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Abstract—Inspired by a similar use in provability logic, for-
mulas pÂB q and p <B q are introduced in the existing logical
framework for discussing beliefs to express that the strength
of belief in p is greater than (or equal to) that in q. This
explicit mention of the comparison in the logical language aids in
defining several other concepts in a uniform way, viz. older and
rather clear concepts like the operators for universality (which
possibilities ought to be considered), together with newer notions
like plausibility (in the sense of ‘more plausible than not’) and
disbelief. Moreover, it assists in studying the properties of the
concept of greater strength of belief itself. A heavy part is played
in our investigations by the relationship between the standard
plausibility ordering of the worlds and the strength of belief
ordering. If we try to define the strength of belief ordering in
terms of the world plausibility ordering we get some undesirable
consequences, so we have decided to keep the relation between
the two orderings as light as possible to construct a system that
allows for widely different interpretations. Finally, after a brief
discussion on the multi-agent setting, we move on to talk about
the dynamics - the change of ordering under the influence of
hard and soft information.

Index Terms—doxastic logic, belief, disbelief, plausibility

I. INTRODUCTION

Being subject to doubts and dilemmas while making
decisions is like second nature to the human mind. The
difference in the strengths of beliefs of an agent regarding the
occurrence of different events may clear doubts of this kind. In
betting on games, people make their choices for putting their
money on different teams, based on their strengths of beliefs
about which team will win. Similarly, when voting, one’s
preference for the candidates is again based on the strength of
beliefs about one candidate’s ability to perform compared to
the others. Thus, this notion is inherently present in various
fields of research like decision theory, game theory and others.

Before proceeding further, let us first consider the following
real life situation where comparison of strength of beliefs plays
a key role in decision-making for recruitments.

Alice often has applications for jobs in her departmental
store. The first time Burt and Cora apply. Alice believes both
can do the job, but her belief in Cora being able to do it is
stronger than that Burt will be able to do it. She chooses Cora.

The second time Deirdre and Egon apply. She believes
that Egon can do the job whereas she is is ambiguous about
Deirdre: she neither has the belief that Deirdre can do it, nor
that she cannot. She chooses Egon.

The third time Fiona and Gregory apply. About both she is
ambiguous, but her strength of belief in Gregory being able
to do it is stronger than that in Fiona. She chooses Gregory,
maybe she has to help him along a little.

The fourth time the applicants are Harold and Irma. She
believes neither can do the job. She decides to take neither
and hold another round of applications.

All these situations regarding the belief states of Alice can
be aptly described, if we talk not only about her beliefs but
also compare the strength of her beliefs in the applicants.
One can argue that these situations can be described by the
very well-studied notion of preference, but the essence of
describing the mental states of Alice will be lost then. This
paper addresses the notion of comparison of the strength of
beliefs of an agent directly. A great volume of literature and
extensive philosophical debates are available on reasoning
about knowledge and belief of agents. This paper adds a
new notion to this line of work, viz. comparing the strengths
of beliefs, and very pertinently, doing this in a qualitative
manner. The ordering introduced here operates on formulas.

The introduction of explicit notions of ordering for
comparing strengths of beliefs in the logical language has
various applications. It aids in defining several other concepts
in a uniform way, viz. older and rather clear concepts like the
operators for universality, together with newer notions like
plausibility and disbelief. Moreover it assists in studying the
properties of the concept of greater strength of belief itself.
In the semantics, the question - which worlds are going to be
a part of the model, gets in our approach a clearer formal and
intuitive understanding. It also becomes more evident that the
universality operator cannot be identified with the knowledge
operator even if they both share the S5-properties. Above all
it has its advantages in an explicit study of the properties of
the orderings themselves, semantically and axiomatically. All
these investigations can be carried over to a dynamic setting.
A pleasant fact is that we can fit the system easily into the
framework of dynamic epistemic logic ([1], see also [2]) as
explained in section III.

As mentioned in a brief interlude later, the explicit belief
ordering also aids in providing an additional feather to
the already existing close relationship between beliefs and
preferences which is thoroughly discussed in [3].



Before entering into the actual study, let us first discuss
the previous work on provability logics which inspired
this idea of explicit belief ordering. In Provability Logic,
an extensive overview of which can be found in [4],
¤ϕ is interpreted as ∃xProofPA(x, ϕ), which means
that there is a proof x in the axiomatization PA (Peano
Arithmetic) for the statement ϕ. With PA understood,
we also write it in the form - ∃xProof(x, ϕ). In this
framework, to handle Rosser’s form of incompleteness, one
introduces witness comparisons of proofs with formulas like
¤ϕ 4¤ψ := ∃x(Proof(x, ϕ) ∧ ∀y < x¬Proof(y, ψ)),
which is interpreted as that ϕ has a proof that is at
least as small as any (possible) proof of ψ. Similarly,
¤ϕ≺¤ψ := ∃x(Proof(x, ϕ) ∧ ∀y ≤ x¬Proof(y, ψ))
means that ϕ has a proof that is smaller than any (possible)
proof of ψ. Logics for these witness comparison formulas
were successfully introduced by [5], and the completeness
proof for this logic was simplified in [6].

Motivated by the ideas above, formulas ϕÂB ψ and
ϕ<B ψ are introduced in the existing logical framework for
discussing beliefs to express that the strength of belief in
ϕ is greater than (or equal to) that in ψ. We should note
here that in the Rosser framework proofs of ϕ and ψ are
compared only if one of these proofs really exists, whereas
strengths of beliefs are also discussed when neither ϕ nor
ψ are really believed, which makes them less concrete, and
therefore we express their comparison as ϕÂB ψ, rather than
Bϕ Â Bψ. As mentioned earlier, these formulas can be used
to express notions like ‘disbelief’ (the inclination to believe
in ¬ϕ is greater than the inclination to believe in ϕ), and its
dual ‘more plausible than not’, which can be represented by
¬ϕÂB ϕ and ϕÂB ¬ϕ, respectively.

Let us now mention some related works in this area.
In [7], [8], orderings of formulas are considered but their
interpretations are probabilistic in nature. A binary sentential
operator is introduced in the language with the intended
interpretation ‘at least as probable as’. While [8] takes the
explicit ordering operator in a simple language consisting of
the truth-functional connectives only, [7] discusses this issue
in a modal setting. Related as well are Lewis’s proposal for
a plausibility ordering of formulas [9] and Spohn’s work on
giving plausibility ordering of possible worlds in terms of
ordinal functions [10]. More recently, we find some similar
work in the economics literature [11]. Also, the notion of
epistemic entrenchment [12] gives a syntactic ordering of
formulas, which is studied in connection with belief revision.
The ordering influences the abandoning and retaining of
formulas when a belief contraction or revision takes place.
In our setting the dynamics operates rather differently, as the
reader will see.

With this background, we now provide a brief summary
regarding the structure of this paper. Explicit belief-

ordering over formulas is introduced in section 2. Several
possible interpretations of the belief-ordered formulas, viz.
plausibility and disbelief are discussed, together with the
inter-relationship of these ordering formulas and safe belief,
and also, preference. Complete axiomatizations of the new
belief logic with explicit ordering (KD45−O), with safe
belief added (KD45−OS), plausibility logic (P -logic),
logic of belief and plausibility (BP -logic) and logic of
belief and disbelief (BD-logic) are provided. The section
ends with a short discussion on the multi-agent setting.
Section III brings in dynamics to the whole framework
and discusses the influence of hard information as well as
soft information over these ordering formulas, and provides
complete axiomatizations to the dynamic logics under
consideration. The conclusions are drawn in section IV.

