
Joint achievement of services’ personal goals
Matteo Baldoni, Cristina Baroglio, Elisa Marengo, Viviana Patti, Claudio Schifanella

Dipartimento di Informatica — Università degli Studi di Torino
c.so Svizzera, 185, I-10149 Torino, Italy

Email: {baldoni, baroglio, emarengo, patti, schi}@di.unito.it

Abstract—Web service specifications can be quite complex,
including various operations and message exchange patterns. In
this work, we give a rule-based declarative representation of
services, and in particular of WSDL operations, that enables the
application of techniques for reasoning about actions and change,
that are typical of agent systems. This makes it possible to reason
on a rule-based specification of choreography roles and about the
selection of possible role players on a goal-driven basis, and allows
us to attack the problem of the joint achievement of individual
goals for a set of services which animate a choreography.

I. I NTRODUCTION

Declarative languages are becoming very important in the
Semantic Web, since the focus started to shift from the
ontology layer to thelogic layer, with a consequent need of
expressing rules and of applying various forms of reasoning1,
an interest also witnessed by the creation of a W3C working
group to define a Rule Interchange Format2. Particularly
challenging applications concernweb services.

One of the key ideas behind web services is that services
should be amenable to automatic retrieval, thus facilitating
their re-use. Nevertheless, retrieval cannot yet be accomplished
automatically as well and as precisely as desired because
the current web service representations (mainly WSDL [1]
and BPEL [2]) and the discovery mechanisms are seman-
tically poor and lack of sufficient flexibility. As shown by
the framework presented in this paper,rule-based declarative
languages, and thereasoning techniquesthat they support,
supply both an expressive formal semantics and flexibility in
the accomplishment of the service selection task.

The need of adding asemantic layerto service descriptions
is not new. Some approaches, e.g. OWL-S [3] and WSMO
[4], propose a richer annotation, aimed at representinginputs,
outputs, preconditionsand effectsof the service. Inputs and
outputs are usually expressed by ontological terms, while
preconditions and effects are often expressed by means of
logic representations. Preconditions and effects are also used
in design by contract, originally introduced by Meyer for the
EiffelTM language [5]. Here preconditions are the part of
the contract which is to be guaranteed by the client; if this
condition is guaranteed in the execution context of a method,
then the server commits to guaranteeing that the postcondition
holds in the state reached by the execution.

On the other hand, there is often the need of using services
not in an individual way but jointly, for executing tasks that

1REWERSE NoE,http://rewerse.net
2http://www.w3.org/2005/rules/wiki/RIF_Working_Group

none of them alone can accomplish. Semantic annotations
alone are not sufficient in this case; it becomes useful to
introduce a notion ofgoal [6], [7], [8], which can be used
to guide both the selection and the composition of services.
The introduction of goals opens the way to the introduction
of another abstraction, that ofagent. Agents include not only
the ability of dealing with goals and of performing goal-
driven forms of reasoning, but they also show autonomy and
proactivity, which are characteristics that help when dealing
with open environments, allowing for instance a greater fault
tolerance (see [9], [10], [11]).

In this work, we take the perspective of a candidate role
player, willing to take part to an interaction, that is ruled
by a choreography. We see such an entity as anenhanced
(proactive) service, made of a declarative description of its
behavior, of the operations that it can execute, of its goals[7],
and with the capability of reasoning (on its own behavior) so
to build orchestationsthat allow the achievement of its goals
(proactiveness). So, for instance, a service that wishes toplay
the role of the “Seller” of a ticket-purchase choreography may
have the aim of “selling tickets”, guaranteed by playing the
choreography role, and have the additional,private goal of
“loyalizing clients”. Notice that personal goals may vary along
time, hence, different participations (to the same choreography
of a same agent as player of the same role) may be character-
ized by different personal goals. For example, the flight ticket
selling service may change at some point its personal goal,
which becomes the “promotion of additional services” offered
by the same company. The presence of additional goals, which
may not be disclosed to the interacting parties, biases the
behavior and the choices of a service. A service will take
on a role only after checking the possible achievement of this
final condition.

Orchestrations compose the interactions ofsets ofservices.
However, reasoning on the goals of the orchestrator alone is
not sufficient. Indeed, in the context of choreographies that
provide a pattern of interaction among services, each service
involved has its own goals, that it tries to pursue. The research
question is: even though each service has proved that there
is a possible way of playing its role, which leads to the
achievement of its personal goal, is it possible to guarantee
the compatibility of these individual solutions? In other words,
will the joint working plan, made of the identified individual
solutions, allow thejoint achievement of all the goalsof the
interacting parties? A ticket selling service that wants todo
some advertisement by sending a newsletter to its clients will



not match the aims of a client which considers this kind of
information as spam.

