at different degrees of
formalization as multimodal knowledge. However, current state-of-the-art tools
are often constrained to a specific knowledge representation and acquisition inter-
face for developing the knowledge base. In consequence, the tools are commonly
not sufficiently flexible to deal with multimodal knowledge. While the evolution
of the knowledge system based on a single formalism (e.g, ontology evolution)
has been thoroughly studied, the evolution of multimodal knowledge has not
yet been sufficiently considered. In this paper, we propose a data structure and
methods, that support representation and refactoring of multimodal knowledge.
We have implemented this data structure within a semantic wiki, since such
systems proved to be well-suited to support collaborative knowledge engineering
at different levels of formalization.

The rest of the paper is organized as follows: In the next section, we give a
detailed introduction into multimodal knowledge, and we motivate why refactor-
ing of this type of knowledge is necessary. Further, we provide a data structure,
that helps to perform refactorings. In Section 3, we introduce categories of refac-
torings for multimodal knowledge and we show how they can be performed using
the described approach. In this context, we discuss how semi-automated methods
can help on the refactoring tasks. In Section 4, we discuss the overlapping as-
pects of refactoring with the related domains ontology engineering and software
engineering. We conclude pointing out the challenges we face with this approach
and give an overview of the planned future work.

2 Multimodal Knowledge

We introduce the idea of multimodal knowledge (MMK) and its advantages
and challenges. Further, we present a data structure called KDOM to represent
multimodal knowledge in an appropriate manner. An implementation of this
approach within the semantic wiki KnowWE is also given.

2.1 Multimodal Knowledge and the Knowledge Formalization
Continuum

Often, knowledge is available in different (digital) representations as we already
motivated above. To gain advantage of the knowledge by automated reason-
ing, the collection of differently shaped knowledge pieces needs to be refactored
towards an initial (formalized) knowledge base. During this process the entire
knowledge base may contain a wide range of different degrees of formalization
and distinct representations. The full range from unstructured plain text over
tables or flowcharts to executable rules, or logics sketched as in Figure 1 is
metaphorically called the knowledge formalization continuum (KFC) [1].

Fig. 1. Sketch of the Knowledge Formalization Continuum building the basis for mul-
timodal knowledge

By turning knowledge into other representations, it allows for (not com-
pletely) seamless transitions in either direction - more formal or less formal. The
most suitable degrees of formalization for a given project need to be carefully
selected according to the cost-benefit principle. However, in any case refactor-
ings towards the desired target knowledge base become necessary. Refactoring is
defined as changing the structure of something without changing the semantics.
For clarification, we comprehend refactoring in this context as changing structure

without changing the intended semantics as we are also dealing with non-explicit
knowledge artefacts (e.g., plain text). This point of view also considers plain
texts as first class knowledge items, which can (manually or semi-automated) be
refactored to an executable representation.

Advantages of Working with Multimodal Knowledge:
User friendliness: The formats and representations the domain experts are used

to (e.g., plain text in some cases) can be integrated in the knowledge engineering
process. Thus, people can participate in the first step with a minimum of training
efforts. Lowering the barriers of participation tackles an important problem of
knowledge engineering in general.

Bootstrapping : Assuming that we can work with different representations
of knowledge, the bootstrapping process shows up being extremely simple: Any
documents relevant to the problem domain can just be imported into the system.
The evolution of the knowledge driven by the knowledge engineering process will
increase its value continuously.

Maintenance: Many (executable) knowledge bases that have been created in
the past lack of maintainability. For example, in the compiled versions of large
rule bases there is often no sufficient documentation attached to allow other
people to further extend or modify the knowledge. Using the MMK approach —
to keep the executable knowledge artefacts closely located next to original justi-
fying less formal knowledge entities — provides knowledge engineers a context-
sensitive comprehension of the formalized knowledge.