II. COMPARING STRENGTH OF BELIEFS EXPLICITLY

Modal logic is a useful tool to study knowledge and belief
of human agents, which has been a main issue of concern
to philosophers as well as computer scientists. Von Wright’s
work [13] is generally accepted as initiating this line of
research, which was further extended by [14]. Subsequently
a huge research area has been developed, trying to provide
answers to various philosophical issues as well as aiding into
the development of several areas of computer science, like
distributed systems, security protocols, database theory and
others.

Possible-world semantics [15] has been used to model
knowledge as well as belief. An extensive discussion together
with all pre-requisite definitions can be found in [16]. In
this work we are only concerned with beliefs of agents,
comparison of their strengths as well as some related notions
like universality, safe beliefs, plausibility, disbelief and others.
Various debates and discussions are still going strong among
the philosophers regarding the axioms that characterize belief
- for this paper we will stick to the KD45-model of belief.

In the following, we talk about Kripke structures as well
as the plausibility models [2], [17] as and when needed while
talking about beliefs. The readers should note that plausibility
models are more general in nature in the sense that one
can always build up a KD45 Kripke structure from them as
described in [17].

With this brief overview, we now move on to introduce
explicit ordering of beliefs in the logical language, which is
the essential new feature of this paper. This explicit mention
of such comparison of beliefs provides an informative and
uniform way to discuss certain relevant issues like disbeliefs,
plausibility and others.

To introduce this comparison of strengths of beliefs explic-
itly in the logical language, we add new relation symbols to
the existing modal language of belief to form the language



Fig. 1. Plausibility ordering

of Belief logic with explicit ordering (KD45−O), whose
language is defined as follows:

Definition II.1 Given a countable set of atomic propositions
Φ, formulas ϕ are defined inductively:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | ϕ<B ψ |
where p ∈ Φ.

The intuitive reading of the formula Bϕ is “ϕ is believed”,
and that of ϕ<B ψ is “belief in ϕ is at least as strong as belief
in ψ”. We introduce the notations ϕÂB ψ for (ϕ <B ψ) ∧
¬(ψ <B ϕ) and ϕ≡B ψ for (ϕ<B ψ)∧ (ψ <B ϕ). Intuitively,
they can be read as “belief in ϕ is stronger than that in ψ”
and “belief in ϕ and ψ are of same strength”, respectively. We
now move on to define a model for this logic.

Definition II.2 A KD45−O model is defined to be a structure
M = (S,≤,≥B , V ), where S is a non-empty finite set of
states, V is a valuation assigning truth values to atomic
propositions in states, ≤ is a quasi-linear1 order relation (a
plausibility ordering) over S, and ≥B is a quasi-linear order
relation over P(S), satisfying the conditions

1) If X ⊆ Y , then Y ≥B X
2) If B is the set of all ≤-minimal worlds (the set of most-

plausible worlds, called the center), then B ⊆ X and
B 6⊆ Y imply X >B Y , where X >B Y iff X ≥B Y
and not (Y ≥B X).

3) If X is non-empty, then X >B ∅.

The first condition says that larger sets of worlds are more
plausible, the second one that the sets containing the center
are more plausible than those not containing it, and the third
one that non-empty sets are more plausible than the empty
set. Truth on the center suffices to make an assertion to be
believed. Note that all the models are considered to be finite.
This assumption ensures the existence of minimal worlds in
terms of the plausibility ordering of the model. The truth
definition for formulas ϕ in a KD45−O model M is as
usual with the following clauses for the belief and ordering
modalities.

M, s |= Bϕ iff M, t |= ϕ for all ≤-minimal worlds t.

1A binary relation ≤ on a non-empty set S is said to be quasi-linear if it
is reflexive, transitive and linear, i.e. a total pre-order.

M, s |= ϕ<B ψ iff {t |M, t |= ϕ} ≥B {t |M, t |= ψ}.

We consider <B to be a global notion, if ϕ <B ψ is
true anywhere in the model, it is true everywhere. So, it is
either true or false throughout the whole model; <B is a
global notion like B. Of course, being global in the model is
strongly connected with introspection. From the definition of
ÂB , it follows that,

M, s |= ϕÂB ψ iff {t |M, t |= ϕ} >B {t |M, t |= ψ}.

Thus, ÂB is also a global notion. We will now show
that the universal modality U can also be expressed in
KD45−O . The modality Eϕ (the abbreviated form of
¬U¬ϕ) can be defined as ϕÂB ⊥, and hence Uϕ itself
as ⊥<B ¬ϕ. To clarify matters we should mention here
- Uϕ expresses that ϕ is true in all possible worlds in
the model, whereas Eϕ stands for existence of a possible
world in the model where ϕ is true. The formula ϕÂB ⊥
which defines Eϕ expresses clearly which worlds should be
considered in the model: those worlds of which the existence
is expressed by a positive strength of belief, those possibilities
which the agent does not want to exclude. Evidently, we have,

M, s |= Uϕ iff M, t |= ϕ for all worlds t.

Thus U is definable in the language above, but to get the
properties of the universal modality, we will need to have the
S5-axioms that hold for U [18] plus the axiom Bϕ → UBϕ,
which expresses that B is a global notion in a model where U
expresses universality. In such a model there is only one center.

There are various possible ways of interpreting the formula
ϕ<B ψ in plausibility models expressing the belief modality.
The foremost question is whether to try to define semantically
ϕÂB ψ in terms of the plausibility ordering of the worlds.
If one wants to base the strength of belief ordering on
the plausibility ordering of the worlds, then immediately
the following option comes to mind: the interpretation of
ϕÂB ψ can be that there exist ϕ-worlds which are more
plausible than any ψ-world (similar to the proposal in [9]).
For ϕ<B ψ it can be given as follows: for each ψ-world
there exist ϕ-worlds which are at least as plausible. If one
does this however, Bϕ becomes equivalent to ϕ <B ¬⊥.
In fact, no distinction in strength of belief can be made
between propositions which are believed. This is not at all
our aim. A more pleasurable consequence of this definition
is that conditional belief Bψϕ can equivalently be expressed
as - (ψ ∧ ϕ)ÂB (ψ ∧ ¬ϕ). Ultimately though we think
that the price is too high: this interpretation of the ordered
formulas gives rise to more unintended validities in the logic
KD45−O (cf. section II-C). There are more sophisticated
reductions of strengths of beliefs to the plausibility ordering
of the worlds but we think that they will all have undesirable
consequences. This is only partly due to the fact that belief
is identified with truth in the most plausible worlds, which



seems necessary for a dynamic interpretation. To do away
with this issue we decided to define another set-plausibility
ordering ≥B between the sets of worlds in the plausibility
models. We have put very minimal requirements on this
ordering. In fact, as we will see in section II-B, belief can be
interpreted in terms of belief ordering and safe beliefs. How
this will relate the world ordering and the set ordering is an
interesting study, but we leave it for the future.