In this paper we describe the first steps of a study about
the joint achievementof goals of a set of services, whose
interaction is ruled by a choreography. The approach relies
on a rule-based declarative representation of the choreography
roles and of the interacting services, which extends and
refines the work in [8], [12], [13], exploiting the results about
conservative matching defined in there. The framework enables
the application of techniques for reasoning on the effects of
playing a role in a choreography, thus checking whether the
desired personal goal can be accomplished. The representation
is based on the logic programming language described in
[14], [15]. Behaviors, as roles and service policies, buildupon
WSDL-like basic operations, represented as atomic actions
with preconditions and effects.

The paper is organized as follows. Section II sets the
representation of services and of choreographies that we adopt.
Moreover, it explains how it is possible to reason on such
a representation in order to allow each service to check
the reachability of its goals locally, i.e. by using only the
specification of the desired choreography role. Section III
tackles the joint achievement of personal goals. A running
example is distributed along the pages to better explain the
proposed notions and mechanisms. Conclusions end the paper.

II. A THEORETICAL FRAMEWORK FOR REPRESENTING

AND REASONING ABOUT SERVICES

In this section, we introduce the notation that we use to
represent services and we discuss the problem of verifying
a personal goal. The notation, which is a refinement of the
proposal in [13], is based on a logical theory for reasoning
about actions and change in amodal logic programming
setting and on the languageDYnamics in LOGic, described
in details in [14]. This language is designed for specifying
agents behaviour and for modeling dynamic systems. It is
fully set inside the logic programming paradigm by defining
programs by sets of Horn-like rules and giving a SLD-style
proof procedure. The capability of reasoning about interaction
protocols, supported by the language, has already been ex-
ploited for customizing web service selection and composition
w.r.t. to the user’s constraints, based on a semantic description
of the services [14]. The language is based on a modal theory
of actions and mental attitudes where modalities are used for
representing primitive and complex actions as well as the agent
beliefs. Complex actions are defined by inclusion axioms [16]
and by making use of action operators from dynamic logic,
like sequence “;” and test “?”.

In this framework, the problem of reasoning amounts either
to build or to traverse a sequence of transitions betweenstates.
A state is a set offluents, i.e., properties whose truth value can
change over time, due to the application of actions. In general,
we cannot assume that the value of each fluent in a state is
known: we want to have both the possibility of representing
unknown fluents and the ability of reasoning about the exe-
cution of actions on incomplete states. To explicitly represent

unknown fluents, we use an epistemic operatorB, to represent
the beliefs an entity has about the world:Bf means that the
fluent f is known to be true,B¬f means that the fluentf is
known to be false. A fluentf is undefined when both¬Bf
and¬B¬f hold (¬Bf ∧ ¬B¬f ). Thus each fluent in a state
can have one of the three values:true, falseor unknown. For
the sake of readability, we will add as a superscript ofB the
name of the service that has the belief.

Services exhibit interfaces, called port-types, which make a
set of operations available to possible clients. In our proposal,
a service descriptionis defined as a pair〈O,P〉, whereO
is a set of basic operations, andP (policy) is a description
of the complex behavior of the service. Analogously to what
happens for OWL-S composite processes,P is built upon basic
operations and tests, that control the flow of execution.

A. Basic operations

Let us start withbasic operations. According to the main
languages for representing web services, like WSDL and
OWL-S, there are four basic kinds of operations [17] (or
atomic processes, when using OWL-S terminology [3]):

• one-way involves a single message exchange, a client
invokes an operation by sending a message to the service;

• notify involves a single message exchange, the client
receives a message from the service;

• request-responseinvolves the exchange of two messages,
are initiated by the invoker of the operation, which sends
a message to the service and, after that, waits for a
response;

• solicit-responseinvolves the exchange of two messages,
the order of the messages is inverted w.r.t. a request-
response, first the invoker waits for a message from the
service and then it sends an answer.

A basic operation is described in terms of itsexecutability
preconditionsand effects, the former being a set of fluents
(introduced by the keywordpossible if) which must be con-
tained in the service state in order for the operation to be
applicable, the latter being a set of fluents (introduced by the
keywordcauses) which will be added to the service state after
the operation execution. Syntax for basic operations is:

operation(content) causes Es (1)

operation(content) possible if Ps (2)

whereEs and Ps, denote respectively the fluents, which are
expected as effect of the execution of an operation and the
precondition to its execution, whilecontent denotes possible
additional data that is required by the operation. Notice that
such operations can also be implemented as invocations to
other services.