The Challenge of Working with Multimodal Knowledge:
The main challenge is to cope with the different forms of knowledge with respect

to formality and syntactical shape. In the next section, we present an approach
enabling the multimodal knowledge to be refactored (at the cost of some pre-
engineering). However, in detail there are further challenges to be considered:

– handle redundancy of knowledge in different representations and degrees of
formality

– tracing the original source of knowledge items (justification) while traversing
the KFC

– keeping readability/understandability for humans (the flow of the content)

2.2 KDOM – a Data Structure for Multimodal Knowledge

The most important aspect of this approach is that free text is accepted as a fun-
damental representation of knowledge. The key idea is to have a self-documenting
knowledge base, that can easily be understood by the domain experts. Further,
explicitly formalized parts can be embedded into the free text paragraphs. Our
approach, to cope with the problems of different knowledge formats described
above, implies to break down the given data to (some) textual representation.
Some non-textual structure like tables or flowcharts can be converted into text

(for example using cell delimiter signs or XML-formats). However, images, for
instance, cannot be converted into a useful (in this context) textual representa-
tion. Thus, these items are considered as knowledge atoms. This approach treats
such items as units, which can be refactored (merely moved) as a whole, but its
internal structure cannot be changed. To apply refactoring methods, we build
a detailed document tree from the given document corpus. We call this tree
the Knowledge Document Object Model (KDOM) inspired by the DOM-tree of
HTML/XML-documents. The difference is that the source data is not in XML
syntax and that we have an explicit underlying semantics for (at least parts of)
the content. Of course, one system cannot support every imaginable format of
knowledge. Thus, some pre-engineering efforts are necessary to provide support
for the formats required. These include the formats given in the startup knowl-
edge and the target formats forming the ’goal’ of the engineering task. In the
pre-engineering step we define a kind of schema-tree merely forming the ontology
of the syntactical structure of the content that is processed.

The KDOM Schema Tree We describe the possible compositions of syntac-
tical entities in a multimodal knowledge document as a tree. At each level the
expected occurring formats are listed as siblings. We call such a definition of a
syntactical entities together with some intended semantics a KDOM-type. An
example KDOM schema tree for documents containing text, tables, comments,
and rules is shown in Figure 21.

Fig. 2. Sketch of a KDOM schema tree for tables, rules, and comments.

1 A KDOM schema is similar to an XML-Schema definition except that we do not
have XML-Syntax, but an explicit definition of the syntactical shape (a parser) for
each type.

This tree schema specifies the syntactical patterns, that can occur as sub-
patterns of its parents. The type Document — which is always the root node
in this KDOM schema — has three children types: Rule, Relation Table, and
Comment. Thus, in the document rules, relation tables and comments are ex-
pected. Each of these first level types may specify children types for themselves
denoting which sub-entities are expected. It does not specify any cardinalities or
orders of appearances in the document.2 In the next paragraph we outline how
this KDOM schema is used to create a content tree from knowledge documents
applying a semi-parsing-like approach. Semi-parsing denotes, that only specific
parts of a document are processed in detail by parsers, while other parts remain
as text nodes containing a (potentially large) fragment of plain text.

Building a Content KDOM Tree Having an appropriate schema tree of
types including their parsers defined, one can start to create content trees from
the documents. The following gives a short definition of the tree-based data
structure:

Definition 1 (KDOM). A KDOM is defined as set of nodes, where a node
n ∈ KDOM is defined as a tuple

n = (id, content, type, parent, children).

Thus, each node stores a unique id, some textual content, a type (describing
the role of the content), one parent (with exception of the root node having no
parent), and an (ordered) list of children nodes. A valid KDOM of a document
is given if:

1. The text content of the root node equals the text content of the document.
2. The following constraints are true:

(a) text-concatenation(n.children) = n.text for all n ∈ {KDOM \LEAFS}
LEAFS being the subset of KDOM with an empty chilren set

(b) n.type accepts n.text for all n ∈ {KDOM}, i.e., the text part of the node
n can be mapped to the corresponding type.