We should mention here that the idea of modeling
epistemic notions in terms of set orders is not really new.
In [19], [20], preferential structures are considered where a
preference ordering over worlds is lifted to an ordering of
sets of worlds. Plausibility measures are considered in [21]
to give a semantics of default logic. These measures can
be identified with a partial ordering on sets of worlds and
they also provide an interpretation of the notion of beliefs.
We are not going into a detailed comparison of these works
with ours due to lack of space, but just note that an essential
difference is that in our case the ordering of the sets of
worlds is only partly determined by the ordering of the worlds.

Alice’s belief states (as described in the introduction)
can now be formally presented as follows: suppose each
of the applicants’ names denotes the proposition that “he
(she) can do the job”. CoraÂB Burt in the first case;
(B(Egon) ∧ ¬B(Deirdre) ∧ ¬B(¬Deirdre)) implies that
EgonÂB Deirdre in the second case, with the third case
simply being GregoryÂB Fiona again, and the fourth one,
B(¬Harold)∧B(¬Irma). The readers can easily see that in the
second case there is some reasoning going on which leads
to Egon being given the job, because Alice’s belief in the
ability of Egon is stronger than her belief in the ability of
Deirdre. Even in the fourth example where Alice believes that
both Harold and Irma are unable to perform, her belief in the
ability of one might be higher than that of the other. Then,
if forced to choose, she could do without another round of
applications.

A. Axioms and Completeness

Let us first look into some interesting validities of this logic.

• (ϕÂB ψ) → E(ϕ ∧ ¬ψ)
• ϕ <B ϕ ∧ ψ
• ϕ ∨ ψ <B ϕ
• B(ϕ <B ψ) → (ϕ <B ψ)

Before providing a complete axiomatization of KD45−O,
we discuss the motivations behind some of these axioms.
Since, by the set-ordering relation in the KD45−O model,
≥B is a reflexive, transitive and connected relation over P(S),
and >B is the corresponding strict ordering, the following
axioms need no introduction:

ϕ<B ϕ (refl-axiom)
(ϕ<B ψ) ∧ (ψ <B χ) → ϕ<B χ (trans-axiom)
(ϕ<B ψ) ∨ (ψÂB ϕ) (lin-axiom)

From these axioms, it follows that,

(ϕÂB ψ) ∧ (ψÂB χ) → (ϕÂB χ)

and so we get the transitivity of >B . We have already seen that
Eϕ can be defined as ϕÂB ⊥, because of the 3rd condition
that >B satisfies in the model. Using lin-axiom it is easy to
show that Uϕ is equivalent to ⊥<B ¬ϕ. The following axiom
takes care of the 2nd condition.

(Bϕ ∧ ¬Bψ) → (ϕÂB ψ) (center-axiom)

Since the ordering formulas are either globally true or globally
false in the model, we have:

(ϕ <B ψ) → B(ϕ<B ψ) (intros-axiom1)
(ϕÂB ψ) → B(ϕÂB ψ) (intros-axiom2)

It immediately follows that,

¬(ϕ <B ψ) → B¬(ϕ<B ψ)
¬(ϕÂB ψ) → B¬(ϕÂB ψ)

The inverses of all these implications above follow from the
lin-axiom. This means that all these ordering statements can
be considered to be B-statements, i.e. ϕ<B ψ, ϕÂB ψ, Uϕ,
Eϕ are all B-statements. As a result, the inclusion formula
concerning the belief and the universal modality, viz. Uϕ →
Bϕ also follows. The following axiom and rule take care of
replacement with equivalent formulas in the ordering formulas:

U(ϕ → ψ) → (ψ <B ϕ) (U <B -axiom)
ϕ → ψ (inclusion rule)
ψ <B ϕ

We can conclude then

ϕ (Ugen-rule)
Uϕ

and the equivalence rule:

ϕ ↔ ψ

ϕ ≡B ψ

which means that logically equivalent formulas can be sub-
stituted for each other in the ordering formulas as well
and hence everywhere. We now have the gen-rule for the
universal modality, the K-axiom for U also follows from these
principles. We move on to get the other sound ordering axiom,
which will help us to get the S5-properties of the universal
modality U [18]. It is:

ϕ → Eϕ (existence axiom)

The existence axiom is basically the equivalent ordered for-
mula for Uϕ → ϕ. We end with the axiom which forces the
KD45−O models to have a unique center B and hence makes
B a global property.

EBϕ → Bϕ (un.center-axiom)

From this the principle Bϕ → UBϕ readily follows. The
transitivity and the symmetry axioms for U follow because of
the very significant property of Uϕ being a B-statement, the
un.center-axiom applies to U -statements as well.

Thus we have the following theorem which is the most basic
and important result of this work.



Theorem II.3 KD45−O is sound and complete with respect
to KD45−O models and its validities are completely axiom-
atized by the following axioms and rules:

a) all KD45 axioms and rules
b) ordering axioms:

ϕ <B ϕ (refl-axiom)
(ϕ<B ψ) ∧ (ψ <B χ) → ϕ<B χ (trans-axiom)
(ϕ<B ψ) ∨ (ψÂB ϕ) (lin-axiom)
(Bϕ ∧ ¬Bψ) → (ϕÂB ψ) (center-axiom)
(ϕ<B ψ) → B(ϕ <B ψ) (intros-axiom1)
(ϕÂB ψ) → B(ϕÂB ψ) (intros-axiom2)
U(ϕ → ψ) → (ψ <B ϕ) (U <B -axiom)
ϕ → Eϕ (existence axiom)
EBϕ → Bϕ (un.center-axiom)

c) inclusion rule:
ϕ → ψ (inclusion rule)
ψ <B ϕ

Proof: The readers can easily verify the soundness
of these ordering axioms. The U <B -axiom is covered by
property 1 of Definition II.2, existence axiom by property 3,
and the center axiom describes property 2. With U and E
defined as indicated previously, one can easily show that the
S5-axioms are derivable for U . It is also not very hard to
show completeness using finite sets of sentences.

Assume 0KD45−O ϕ. We will have to construct a counter-
model to ϕ as a KD45−O-model. We take a finite adequate
set Φ containing ϕ. In this case an adequate set will be: a
set of formulas that is closed under subformulas containing
with each formula ψ (a formula equivalent to) ¬ψ, containing
with Bψ and Bχ (a formula equivalent to) B(ψ ∧ χ) and
a formula (equivalent to) B(ψ ∨ χ). We also need Φ to
contain with each formula Bϕ a formula (equivalent to) UBϕ.
Finally, Φ contains B> and B⊥. It is easy to see that any
finite set is contained in a finite adequate set. We use the
Henkin method restricted to Φ. Consider the m.c. (maximally
consistent) subsets of Φ. In particular consider such an m.c.
set Φ0 containing ¬ϕ. When we now refer to Uψ we mean
its translation into KD45−O . It can be shown that the S5-
axioms to hold for this translation. The proof is made more
perspicuous by referring to U .