Operations, when executed, trigger a revision process on
the actor’s beliefs. Since we describe web services from a
subjectivepoint of view, we distinguish between the case when
the service is either the initiator (the operationinvoker) or
the servant of an operation (the operationsupplier) by further
decorating the operation name with a notation inspired by [18].



The two views arecomplementary, so if one view includes the
act of sending a message, the other correspondingly includes
a message reception. With reference to a specific service,
operation≫ denotes the operation from the point of view of
the invoker, whileoperation≪ denotes the operation from
the point of view of the supplier. The view of operations
that is used byinvoker is given in terms of the operation
inputs, outputs, preconditions, and effects as usual for semantic
web services [3]. In the next part of this section, inputs and
outputs are represented as single messages for simplicity but
the representation can easily be extended to sets of exchanged
data, as in Example (II-C). In this case, preconditionsPs in (2)
and effectsEs in (1) are respectively the conditions required
by the operation in order to be invoked, and the expected
effects that result from the execution of the operation. For
what concerns the view of thesupplier, also in this case
the operation is described in terms of its inputs and outputs.
Moreover, we also represent a set of conditions that enable
the executability of the operation. In order to distinguishthem
from the above, in this case we useRs instead ofPs in
(2), calling themrequirements. Finally, we represent a set of
conditions that constitute theside effectsof the operation. In
this case we useSs instead ofEs in (1). For example, abuy
operation of a selling service has as a precondition the fact
that the invoker has a valid credit card, as inputs the credit
card number of the buyer and its expiration date, as output it
generates a receipt, and as effect the credit card is charged.
From the point of view of the supplier, the requirement to the
execution is to have an active connection to the bank, and the
side effect is that the store availability is decreased while the
service bank account is increased of the perceived amount.

Let us now introduce the formal representation of the four
kinds of basic operations (for each operation we report both
views) and of complex operations.

1) One-way: In one-way operations, theinvoker requests
an execution which involves sending an informationmin to
the supplier; the invoker must obviously know the information
to send before the invocation (a) (see Table I). The invoker can
execute the operation only if the preconditions are satisfied in
its current state (a). The execution of the invocation brings
about the effectsEs (c), and the invoker will know that it
has sent an information to the supplier (b). Using OWL-
S terminology,min represents theinput of the operation,
while Ps and Es are its preconditions and effects. One-way
operations have no output. On the other hand, thesupplier,
which exhibits the one-way operation as one of the services
that it can execute, has the requirementsRs (e). The execution
of the operation causes the supplier to know the information
sent by the invoker (f). We also allow the possibility of having
some side effects on the supplier’s state. These effects arenot
to be confused with the operation effects described by IOPE,
and have been added for the sake of completeness.

2) Notify: With ref. to Table I, in notify operations, the
invoker requests an execution which involves receiving an
informationmout from the supplier. The invoker can execute
the operation only if the preconditions are satisfied in its

Fig. 1. The request-response basic operation.

current state (a). The execution of the invocation brings about
the effectsEs (c), and the invoker will know the received in-
formation (b). Using OWL-S terminology,mout represents the
outputof the operation, whilePs andEs are its preconditions
and effects. Notify operations have no input. Thesuppliermust
meet the requirementsRs (e). The execution of the operation
simply causes the fact that the supplier will know the message
to send (f) and that it has sent some information to the invoker
(g). As above, we allow the possibility of having some side
effects on the supplier’s state (h).

3) Request-response:In request-response operations (see
Figure 1), theinvoker requests an execution which involves
sending an informationmin (the input, according to OWL-
S terminology) and then receiving an answermout from the
supplier (the output in OWL-S). The invoker can execute
the operation only if the preconditionsPs are satisfied in
its current state and if it owns the information to send (a)
(see Table I). The execution of the invocation brings about
the effectsEs (d), and the fact that the invoker knows that
it has sent the inputmin to the supplier (b). One further
effect of the execution is that the invoker knows the answer
returned by the operation (c). This representation abstracts
away from the actual message exchange mechanism, which
is implemented. Our aim is to reason on the effects of the
execution on the mental state of the parties [15]. As for one-
way operations, thesupplier has the requirementsRs to the
operation execution (e). It receives an inputmin from the
invoker (f). The execution produces an answermout (g), which
is sent to the invoker (h). As usual, it is possible to have
some side effects on the supplier’s state. On the supplier’s
side, we can notice more evidently the abstraction of the
representation from the actual execution process. In fact,we
do not model how the answer is produced but only the fact
that it is produced.