At each level in the schema tree the implicit type PlainText is allowed,
catching arbitrary content, that is not covered by explicitly defined types (semi-
parsing). This definition implies, that a concatenation of the leafs in depth-first
search order results in the full document text string. We also provide types for
concepts, concept values, conditions over concepts, and rules; further types can
be easily added. The construction of a KDOM is sketched by pseudo code in
Listing 1.1.

The root node of a document always refers to the full document — this is
also the first step of the tree building algorithm. Then, in each level all children
types are iterated and searched in the father’s content. When one type detects
2 The order of the siblings defines the order the entities are processed in the parsing

algorithm (see Listing 1.1)

a text passage that is relevant (findOccurences i.e., matched by its parser), then
it allocates this text fragment. Once some text fragment is allocated by a type
it will only be processed by the children types of the former type (defined by the
KDOM schema tree). If there is lots of unstructured text in MMK we expect that
lots of text does not match any type and thus is not allocated by an (explicit)
type in the tree (createPlaintextNodes).

Listing 1.1. A recursive algorithm to build up a KDOM tree
buildKDOMTree (fatherNode) :

f o r a l l (type : ch i ldrenTypes (fatherNode))
ch i ldrenNodes = f indOccurrences (type , unal locatedTextOfFather)

f o r a l l (chi ldNode : ch i ldrenNodes)
buildKDOMTree (chi ldNode)

f o r a l l (s t r i n g : una l locatedTexts)
c rea t eP la in t e x tNode s (s t r i n g)

Figure 3 shows an example of a document that is parsed by the KDOM
schema introduced in Figure 2. It shows a wiki system describing possible prob-
lems with cars. The particular article provides information on clogged air filters
in form of plain text paragraphs, rules, and a table.

The first paragraph shows some describing text, followed by a comment line.
Then, a rule (labeled number 3) is defined followed by plain text and so on. Rule
and tables are labeled in detail hierarchically, e.g., (3.1) and (3.2) for the two
parts of the rule. Given that the parser-components of the types of the schema
tree are configured correctly to recognize the relevant text parts, we can use the
proposed algorithm to create the KDOM content tree from the document. The
resulting parse tree shown in Figure 4 has one node for each labeled section from
the document.

As required already mentioned above any level in the tree contains the whole
content of the document. The content can be considered/engineered at different
levels of formality. Thus, also the refactoring methods in general can be applied
at different levels.

2.3 Implementation in KnowWE

Semantic wikis have been successfully used in many different software engineer-
ing and knowledge engineering projects in the last years, e.g., KIWI@SUN [2].
Further, a semantic wiki is a suitable tool to capture multimodal knowledge as
described. For this reason we implemented the introduced KDOM data struc-
ture in the semantic wiki KnowWE [3]. In fact, the KDOM tree is the main
data structure carrying the data of the wiki pages. A unique ID is assigned to

Fig. 3. An example document containing tables, rules, and comments.

Fig. 4. Structure of the KDOM content tree for the given example document.

every content node of the tree, which allows precise referencing of specific parts
of a document/wiki page. The types are integrated into the system by a plugin
mechanism. For additional (groups of) types a plugin is added to the core system
at system initialization time.

Figure 5 shows a class diagram with the core classes participating in the
implementation of the KDOM approach in the system KnowWE.

Fig. 5. A simple class diagram of the KDOM implementation in KnowWE.

For each KnowWEType a SectionFinder as parser component is specified,
which is responsible to allocate the correct text areas for the given type. To
generate the content tree the algorithm shown in Listing 1.1 is implemented.
Of course, a big part of the pre-engineering workload is implementing parsers
(SectionFinder) for defined types. For this reason, we provide a library of parser
components for common formats (e.g., XML, tables, line/paragraph-based), that
can be reused and extended. This allows for quick adaptation to new projects
demanding specific knowledge formats. Some of the markups implemented in
KnowWE can be found in [3].