The relations RB and RU are defined as follows:
PRBQ iff (1) for all Bϕ in P , ϕ as well as Bϕ are in Q,

(2) for all ¬Bϕ in P , ¬Bϕ in Q.
PRUQ iff (1) for all Uϕ in P , ϕ as well as Uϕ are in Q,

(2) for all ¬Uϕ in P , ¬Uϕ in Q

We have to show that RU is an equivalence relation and
RB a Euclidean sub-relation of RU . Finally, within one U -
equivalence class there is one, nonempty set of B-reflexive
elements, which forms a B-equivalence class. Since all these
things are standard we skip this part.

We now take the submodel generated by RU from Φ0. The
set of worlds W of our model will be the set of worlds

in this submodel and the RB and RU the restrictions of
the original RB and RU to this submodel. RU is now the
universal relation.

As before, we write B for the set of RB-reflexive elements.
The axiom Bϕ → UBϕ implies that this set is unique and
a B-equivalence class. The world plausibility ordering is
given as follows: any world in B is more plausible than
any in W \ B, and within these two sets, the worlds are
equi-plausible. So, with respect to the modal operators B
and U the model behaves properly, and we have a proper
world-ordering as well. We will now have to order P(W ) in
a proper way.

Let us say that ψ represents subset X of W if X is the set of
nodes where ψ is true, which we may write as V (ψ) = X . We
say that X is representable if for some Bψ in Φ, ψ represents
X. By the conditions on Φ the representable sets are closed
under unions and intersections, and contain W itself and the
empty set.

The representable subsets of Φ are quasi-linearly ordered
by the relation ≥1 defined by V (ψ) ≥1 V (χ) iff ψ <B χ is
true in the model, V (ψ) >1 V (χ) iff ψÂB χ is true in the
model. These follow from the first three ordering axioms.

Moreover, if V (ψ) ⊆ V (χ) then V (ψ) ≥1 V (χ) (subset
condition), by the axiom: U(χ → ψ) → ψ <B χ. Finally if
V (ψ) properly contains B and V (χ) does not, then V (ψ) >1

V (χ) (sufficient belief condition) by the axiom: Bψ∧¬Bχ →
ψÂB χ.

So, ≥1 behaves properly on the representable elements of
P(W ). What remains is to extend ≥1 to an ordering ≥ with
the right properties over all of P(W ).

Take an arbitrary subset X of W . We define R(X) to be
the largest subset of X that is representable. That such a set
exists follows from the fact that the representable subsets are
closed under finite unions and the finiteness of the model.

We now define X ≥ Y iff R(X) ≥1 R(Y ). This imme-
diately makes ≥ a quasi-linear order. That ≥ satisfies the
subset condition follows from the fact that, if X ⊆ Y , then
R(X) ⊆ R(Y ).

We will conclude this proof with a lemma showing
that B is representable, i.e. B=R(B). From that result
it follows that, if B ⊆ X , then B ⊆ R(X). This is
clearly sufficient to ensure the sufficient belief condition. So,
once we finish the proof of the following lemma, we are done.

Lemma. B is representable.
Proof of Lemma. Consider w not in B. Then it is not the

case that wRBw. This means that, for some particular B(ψw)
in Φ, B(ψw) is in w but ψw is not. Note that this implies that
ψw is true all over B. Consider the conjunction ψ of all ψw for
w in the complement of B. B(ψ) is a member of Φ while ψ
is true in all elements of B, but is falsified at all elements u in
the complement of B, since ψ implies ψu and ψu is falsified
in u. We have shown that B is represented by ψ.



Since the counter-model constructed is finite, we also have
that the logic KD45−O is decidable. Before ending this
section we mention some intuitively true formulas, which we
did not need as axioms, but are definitely worth thinking about.
One of them is,

(ϕÂB ⊥) → (>ÂB ¬ϕ),

which says that if ϕ is true somewhere then ¬ϕ is not as
much to be believed as a tautology. The other direction of the
implication can be derived. An equivalent formulation is,

(ϕ<B >) → (⊥<B ¬ϕ).

To make this true, the model needs an extra clause 4, saying
that,

if S 6= X then S >B X .

This seems a very reasonable addition as it makes the models
more symmetric. A more general version of this possible
axiom is,

(ϕÂB ψ) → (¬ψÂB ¬ϕ).

which, if considered definitely increases the already-existing
probabilistic flavor of the axiomatization. Another possible
principle with a similar flavor is

(ϕÂB ψ) → (ϕ ∧ ¬ψ)ÂB (ψ ∧ ¬ϕ).

This one exemplifies the notion that if ϕ is more believed
than ψ, then that should be based on the idea that the
common part of ϕ and ψ is irrelevant in the estimation of
their relative strengths of belief. Readers can note here that
if we strengthen this formula above to its bi-implication, then
(ϕÂB ψ) → (¬ψÂB ¬ϕ) follows.

B. Safe Belief

The notion of ‘safe belief’ has been introduced in [17]
which also corresponds to “Stalnaker knowledge” [22], where
evidence is considered as true information. The authors gave
this name to single out those beliefs “that are safe to hold, in
the sense that no future learning of truthful information will
force us to revise them.” The safe belief modality is generally
denoted by ¤. Evidently, ‘safe beliefs’ are truthful (¤ϕ |= ϕ)
and positively introspective (¤ϕ |= ¤¤ϕ), but not necessarily
negatively introspective (in general, ¬¤ϕ 6|= ¤¬¤ϕ).

Adding safe belief to our ordering framework is interesting
both from the technical as well as intuitive point of view. We
already have an understanding of the interplay between beliefs
and the comparison of strength of beliefs. Our study will be
incomplete, if we do not investigate the lively relationship
between the very relevant and important issue of safe beliefs
together with our notion of belief orderings.

In the plausibility models, the truth definition of ¤ϕ is given
by the following clause:

M, s |= ¤ϕ iff M, t |= ϕ for all worlds t ≤ s.

which says that ϕ can be safely believed at some world s if it
holds at all the worlds which are at least as plausible as s. In
the following we will introduce the safe belief modality in the
setting of KD45−O, and give a complete axiomatization of
this logic. The language of the logic KD45−OS is defined
as follows:

Definition II.4 Given a countable set of atomic propositions
Φ, formulas ϕ are defined inductively:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | ¤ϕ | ϕ<B ψ

where p ∈ Φ.

We now present the axioms of the logic KD45−OS.
Together with the axioms and rules of the KD45-logic of
beliefs, and the relevant ordering axioms, viz. refl, trans, lin,
center, existence, U <B -axiom and the S4-axioms and rules
for the safe belief ¤ operator, we will have the following extra
axioms,

(¤ϕ ∧ ¬¤ψ) → (ϕÂB ψ) (¤order-axiom)
(ϕ <B ψ) → ¤(ϕ<B ψ) (¤intros-axiom1)
(ϕÂB ψ) → ¤(ϕÂB ψ) (¤intros-axiom2)

In addition to all these, the following axiom relates the
operator ¤ with B.

¤ϕ → Bϕ (¤B-axiom)

The intros-axioms(1-2) and the un.center axioms of KD45−O
are derivable from KD45−OS. We can also derive:

Uϕ → ¤ϕ

Regarding the ¤order-axiom, it should be mentioned that,
unlike belief (center axiom), relating safe belief and belief
ordering in this manner may be considered questionable. It
says that, if ϕ is safely believed and ψ is more strongly
believed than ϕ, then ψ can also be safely believed. This seems
alright at a first glance, but if we consider the subjectivity
of the ordering, this axiom may lead to some dispute. Still,
technical reasons make it very desirable, the relationship
between the world and set orderings becomes much closer,
so we decided to keep this axiom. So, we have the following
theorem.