4) Solicit-response:With ref. to Table I, in solicit-response
operations, theinvoker requests an execution which involves
receiving an informationmout (the output, according to OWL-
S terminology) and then sending a messagemin to the supplier
(the input in OWL-S). The invoker can execute the invocation
only if the preconditionsPs are satisfied in its current state
(a). The execution of the invocation brings about the effects
Es (e). The invoker receives a messagemout from the supplier
(b) then, it produces the input informationmin which is sent
to the supplier, see (c) and (d). As for notify operations, the



Operation Invoker’s view Supplier’s view

One-Way (a) operation≫ow(min) possible if BInvokermin ∧ Ps (e) operation≪ow(min) possible if Rs

(b) operation≫ow(min) causes BInvokersent(min) (f) operation≪ow(min) causes BSuppliermin

(c) operation≫ow(min) causes Es (g) operation≪ow(min) causes Ss

Notify (a) operation≫n (mout) possible if Ps (e) operation≪n (mout) possible if Rs

(b) operation≫n (mout) causes BInvokermout (f) operation≪n (mout) causes BSuppliermout

(c) operation≫n (mout) causes Es (g) operation≪n (mout) causes BSuppliersent(mout)
(h) operation≪n (mout) causes Ss

Request- (a) operation≫rr(min, mout) possible if BInvokermin ∧ Ps (e) operation≪rr(min, mout) possible if Rs

response (b) operation≫rr(min, mout) causes BInvokersent(min) (f) operation≪rr(min, mout) causes BSuppliermin

(c) operation≫rr(min, mout) causes BInvokermout (g) operation≪rr(min, mout) causes BSuppliermout

(d) operation≫rr(min, mout) causes Es (h) operation≪rr(min, mout) causes BSuppliersent(mout)
(i) operation≪rr(min, mout) causes Ss

Solicit- (a) operation≫sr(min, mout) possible if Ps (f) operation≪sr(min, mout) possible if Rs

response (b) operation≫sr(min, mout) causes BInvokermout (g) operation≪sr(min, mout) causes BSuppliermout

(c) operation≫sr(min, mout) causes BInvokermin (h) operation≪sr(min, mout) causes BSuppliersent(mout)
(d) operation≫sr(min, mout) causes BInvokersent(min) (i) operation≪sr(min, mout) causes BSuppliermin

(e) operation≫sr(min, mout) causes Es (l) operation≪sr(min, mout) causes Ss

TABLE I
THE REPRESENTATION OF THE FOUR KINDS OF BASIC OPERATIONS IN THE PROPOSED FRAMEWORK: EACH OPERATION IS GIVEN IN TERMS OF ITS

PRECONDITIONS AND EFFECTS, FOR EACH OF THEM WE REPORT BOTH THE INVOKER’ S VIEW AND THE SUPPLIER’ S VIEW.

supplier must fulfill the requirementsRs (f). The execution
causes the supplier to know the information to send (g) and
that it has sent such information to the invoker (h). Moreover, it
produces also the knowledge of the informationmin received
from the invoker (i). Side effects on the supplier’s state are
allowed (l).

B. Service policies and choreography roles

The framework accounts also forcomplex behaviorsthat
require the execution of many operations. A service policyP
is a collection of clauses of the kind:

p0 is p1, . . . , pn (3)

wherep0 is the name of the procedure andpi, i = 1, . . . , n, is
either an atomic action (operation), a test action (denotedby
the symbol?), or a procedure call. Procedures can be recursive
and are executed in a goal-directed way, similarly to standard
logic programs, and their definitions can be non-deterministic
as in Prolog. Complex behaviors are used also for represent-
ing choreography roles. Generally speaking, we represent a
choreographyC as a tuple(R1, . . . , Rn) of interacting and
complementaryroles, each roleRi being a subjective view of
the interaction that is encoded.

Also a role R is represented by a pair〈O,P〉. The dif-
ference with services is that it composesspecificationsof
operations and not implemented operations. The player of
each role has to supply appropriate implementations. We call
such specificationsunbound operations. Formally, unbound

Fig. 2. A simple choreography for reserving a flight, expressed as a UML
sequence diagram.

operations are represented as normal basic operations, in
terms of their preconditions and effects. This is one of the
advantages of adopting a logic language: it allows handling
implementations and specifications in the same way. In our
case, both operations and operation specifications are given in
terms of their preconditions and effects.