3 Evolution of Multimodal Knowledge with Refactorings

The evolution of knowledge in wikis is typically performed by manual editing of
the source texts of the wiki pages by the user community. Although, many sys-
tems already provide some editing assistance techniques (e.g., templates, auto-
completion, tagging), the work of restructuring the knowledge already present
is still accomplished by manual string manipulations in the wiki source editor.

Given the KDOM tree described in Section 2.2 the structure of the knowledge
can be taken into account to develop further refactoring support. The text-based
knowledge can be considered in context when examining the content and types
of the surrounding nodes (father, siblings, cousins).

3.1 Refactorings

In the following we describe refactorings and how they can be performed with
this approach:

1. Renaming of concept
2. Coarsen the value range of a concept

Rename Concept This is probably the operation used most frequently, and it
is also simple to perform. The task is to identify each occurrence of the object in
all documents and replace it by the new name specified. Precondition of course
is, that the occurrences were captured correctly in the KDOM tree generated.
Problems can arise when different objects have the same name. For example if
different questions have equally named values. Overlapping value terms often
occur for example on scaled feature values like low, average/normal, and high.
Regarding the following two sketched rules the system needs to distinguish be-
tween normal as value for Exhaust pipe color and for Mileage evaluation, when
performing a renaming task on the value ranges.

IF Exhaust pipe color = normal

THEN Clogged Air Filter = N3

IF Mileage evaluation = normal

THEN Clogged Air Filter = N2

As the text string normal will probably appear quite frequently in an average
document base, it is necessary to identify the occurrences, when it is used as
value of a specific concept. The renaming algorithm can solve these ambiguities
by looking at the KDOM tree. Figure 6 shows the relevant KDOM subtrees of
the two rules. Thus, the renaming algorithm can be configured to check whether
a parent node of a value (1) is of type Finding(2). Further, it can look up the
content the sibling node of type Question (3) to infer the context of the value
for any occurrence.

Renaming of the occurrences in the formal parts in a consistent way is neces-
sary for compiling executable knowledge. However, the occurrences in less formal
parts cannot be identified that easily. But considering the whole knowledge cor-
pus renaming of these occurrences is still desirable with respect to consistency
of the multimodal knowledge base. We can provide all occurrences as propo-
sitions to the knowledge engineer as a simplest semi-automated approach. To
improve this approach, we are planning to employ advanced NLP techniques
on less detailed/formalized parts of the KDOM content trees to generate better
propositions.

Fig. 6. KDOM subtrees for findings of the two rules listed above.

Coarsen Value Range Often, domain experts start implementing the onto-
logical knowledge with choice questions providing detailed value ranges. During
ongoing development the value range of some concepts turn out to be unnec-
essary precise, e.g., an over-detailed concept. In the car diagnosis scenario, the
value range of Mileage evaluation is initially defined with the values given in the
following:

Mileage evaluation

- decreased

- normal

- slightly increased

- strongly increased

During the development of the knowledge base it turns, that it is not suitable
to have a distinction between slightly increased and strongly increased mileage.
A reason could be, that the knowledge is not so detailed to take advantage of
this distinction, resulting in an unnecessary high number of rules or disjunctive
expressions. The solution is a mapping of slightly increased and strongly increased
to a new value increased. To execute this it is necessary to find and adapt all
knowledge items using the object. This operation can be performed as an iterated
application of Rename Concept on the value range of the concept.

4 Related Work

The presented work is strongly related to refactoring in ontology engineering
and techniques for refactoring in software engineering.

Refactoring in Ontology Engineering The benefit of refactoring methods has
been recognized in ontology engineering, recently. Current research, however,
only discuss the modifications of concepts and properties within an ontology,
but does not consider possible implications of tacit knowledge that is neigh-
bouring and supporting the ontology. For example, in [4] various deficiencies
were presented that motivate the application of targeted refactoring methods.
Here, the particular refactoring methods also considered the appropriate modifi-
cations of linked rule bases. In [5] an approach for refactoring ontology concepts
is proposed with the aim to improve ontology matching results. The presented
refactorings are mainly based on rename operations and slight modifications of
the taxonomic structure. In the past, the approach KA scripts was presented
by Gil and Tallis [6]. KA scripts and refactoring methods are both designed to
support the knowledge engineer with (sometimes complex) modifications of the
knowledge. More recently, a related script-based approach for enriching ontolo-
gies was proposed by Iannone et al. [7].