Theorem II.5 The logic KD45−OS is sound and its validi-
ties can be completely axiomatized by the following axioms
and rules.

a) all KD45−O axioms and rules
b) S4-axioms and rules for the modal operator ¤
c) ordering axioms:

ϕ <B ϕ (refl-axiom)
(ϕ<B ψ) ∧ (ψ <B χ) → ϕ<B χ (trans-axiom)
(ϕ<B ψ) ∨ (ψÂB ϕ) (lin-axiom)
(⊥<B (¬(¤ϕ → ¤ψ)) ∨ (⊥<B ¬(¤ψ → ¤ϕ))

(¤lin-axiom)
(Bϕ ∧ ¬Bψ) → (ϕÂB ψ) (center-axiom)



(¤ϕ ∧ ¬¤ψ) → (ϕÂB ψ) (¤order-axiom)

(ϕ<B ψ) → ¤(ϕ <B ψ) (¤intros-axiom1)

(ϕÂB ψ) → ¤(ϕÂB ψ) (¤intros-axiom2)

U(ϕ → ψ) → (ψ <B ϕ) (U <B -axiom)

ϕ → Eϕ (existence axiom)

d) ¤ϕ → Bϕ (¤B-axiom)

e) inclusion rule:
ϕ → ψ

ψ <B ϕ

We should mention here that, according to [17], belief and
conditional belief can be expressed in terms of knowledge and
safe belief as,

Bψϕ := K̂ψ → K̂(ψ ∧¤(ψ → ϕ)),
Bϕ := B>ϕ,

where K̂ψ := ¬K¬ψ. They gave complete axiomatizations for
conditional doxastic logic (logic of conditional belief) as well
as the logic of knowledge and safe beliefs. We do not consider
knowledge but for this part of the discussion it can be replaced
by U . Neither do we talk about conditional belief here, but
belief can be defined in terms of the existential modality and
safe belief (i.e. in terms of safe belief and belief ordering) as
follows:

Bϕ := E¤ϕ

Once we have in this manner the modal operator B as
a defined concept, we can easily derive all its well-known
properties in KD45−OS, but if that holds fully for its
relations with <B remains to be seen.

C. Plausibility

Comparing the strength of beliefs explicitly has its various
advantageous applications. By plausibility of a proposition we
generally mean that we tend to believe in its happening rather
than its not happening. That is the interpretation we take here.
Hence, in terms of ordered formulas, Pϕ can be expressed
as ϕÂB ¬ϕ. Of course, there are other possible notions of
plausibility, but here we interpret Pϕ as ‘more plausible than
not’. We now explore this notion of ‘plausibility’ in terms of
belief ordering.

An important principle that will be valid for the plausibility
operator P is U(ϕ → ψ) → (Pϕ → Pψ). This holds because
if U(ϕ → ψ), not only will belief in ψ be at least as strong
as in ϕ, but U(ϕ → ψ) implies U(¬ψ → ¬ϕ), so belief in
¬ψ is not greater than in ¬ϕ. This leads to consequences like
P (ϕ ∧ ψ) → Pϕ.

The reason to take the set semantics for ordering formulas
(cf. Definition II.2) becomes clear. If we would adhere to the
semantics we may have had for ÂB in terms of plausibility
ordering for worlds (instead of sets of worlds), Pϕ would
become equivalent to Bϕ, which obviously is undesirable.

One can just subdivide the most plausible worlds (the
center) into more and less plausible ones to rectify this, but
besides endangering the transition to dynamics this will not
yet be really satisfactory in its own right. It will result in
interpreting Pϕ into something like ‘ϕ is weakly believed’.
This would make the modal logic of P a normal modal logic
(of weak belief). In particular Pϕ ∧ Pψ → P (ϕ ∧ ψ) would
become valid, which is not very intuitive.

For example, you may judge it more plausible than not that
your next client will be male. Similarly, you may consider
it to be plausible that your next client will be a foreigner.
But, it doesn’t follow that it is more plausible than not that
the next client will be a foreign male, most of one’s foreign
clients may be female.

We now move on to showing an independent axiomatization
of the plausibility logic P . The language of the P -logic is
given by

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Pϕ

We read Pϕ as “ϕ is plausible”. As mentioned above,
the intuitive meaning of Pϕ can be captured by the formula
ϕÂB ¬ϕ, and as such, the truth definition of Pϕ in the
KD45−O model is given by,

M, s |= Pϕ iff {t |M, t |= ϕ} >B {t |M, t |= ¬ϕ}.

Theorem II.6 P -logic is complete and its validities are com-
pletely axiomatized by the following axioms and rules:
(a) all propositional tautologies and inference rules
(b) plausibility axioms:

Pψ ∧ Pϕ → P (ψ ∧ Pϕ)
Pψ ∧ ¬Pϕ → P (ψ ∧ ¬Pϕ)
Pϕ → ¬P¬ϕ

P>
c) monotonicity rule:

if ϕ → ψ then Pϕ → Pψ

Proof: First of all, we show that any formula in P-logic
is equivalent to a formula with P -depth at most one. For that
purpose we first derive the following schemes:

1) Pψ → (ϕ ↔ ϕ[>/Pψ])
2) ¬Pψ → (ϕ ↔ ϕ[⊥/Pψ])

Here, ϕ[>/Pψ] means ϕ with > substituted for some
occurrences of Pψ. We prove by induction on the complexity
of formulas ϕ with possible occurrences of > and ⊥.

In the base case, that is for the atomic propositions and
propositional constants, the result follows immediately.

Induction step. This is trivial for the boolean connectives.
So, it suffices to prove it for Pϕ assuming it holds for ϕ.
From the induction hypothesis for the first scheme it follows
that (Pψ ∧ ϕ) ↔ (Pψ ∧ ϕ[>/Pψ]) is provable. Now assume
Pψ and Pϕ. By an axiom P (ϕ ∧ Pψ) follows. From the



fact just proved it follows that P (ϕ[>/Pψ]∧ Pψ) and hence
P (ϕ[>/Pψ]). The proof for the second scheme is very similar.

To see that these schemes imply that each formula in
P -logic is equivalent to a formula with P -depth at most one,
just note that ` ϕ ↔ ((Pψ ∧ ϕ) ∨ (¬Pψ ∧ ϕ)). Now, if we
want to get rid of occurrences of Pψ in ϕ we can replace ϕ
by ((Pψ ∧ ϕ[>/Pψ]) ∨ (¬Pψ ∧ ϕ[⊥/Pψ])). By doing this
consecutively for all occurrences of Pψ with no occurrences
of P in ψ we obtain the desired result.

Next, we show that any consistent set has a model. Assume
we have a consistent set in the P -logic which can be extended
to a maximal consistent set Γ, say. Since we can restrict
attention to formulas which are boolean combinations of
atoms and formulas of the form Pϕ where ϕ no longer
contains P , a maximal consistent set is essentially only a
set of atoms, negations of atoms, such Pϕ’s and ¬Pϕ’s and
their boolean combinations.