C. Flight-purchase

As an example, let’s considersearchFlight, an operation of
a flight reservation service, which is offered by aseller and
can be invoked by abuyer to search information about flights
with given departure (dep) and arrival locations (arr) plus the
date of departure (date). From the point of view of the buyer,
the operation, which is of kind request-response, is:

(a) searchFlight≫rr((dep, arr, date), f lightList) possible if

Bbuyerdep ∧ Bbuyerarr ∧ Bbuyerdate∧
Bbuyer¬sellingStarted

(b) searchFlight≫rr((dep, arr, date), f lightList) causes

Bbuyersent(dep) ∧ Bbuyersent(arr)∧
Bbuyersent(date)

(c) searchFlight≫rr((dep, arr, date), f lightList) causes

BbuyerflightList
(d) searchFlight≫rr((dep, arr, date), f lightList) causes

BbuyersellingStarted

The inputs of the operation aredep, arr, anddate, while the
output isflightList. In this case the setPs contains only the
belief Bbuyer¬sellingStarted (in bold text above) while the
setEs of effects contains the beliefBbuyersellingStarted (in
bold text as well).

From the point of view of the supplier, instead, the operation
is represented as:

(a) searchFlight≪rr((dep, arr, date), f lightList) possible if

true
(b) searchFlight≪rr((dep, arr, date), f lightList) causes

Bsellerdep ∧ Bsellerarr ∧ Bsellerdate
(c) searchFlight≪rr((dep, arr, date), f lightList) causes

BsellerflightList
(d) searchFlight≪rr((dep, arr, date), f lightList) causes

Bsellersent(flightList)

In this case the setsRs andSs of requirements and side effects
are empty. The operation expects as input the departure and
arrival locations and the date of the flight, and it produces
a flightList, which it sends to its customer, so after the
operation the beliefBsellersent(flightList) will be in its
belief state.

buyTicket is, instead, an example of procedure implemented
by a possible buyer service:

(a) buyTicket is

searchFlight≫rr((dep, arr, date), f lightList);
askChosenFlight≪n (flight);
evaluateAndBuy.

(b) evaluateAndBuy is

noBusiness≫ow(reason).
(c) evaluateAndBuy is

choosePayment≪rr(payMethods, chosenMethod);
doPayment≫rr((credential, payInfo), resNum);
askForMiles≫n (miles).

First, it invokes an operation for searching flights that cor-
respond to a given specification (searchFlight≫rr). After that,

it waits for being asked about the preferred flight, chosen
among the flights list obtained by the previous operation
(askChosenFlight≪n ). This evaluation can give either a negative
outcome, hence the interaction is interrupted (noBusiness≫ow)
or the interaction continues with the selection of the payment
method (choosePayment≪rr). Then, the buyer performs the
payment (doPayment≫rr) and, at the end, it is notified about
the obtained miles (askForMiles≫n ).

D. Reasoning on goals

In the outlined framework, it is possible to reason about
personal goals by means of queries of the formFs after p,
whereFs is thegoal (represented as a conjunction of fluents),
that we wish to hold after the execution of a policyp.
Checking if a formula of this kind holds corresponds to
answering the query: “Is it possible to executep in such a
way that the conditionFs is true in the final state?”. When
the answer is positive, the reasoning process returns a sequence
of atomic actions that allows the achievement of the desired
condition. This sequence corresponds to an execution traceof
the procedure and can be seen as aplan to bring about the goal
Fs. This form of reasoning is known astemporal projection.
Temporal projection fits our needs because, as mentioned in
the introduction, in order to perform the selection we need
a mechanism that verifies if a goal condition holds after the
interaction with the service has taken place.Fs is the set of
facts that we would like to hold “after”p.

Reasoning is done by exploiting a goal-directed proof
procedure (denoted by “⊢” in the following) designed for
the languageDYnamics in LOGic[15], [14], which supports
both temporal projection and planning and allows the proof of
existential queries of the kind reported above. The procedure
definition constrains the search space. In particular, for what
concerns planning, the proof procedure allows the automatic
extraction of linear or conditional plans for achieving thegoal
of interest from an incompletely specified initial state.