Refactoring in Software Engineering The presented parsing algorithm can also
be compared to the parsing of formal languages (e.g., programming languages),
which has been employed successfully for multiple decades. There, the parsers are
often generated from a (context-free) grammar specification (e.g., ANTLR [8])
and can process the input in linear time [9]. The parse trees also are used for
refactoring in development environments. However, in order to deal with multi-
modal knowledge one advantage of the KDOM approach is that it can also deal
with non-formal languages (to some extend), for example, by employing text-
mining or information extraction techniques to generate nodes. Additionally, this
idea will be extended to a semi-automated workflow involving the knowledge en-
gineer. Further, we can add new syntax as plugins, and we are able to configure
the schema at runtime. Even though, we are working on the integration of parse
trees generated by classical parsers to allow embedding of formal languages into
the semi-parsing process at better performance.

5 Conclusion

In this paper, we introduced the generic data structure KDOM to support the
representation of multimodal knowledge. We explained how given documents
can be parsed into this data structure with some initial pre-engineering effort.
Further, we explained how it serves as the basis for refactoring of the knowl-
edge. We proposed a selection of refactorings and sketched how they can be
performed automated or semi-automated using the KDOM. We further plan
to apply semi-automated processes on the construction of the KDOM tree by

proposing detected objects or relations to the knowledge engineer, who then can
confirm if a given type should be attached to some text fragment.

One of the key challenges in this approach is, that the system needs to be
newly configured to each knowledge engineering task, its startup document struc-
tures and its target representations. This entails that the knowledge engineering
tools needs to be agile and methods and tools for the quick definition of parser
components are necessary.

References

1. Baumeister, J., Reutelshoefer, J., Puppe, F.: Engineering on the knowledge formal-
ization continuum. In: SemWiki’09: Proceedings of 4th Semantic Wiki workshop.
(2009)

2. Schaffert, S., Eder, J., Grünwald, S., Kurz, T., Radulescu, M.: Kiwi – a platform for
semantic social software (demonstration). In: ESWC’09: Proceedings of the 6th Eu-
ropean Semantic Web Conference, The Semantic Web: Research and Applications,
Heraklion, Greece (June 2009) 888–892

3. Reutelshoefer, J., Lemmerich, F., Haupt, F., Baumeister, J.: An extensible semantic
wiki architecture. In: SemWiki’09: Fourth Workshop on Semantic Wikis – The
Semantic Wiki Web (CEUR proceedings 464). (2009)

4. Baumeister, J., Seipel, D.: Verification and refactoring of ontologies with rules. In:
EKAW’06: Proceedings of the 15th International Conference on Knowledge Engi-
neering and Knowledge Management, Berlin, Springer (2006) 82–95

5. Svab, O., Svatek, V., Meilicke, C., Stuckenschmidt, H.: Testing the impact of
pattern-based ontology refactoring on ontology matching results. In: Third Inter-
national Workshop On Ontology Matching (OM2008). (October 2008)

6. Gil, Y., Tallis, M.: A script-based approach to modifying knowledge bases. In:
AAAI/IAAI’97: Proceedings of the 14th National Conference on Artificial Intelli-
gence and 9th Innovative Applications of Artificial Intelligence Conference, AAAI
Press (1997) 377–383

7. Iannone, L., Rector, A., Stevens, R.: Embedding knowledge patterns into OWL.
In: ESWC’09: Proceedings of the 6th European Semantic Web Conference, The
Semantic Web: Research and Applications. Springer (2009) 218–232

8. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf (2007)

9. Wilhelm, R., Maurer, D.: Compiler Design. International Computer Science Series.
Addison-Wesley (1995) Second Printing.