We now make a model in our sense where Pϕ gets
interpreted as ϕ >B ¬ϕ. The worlds will be simply defined
by a number of atoms being true in it and the rest of
the atoms false. Let us now consider the following model,
M = (S,≤,≥B , V ), where S is the set of all maximal
consistent subsets. The ordering of the subsets is as follows:
There are 5 equivalence classes in the ordering starting with
the highest grade of believability. We take membership of
those classes to determine the degree of belief in the sets.
(1) The whole set, which is of course represented by >.
(2) The sets represented by those ϕ for which Pϕ is in Γ
(except for >).
(3) The sets represented by those ϕ for which ¬Pϕ is in Γ
as well as ¬P¬ϕ.
(4) The sets represented by those ϕ for which P¬ϕ is in Γ
(except for ⊥).
(5) The empty set, which is of course represented by ⊥.
These are all possibilities because of axiom Pϕ → ¬P¬ϕ.
Finally we take B, the center, to be the whole set (so, there
are no beliefs except the trivial one in >).

The two things we have to check are: First, that, if
a set is in class (2), then any larger one will be in (2)
as well (or in (1)). This follows from the monotonicity
rule. Similarly for the other classes. Second, that, if a set
X contains all of B, and another set Y doesn’t, then X
> Y . That is trivial: X has to be B, the whole set, and Y isn’t.

As earlier, we can induce an ordering over all subsets
satisfying the required conditions. All the single worlds have to
be taken to be equally plausible, i.e. s ≤ t, for all s, t ∈ S. So,
for each consistent set we can have a model in KD45−O. So,
the axioms and rules given in Theorem 2.6 axiomatize the P -
logic of ‘more plausible then not’. It is also worth-mentioning
why (Pϕ∧ Pψ) → P (ϕ∧ψ) will fail in general. There may
be sets in (2), the intersection of which, is not in (2).

Evidently, Pϕ is a global notion - its value does not
vary through the model. Again, P is clearly an introspective
notion. Interestingly, the principles 4 and 5 for the modal
operator P are derivable in this P -logic, but the K-axiom
is not. That Pϕ ∧ Pψ → P (ϕ ∧ ψ) ought not to be a
valid principle in the P -logic is clear if we interpret Pϕ as
ϕÂB ¬ϕ.

Let us finally note that an interpretation of Pϕ as ϕ
as having probability more than 0.5 (or any other number
between 0.5 and 1) leads to exactly the P -axioms provided
one considers the probability statements themselves to always
have probability 1.

We now consider a system having both belief and the
plausibility operator, viz. the BP -system. This system will
provide pointers to discuss logics of belief and disbelief in the
next subsection. The language is that of the P -logic, together
with the additional modal operator for belief, B.

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Pϕ | Bϕ

Some validities of this logic in the KD45−O model are,

• Bϕ → Pϕ
• Pϕ → BPϕ
• ¬Pϕ → B¬Pϕ

Theorem II.7 BP -logic is complete and its validities are
completely axiomatized by the following axioms and rules:

a) all propositional tautologies and inference rules
b) all KD45 axioms and rules
c) all P axioms and rules
d) special axioms:

Bϕ → (ψ ↔ ψ[>/Bϕ])
¬Bϕ → (ψ ↔ ψ[⊥/Bϕ])
Bϕ → Pϕ

The proof is very similar to that for the P -logic. It uses
the fact that the axioms force all formulas to be equivalent
to boolean combinations of atoms and formulas of the form
Pϕ and Bϕ, where ϕ is boolean. It is noteworthy that the
principle Bϕ∧Pψ → P (ϕ∧ψ) of [23] fails in the BP -logic.
It is not difficult to construct a counterexample.

D. Disbelief

Disbelief in a proposition is governed by exactly the
opposite situation to the one discussed in the previous
subsection, Dϕ can be expressed as ¬ϕÂB ϕ, that is P¬ϕ.

With the huge amount of work going on in logics of
beliefs and belief revision, consideration of disbelief as a
separate epistemic category came to fore in the latter part
of last decade ([24], [25]). Consideration of changing or
revising disbeliefs as a process analogous to belief revision
was taken up by [26]. Belief-disbelief pairs i.e. simultaneous
consideration of belief and disbelief sets were also taken up
([27], [28]) through which various connections of possible



inter-connectivity of beliefs and disbeliefs have come into
focus. As mentioned earlier our notion of explicit belief
ordering provides another path into expressing the concept of
disbelief.

The basic idea for disbelieving a proposition is that, the
inclination to believe in its negation is stronger than that
to believe it. Consequently, disbelieving is a much weaker
notion than believing the negation of the proposition, but it
should imply that one does not believe in the proposition. In
other words, Dϕ is implied by B¬ϕ and implies ¬Bϕ but
not the other way around in either case.

To exemplify the matter a bit, let us consider the following
situation. Due to the unpredictable weather conditions, Pom’s
belief in that she should not cycle from Amsterdam to Leiden
is much stronger than her belief that she should. When
options like this are available, it is very natural to have this
sort of ordering dilemma playing around people’s mind. This
can be interpreted as that Pom disbelieves that she should
bike, which evidently implies that she does not believe that
she should bike. But that ‘she believes that she should not
bike’ is a much stronger statement, which fails to express the
finer interplay of doubts that is always prevalent in one’s mind.

In general, if a person faces a decision based on whether
a certain state of affairs is the case or an event happens, she
may not have enough evidence to believe that the state of
affairs is the case or is not the case. Then she may base her
decision on whether she thinks the state of affairs plausible or
disbelieves in it. Only in the case that her strength of belief
in the two possibilities is equal, translated into our framework
as ϕ ≡B ¬ϕ, it is a real tossup for her.

Various principles for the ‘disbelief’ operator together
with the ‘belief’ one have been discussed in [25] in the
autoepistemic logic framework of [29]. As such, the possible
world semantics provided there which is based on separate
sets of worlds for beliefs and disbeliefs is not very interesting,
and suffers from ‘disjointedness’ as well as ‘mirror-image’
problems. These questions will not arise in the semantics we
propose here. The basic reason is the fact that ‘disbelief’ is
given a global stance in contrast to ‘belief’ which is apparent
from their respective interpretations. This also emphasizes the
fact that disbelieving something is different from both from
‘not believing’ as well as ‘believing the negation’.

We now focus on getting a more feasible logic of belief and
disbelief in similar lines to BP logic introduced earlier. From
our formal understanding Dϕ is same as P¬ϕ and hence we
get the following dual axiomatization of the BD-logic -

Theorem II.8 BD-logic is complete and its validities are
completely axiomatized by the following axioms and rules:

a) all propositional tautologies and inference rules

b) all KD45 axioms and rules

c) disbelief axioms:
Dϕ → (ψ ↔ ψ[>/Dϕ])

¬Dϕ → (ψ ↔ ψ[⊥/Dϕ])

Dϕ → ¬D¬ϕ

D⊥
d) special axioms:

Bϕ → (ψ ↔ ψ[>/Bϕ])

¬Bϕ → (ψ ↔ ψ[⊥/Bϕ])

Bϕ → D¬ϕ

e) anti-monotone rule:
if ϕ → ψ then Dψ → Dϕ

Some interesting validities of this logic are,

• B¬ϕ → Dϕ
• Dϕ → ¬Bϕ
• Dϕ → BDϕ
• ¬Dϕ → B¬Dϕ
• ¬Dϕ → DDϕ
• ¬Bϕ → DBϕ

On the other hand, as in P -logic and BP -logic,
the corresponding intuitively incorrect principle,
Dϕ ∧ Dψ → D(ϕ ∨ ψ) can also be avoided in the
BD-logic.