Let 〈O,P〉 be a service description. The application of
temporal projection toP returns, if any, an execution trace
(a linear plan), that makes a goal of interest become true. Let
us, then, consider a procedurep belonging toP and denoting
its top level, and denote byQ the queryFs after p. Given
a states0, containing all the fluents that we know as being
true in the beginning, we denote the fact that the queryQ
is successful in the service description by(〈O,P〉, s0) ⊢ Q.
The execution of the above query returns as a side-effect an
execution traceσ of p; the execution traceσ is a sequence
a1, . . . , an of atomic actions. We denote this by:

(〈O,P〉, s0) ⊢ Q w.a. σ (4)

where “w.a.” stands forwith answer.
For example, suppose that the initial state of the

service b1 is s0 = {Bbuyerdep,Bbuyerarr,Bbuyerdate,
BbuyerdeferredPaymentPos, Bbuyer¬sellingStarted,
Bbuyercredentials}, (all the other fluents truth value
is “unknown”). This means thatb1 assumes a date, a
departure location, an arrival location, the fact that it is



possible to defer the payment to the departure (at a desk
at the airport), and that no selling process has started yet.
The goal ofb1 is to achieve the following condition:Q =
{BbuyersellingComplete,BbuyerresNum} after buyTicket

Intuitively, the buyer expects that, after the interaction, it will
have a reservation number as a result.

By reasoning on its policy and by using the definitions of
the unbound operations that are given by the choreography,b1
can identify an execution trace, that leads to a state whereQ
holds:

σ = searchFlight≫rr((dep, arr, date), f lightList);
askChosenFlight≪n (flight);
choosePayment≪rr(payMethods, chosenMethod);
doPayment≫rr((credential, payInfo), resNum);
askForMiles≫n (miles)

This is possible because in a declarative representation spec-
ifications are executable. Moreover notice that this execution
does not influence the belief about the deferred payment,
which persists from the initial through the final state and is
not contradicted.

III. JOINT ACHIEVEMENT OF PERSONAL GOALS

So far, we have talked about goals, whose achievement
motivates the participation of a service to a choreography.It
is, in fact, reasonable that a service may decide of taking ona
role only if by doing so it will have the possibility of satisfying
its purposes. In our proposal a service takes this decision
based on knowledge that includes a public role representation
and a representation, given in terms of preconditions and
effects, of its own operations, part of which will substitute
some specifications contained in the role description. More
generally, a choreography is made of many roles, that are
played by different services, each of which has its own goal.
The question we try to answer here is whether it is possible for
this team of enhanced proactive services to reach an agreement
about their possible executions so that in the team all of them
will achieve their personal goals. As observed in [19], [20]the
team can achieve a goal if there is ajoint working plan that
can achieve the goal.

For example, consider a choreographyC = (R1, R2) and
two services, interested to play respectivelyR1 and R2 for
achieving the goalsG1 and G2. By applying the described
reasoning technique, the two services might both find that
they can achieve their personal goals, one by following the
execution traceσ1, the otherσ2. The problem is thatσ1 and
σ2 might not be compatible, e.g. one invokes aoperation≫,
when the other side does not include the corresponding exe-
cution of operation≪.

In some cases, such compatible execution traces might not
exist. In others, each party may have a set of alternativeσi

available, part of which are indeed compatible with executions
traces identified by the partner. The problem, then, becomesto
converge to a common solution that allows for the achievement
of both goals. Let us discuss these issues, focusing on two-

role choreographies. To this aim, let us introduce a few useful
notions.

Definition 1 (Compatible execution traces):Let
σ = a0; . . . ; an and σ′ = a′

0
; . . . ; a′

n be two execution
traces, we say thatσ is compatibleto σ′ iff for each operation
ai in σ the correspondinga′

i in σ′ is its complementary view.

Given an operationa, we denote bya its complementary
operation. For instance, in Example II-CsearchFlight≫rr is
complementary tosearchFlight≪rr and vice versa. We extend
the notion of complementarity to execution traces, so the
complementaryσ on an execution traceσ is the sequence
made of the operations that are respectively complementary
to those ofσ.

When a service plays a choreography role, it must supply
a set of operations that will substitute the corresponding
specifications, thus producing a service policy. Let〈O,P〉 be
a service description, and letOi

u be a subset ofO, containing
unbound operations that are to be supplied by a same role
playerSi. LetOSi

be the set of such operations, that are bound
to the operations inOi

u. In caseSi is the player of〈O,P〉,
they will be operations decorated by≪, otherwise they will
be≫ operations. We represent the binding by the substitution
θ = [OSi

/Oi
u] applied to〈O,P〉. Notice that by[OSi

/Oi
u]

we identify a set of substitutions[o/ou] of single service
operations to single unbound operations. The application of
the substitution is denoted by〈Oθ,Pθ〉, where every element
of Oi

u is substituted by/bound to an element ofOSi
.