E. Preference

There is a very close relationship between an agent’s beliefs
and her preferences which has been extensively discussed in
([30], [3]). Based on the ideas from optimality theory, intrinsic
preference on the basis of priority sequences P1 >> . . . >>
Pn is formulated. Here, the P ′is are first-order formulas with
exactly one free variable, which is common to all of them.
Preferences over objects can be defined in terms of these
sequences. The basic idea is to define objective preference
by:

Pref(d, e) ⇔ ∃i(Pid∧¬Pie)∧∀j < i (Pjd ↔ Pje)
For subjective preferences over objects, which in fact are
considered to be influenced by beliefs, several options are
considered. We mention a few of them for the benefit of the
readers, their meanings are more or less obvious.

Pref(d, e) ⇔ ∃i(B(Pid) ∧ ¬B(Pie) ∧ ∀j < i(B(Pjd) ↔
B(Pje)))

Pref(d, e) ⇔ ∃i(¬B(¬Pid) ∧B(¬Pie) ∧ ∀j < i(B(¬Pjd)
↔ B(¬Pje)))

Pref(d, e) ⇔ ∃i ((B(Pid) ∧ ¬B(Pie)) ∨ (¬B(¬Pid)∧
B(¬Pie)) ∧ ∀j < i ((B(Pjd) ↔ B(Pje)) ∧ (B(¬Pjd)
↔ B(¬Pje))))



It is clear that the above three approaches are different
attempts to express that up to a certain level of the priority
sequence the degree of belief in the objects d and e having
the mentioned properties is the same and that at the next level
the degree of belief in d having the right property is greater
than that in e having it. Here we can express this directly in
the language as below, and the way greater strength of belief
is to be taken in a particular application is then delegated to
the semantics.

Pref(d, e) ⇔ ∃i(PidÂB Pie ∧ ∀j < i(Pjd ≡B Pje)).

F. Multi-agent case

We have been focusing on beliefs and strengths of beliefs of
a single agent. The whole idea can be generalized to the multi-
agent framework. We only give some preliminary ideas here.
The technical details need to be worked out, and we leave it
for the future. The language of the logic of belief ordering in
the multi-agent case, KD45−OM can be defined as follows:

Definition II.9 Given a finite set of agents A, and a countable
set of atomic propositions Φ, formulas ϕ are defined induc-
tively:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Baϕ | ϕ <Ba ψ

where p ∈ Φ.

The indices in the belief and universality modality and
in the ordering formula denote the agents whose beliefs or
strengths of beliefs are considered. The operators ÂBa and
Ua are defined in the usual way. The fact that U is also
indexed may surprise the reader for a moment but it is the
only coherent way to extend the one agent case. Existence
of a location for a proposition to be true meant for us that
for the one agent belief in the proposition was stronger than
belief in a contradiction. With more agents we may have
agents who differ in regard to the existence of propositions:
more worlds will have to be added to the model, and it will
not stop there: there is no reason for EaEb to be equivalent
to Ea or Eb, etc. It is appropriate to add a real universality
operator U that corresponds to the agent’s Ua as the common
knowledge operator corresponds to the knowledge of the
individual agents. With regard to axioms the upshot is for
example that the existence axiom ϕ → (ϕÂBa ⊥) will have
to be weakened to Ua(ϕ → (ϕÂBa ⊥)).

Likewise, the models for KD45−OM have to be multi-
agent generalizations of those for KD45−O . The basic idea
to consider here is that we can no longer rule out worlds that
are impossible for an agent a. They might well be possible for
another agent b and also have to be considered while talking
about agent a’s belief about agent b’s beliefs and so on.
Evidently, the earlier plausibility ordering and set ordering
of worlds will get indexed by agents (one for each agent),
and the global concept of belief will give way to more local
concepts of beliefs. This fact becomes apparent in the syntax

ψ

Fig. 2. A public announcement ψ is uttered

also, with the introduction of formulas like Uaϕ. The notion
of comparative classes [17] which gives the set of worlds that
an agent considers relevant while positioned at her current
world comes into play. Formally, a comparative class of some
world is just the set of worlds that are related to the current
world by the plausibility order. To give meaning to agents’
beliefs, strength of beliefs, these relevant worlds are needed
to be considered only, unlike the single agent case, where the
whole model is taken into account. As mentioned earlier, we
leave the technical details for later.

III. DYNAMICS OF ORDERING FORMULAS

Till now we have been talking about the static language of
belief ordering and its corresponding models, representing the
information states (possible worlds) of an agent. We move on
to discuss the effect of information-update procedures which
change the models under consideration.

It should be mentioned here that we will see an extensive
use of the notion of conditional belief while discussing the
dynamics of belief change. Conditional beliefs [2] pre-encode
beliefs in a static way in situations which arise after new
information comes in. Formulas of the form Bψϕ (believing
in ϕ, given ψ) express that we believe in ϕ, once we assume
that ψ is the case. This induces that if ψ is learnt then it is
to be believed that ϕ was the case (before the learning) [17].
This does not literally tell us what happens after ψ is learnt.
For example, if ϕ is unknown but true and one learns that
¬Bϕ ∧ ϕ then afterwards Bϕ will be true, contrary to what
was learnt.

In [2], van Benthem discusses three different update
procedures influencing the beliefs of an agent, viz. the
influence of hard information like public announcement of ψ
(the not-ψ-worlds get deleted from the model and only the
ψ-worlds remain), and of soft information with lexicographic
upgrade (introducing a preference for the ψ-worlds, all the
ψ-worlds become more plausible than all the not-ψ-worlds
- within these zones, the existing ordering remains), and
lastly the impact of soft information with elite upgrade (the
best ψ-worlds come out on top, beside that the previous
ordering remains). We currently just focus on the effect of
hard information and soft information with lexicographic
upgrade.



ψ

Fig. 3. The influence of hard information

A. Influence of hard information

While discussing the influence of ‘hard’ information over
beliefs, [2] considered the following reduction axioms for
the logic of public announcement in terms of ‘belief’ and
‘conditional belief’, where [!ψ]ϕ is to be read as ‘after the
public announcement of ψ, ϕ is true’.

• [!ψ]q ↔ (ψ → q)
• [!ψ]¬ϕ ↔ (ψ → ¬[!ψ]ϕ)
• [!ψ](ϕ ∧ χ) ↔ ([!ψ]ϕ ∧ [!ψ]χ)
• [!ψ]Bϕ ↔ (ψ → Bψ[!ψ]ϕ)
• [!ψ]Bχϕ ↔ (ψ → Bψ∧[!ψ]χ[!ψ]ϕ)

In fact, the effect of public announcements of ψ over an
ordered model should be clear from the figures 2 and 3.
Under the announcement of ψ, the earlier model M, say (cf.
fig 2), reduces to a model relativized to ψ (cf. fig 3), which
is essentially a submodel of M, whose domain set is the set
where ψ holds.

Let us now first investigate how the KD45−O model
changes under the influence of a public announcement !ψ, say.
The definition is as follows:

Definition III.1 A KD45−O model is defined as in definition
II.2 as the structure M = (S,≤,≥B , V ). Under the influence
of public announcement of ψ the model becomes M!ψ =
(S!ψ,≤!ψ,≥!ψ

B , V !ψ) where S!ψ = {s ∈ S : M, s |= ψ},
≤!ψ=≤ºS!ψ×S!ψ , ≥!ψ

B =≥BºP(S!ψ)×P(S!ψ), and V !ψ = V ºS!ψ .

The model satisfies the following conditions:

1) If X ⊆ Y ⊆ S!ψ , then Y ≥!ψ
B X

2) if B!ψ is the new set of plausible worlds, truth on which
suffices to make an assertion to be believed, then B!ψ ⊆
X ⊆ S!ψ ∧ B!ψ 6⊆ Y ⊆ S!ψ ⇒ X >!ψ

B Y , where >!ψ
B

denotes the corresponding strict ordering.
3) If X is non-empty, then X >!ψ

B ∅.

The truth definitions of the formula [!ψ]ϕ in a KD45−O
model is given by,

M, s |= [!ψ]ϕ iff if M, s |= ψ, then M!ψ, s |= ϕ.

Any logic L completing KD45−O to contain conditional
beliefs will have to contain

Bψϕ ∧ ¬Bψχ → (ψ ∧ ϕ)ÂB (ψ ∧ χ).

This axiom ensures that the updated model still has the
necessary property 2 of Definition II.2 and thus will be a
KD45−O model. We have the following theorem:

Theorem III.2 If we take L to be a complete axiomatization
of KD45−O together with conditional beliefs, then its exten-
sion under public announcement is complete and its validities
are completely axiomatized by the following axioms and rules
in addition to L:
(a) PAL reduction axioms for atomic facts, Boolean opera-

tions, belief and conditional belief

(b) PAL reduction axioms for ordering formulas:
[!ψ](ϕ <B χ) ↔ ψ → ((ψ ∧ [!ψ]ϕ) <B (ψ ∧ [!ψ]χ))
[!ψ](ϕÂB χ) ↔ ψ → ((ψ ∧ [!ψ]ϕ)ÂB (ψ ∧ [!ψ]χ))

B. Influence of soft information

Following [2], we considered the influence of hard infor-
mation over beliefs. Van Benthem continued by discussing
the effect of the arrival of soft information on beliefs, which
does not influence the existence of the possible worlds, only
their plausibility ordering. We now give the definition of
the changed models under the influence of soft information
with lexicographic upgrade and the corresponding reduction
formulas.

Definition III.3 A KD45−O model is defined as in def-
inition II.2 as the structure M = (S,≤,≥B , V ). Under
the influence of soft information ψ, say the model becomes
M⇑ψ = (S⇑ψ,≤⇑ψ,≥⇑ψ

B , V ⇑ψ) where S⇑ψ = S, ≤⇑ψ=≤
ºK×K ∪ ≤ºL×L ∪ {(u, v) : u ∈ K and v ∈ L}, where
K = {s ∈ S : M, s |= ψ}, L = S \ K, ≥⇑ψ

B =≥B , and
V ⇑ψ = V .

Once again, the model M⇑ψ satisfies the conditions,

1) If X ⊆ Y , then Y ≥⇑ψ
B X

2) if B⇑ψ is the new set of plausible worlds, truth on which
suffices to make an assertion to be believed, then B⇑ψ ⊆
X ∧ B⇑ψ 6⊆ Y ⇒ X >⇑ψ

B Y , where >⇑ψ
B denotes the

corresponding strict ordering.
3) If X is non-empty, then X >⇑ψ

B ∅.

The truth definitions of the formula [!ψ]ϕ in a KD45−O
model is given by,

M, s |= [⇑ ψ]ϕ iff M⇑ψ, s |= ϕ.

We have the following theorem:

Theorem III.4 If we take L to be a complete axiomatization
of KD45−O with conditional beliefs, then its extension under
announcement of soft information with lexicographic upgrade
is complete and its validities are completely axiomatized by
the following axioms and rules in addition to L:
(a) reduction axioms:

[⇑ ψ]q ↔ q

[⇑ ψ]¬ϕ ↔ ¬[⇑ ψ]ϕ
[⇑ ψ](ϕ ∧ χ) ↔ ([⇑ ψ]ϕ ∧ [⇑ ψ]χ)
[⇑ ψ]Bχϕ ↔ (E(ψ ∧ [⇑ ψ]χ) ∧ (Bψ∧[⇑ψ]χ[⇑ ψ]ϕ ∨
B[⇑ψ]χ[⇑ ψ]ϕ))



[⇑ ψ](ϕ<B χ) ↔ Eψ ∧ (((ψ ∧ [⇑ ψ]ϕ)<B (ψ ∧ [⇑
ψ]χ)) ∨ ([⇑ ψ]ϕ <B [⇑ ψ]χ))

[⇑ ψ](ϕÂB χ) ↔ Eψ ∧ (((ψ ∧ [⇑ ψ]ϕ)ÂB (ψ ∧ [⇑
ψ]χ)) ∨ ([⇑ ψ]ϕÂB [⇑ ψ]χ))

The product-update model [2] or the more general version
of the action-priority update model [17] may not be of much
use in the modelling of the ordering formulas, because the
first order frame conditions of KD45−O-models are not all
universal Horn sentences (e.g. the linearity condition), which
is required for easy passage to this type of update models [2].

IV. CONCLUSION AND FURTHER WORK

An explicit ordering of formulas to compare the strengths of
beliefs is introduced. A complete axiomatization for this belief
logic with explicit ordering is provided. This notion aids in
giving intuitive formulations for various related concepts like
universality as well as some other epistemic attitudes - much
older and thoroughly discussed notions like universality and
preference, together with relatively newer ones like plausibil-
ity and disbelief. Independent axiomatizations for the logics
of plausibility, belief and plausibility as well as belief and
disbelief are also provided. Interplay of belief ordering with
the concept of safe beliefs is discussed. Lastly, we delved into
the dynamics of this ordering concept, e.g. the effect of hard
as well as soft information over the ordering formulas. A few
possible avenues for future work are discussed below.

a) Interpreting the ordered formulas: We have provided
different ways of interpreting these ordered belief formulas,
and a complete axiomatization is provided with respect to a
most general one. It will be interesting to find extensions for
other possible applications and their properties, specially to get
more interesting inter-connections between the world-ordering
and the set-ordering.

b) Dynamic setting: As evident from the discussions in
section 3, the whole system fits very well into the dynamic
epistemic logic framework. But clearly this is the just the start
of serious research in this area. There are various notions in
this context that need to be thoroughly investigated, especially
the relation to conditional belief. There are also important
model-theoretic issues that one can look into. In short, a
lot of possibilities have emerged with the introduction of
this ordering of beliefs in the already existing dynamic logic
framework dealing with epistemic attitudes.
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