When the matching process is applied for selecting a service
that should play a role in a choreography, the desire is that
the substitution(of the service operations to the specifications
contained in the choreography)preserves the properties of in-
terest, i.e. the goals that could be entailed before by reasoning
on each role description separately should be still achievable.
Thus, we rely on the notion ofConservative substitutionby
Baldoni et al. in [13].

Let us, now, consider two-role choreography and see how
the servicesS1 andS2 can identify a set of compatible traces,
whose execution allows the achievement of both their personal
goals. The mechanism we are going to describe can be
extended to more complicated choreographies. However, we
do not discuss the case, due to the lack of space, concerning a
number of roles more than two. Suppose thatS1 has identified
an execution traceσ that allows the achievement of its goal
Fs1, and it has verified that the substitutionsθR1 and θR2

are conservative (the two substitutions involve disjoint sets of
unbound operations by construction). Therefore, it now has
an execution traceσθR1θR2 that does not contain unbound
operations. Before executing it, its candidate partnerS2 must
agree on executing the complementary traceσθR1θR2 . Of
course,S2 might have its own goalFs2 which should be
achieved with the execution of the top level procedure of
the role R2, that we here callp2. Therefore, the following
conditions must be verified:

1) σθR1θR2 must be an execution trace ofp2;
2) after executingσθR1θR2 the goalFs2 must hold.



Fig. 3. RoleR1 takes a decision about invoking operationa1 or a2 on R2.
In the former case,R2 will subsequently invokeb1 over R1; in the latter, it
will take a decision and choose between the invocation ofb2 or the invocation
of b3 on R1.

The first condition is guaranteed by the assumption that
the choreography is well-defined, i.e. roles are interoperable,
and that the services that will animate it are conform to
the corresponding roles. The expectation that the roles of
a choreography are by construction interoperable and that
services are conform to them implies that, for any execution
trace that a party can execute, its partner has a complementary
execution trace. Interoperability is a hot research issue.A
discussion about it is out of the scope of this work but the
interested reader can take a look at [21], [22], [23], [24].

The second condition is to be verified byS2 by rea-
soning on its goal, i.e. by verifying that〈R2θR1θR2 , s0〉 ⊢
Fs2 after σθR1θR2 , wheres0 in this case is the initial state
of S2 and θR1θR2 represents the substitution obtained from
θR1θR2 by using the complementary views of the involved
operations. Notice that the above reasoning is much simpler
than the one executed onp1 becauseS2 only has to check if
the goal is satisfied afterσ has been executed. The reasoning
applied top1, instead, was aimed at identifying such a trace.

To increase the probability of reaching an agreement, we
can imagine thatS1 produces a set of alternative execution
tracesΣ, each of which allows the achievement ofFs1, and
then propose them toS2, that will restrict them to a set
of alternativesΣ′ ⊆ Σ, satisfying both goals. It is worth
noting that, in general, the set of alternative execution traces
might not be finite. Moreover, the derivation (⊢) is semi-
decidable unless the choreographies are properly restricted,
for instance by focussing onto regular sets [15]. Indeed, many
choreographies are of this kind [25]. This interaction between
the services, proposed so to allow the joint achievement of
their goals, can be seen as a kind ofnegotiation[26], [27]. In
case no other preference criterion is introduced, it isindifferent
which of the execution traces inΣ′ will be followed, and
it is not necessary to perform any further negotiation step
because the choreography is respected by both partners [24],
and Σ′ is known to both of them. Whatever the initiator of
the interaction will be, they know how to behave to allow the
mutual achievement of their personal goals, although none of
them can make a commitment on a specific execution trace
because both take choices that contribute to its definition.

An interesting issue is whether there is anyguaranteethat
both partners will stick to execution traces that are inΣ′.
In game theory words [26] and considering a choreography
as a set of game rules, isΣ′ an equilibrium? Generally, the
answer is no. It might, in fact, be the case thatS2 has some
execution trace, that is not contained inΣ′ but allows anyway
the achievement of its goal: at some point of the execution of
an agreed trace,S2 might decide to continue with an unagreed
action, because such action is particularly convenient forit. A
related issue is whether a service has adominantstrategy, i.e.
an execution trace such that all of the alternative courses of
action, that its partner has, belong toΣ′. For instance, with
reference to Figure 3, let us suppose thatΣ′ contains the exe-
cution tracesa1; b1 anda2; b2. In this case, the execution trace
a1; b1 is dominant forS1 because the only possible answer
of S2 is b1 and the overall trace allows the achievement of
both goals. Instead, the execution tracea2; b2 is not dominant
becauseS2 has the possibility of deciding to executeb3 in
alternative tob2 and the tracea2; b3 does not belong toΣ′.
The existence of a dominant strategy depends on the goal
that one wants to satisfy, on the choreography, and on the
identified substitutions. The derivation that we have proposed
is not focussed on the identification of dominant strategies. In
general, and differently than what happens for equilibria,the
decision whether an execution trace is a dominant strategy can
be taken without knowing the goal of the interlocutor. Indeed,
a strategy is dominant if any action that the interlocutor can
perform, lead to an execution trace which still belong toΣ′.
Thus a service which has a dominant strategy has the guarantee
to have a way to reach his goal. Therefore, it can be taken by
a service individually.

Another interesting problem concerns preference criteria
that services may apply in order to rank a set of strategies.
Supposing that the two services decide to behave well and
to execute a trace which is in the agreement, how can they
converge to a best-compromise agreement? One criterion could
be to select the trace which entails the minimum number
of effects. For example, one can imagine that a buyer of a
flight ticket prefers a trace at the end of which it has simply
bought the desired ticket w.r.t. one in which it has additionally
been registered in the advertisement mailing list of the flight
company. This issue will be part of our future works.

As a final remark, negotiation,does not substitutethe
execution of the choreography but it rather concerns checking
the possibility of, in this case, achieving all of the goals.The
fact that the two services converged to a set of promising
execution traces does not imply that, after starting the real
execution, they will be able to stick to them. The reason is
that those traces were identified by making assumptions on
the values returned by tests and conditions, which cannot be
known in advance. The actual results of such tests, obtained
at execution time, could be different than the assumed ones.
The additional valueof performing the negotiation is double:
on the one hand, it is possible to avoid the interaction with
partners with which the agreement cannot be reached at all, on
the other hand, each partner has the means to understand when



the interaction takes an unagreed path and decide accordingly,
for instance concluding that it is better to stop the interaction.

IV. CONCLUSIONS

The coordination of a set of autonomous, cooperating agents
is well-known and crucial in multi-agent systems research
[27]. Solutions proposed in the literature are, for example,
coordination as apost-planning process[28], where constraints
are checked after the plan has been found, and the use ofcon-
versation moderators[29], which guarantee that achievement
of shared objectives.

Along this line, this work tackles the problem of allowing
a set of independent services, which must cooperate in the
context of a given choreography, to reason about the joint
achievement of their goals. The approach that we propose
implements a simple form ofnegotiation, inspired by [20],
[19]. There are, however, some important differences w.r.tthe
work by Ghaderi et al. The first is that the behavior of our
services is ruled by a choreography, which specifies all the
possible interactions that can occur. The assumption is that
when services play choreography roles, they commit to keep
their behavior adherent to the role specification. Ghaderi et
al., instead, do not use or represent choreographies or other
kinds of interaction protocols: the reasoning process considers
all the possible execution traces that can be composed out ofa
set of atomic actions. Moreover, even when an execution trace,
that allows the joint achievement of goals, is identified there
is still the need of adding coordination mechanisms that allow
its actual execution. In our case, the necessary coordination
that makes the cooperation of the services possible is supplied
by the choreography. The other assumption that we make is
that the roles that compose a choreography are interoperable.
Interoperability is a hot research topic that is orthogonalto the
problems faced in this work.

Moreover, in the work by Ghaderi et al. each agent reasons
also for the partner, because the two agents share a common
goal and a common state. The method, when successful, iden-
tifies a set of joint plans, that correspond to preferred strategies
for the agents. These are obtained by the iterative elimination
of dominated strategies. In our framework each partner does
not have knowledge about the goals of its interlocutor, as
it is reasonable to suppose for web services; therefore, the
execution traces that we identify are not necessarily dominant.
For example, a greedy partner may take an action (if the
protocol includes it) that is not in the agreement but that allows
the immediate achievement of its own goal. This behavior is,
however, not convenient over the long run because the former
partner knows the choreography and knows the agreed traces,
therefore, it has a way ofmonitoring the on-going course of
interaction. As soon as it realizes that the partners has deviated
from the agreed traces, it can take appropriate action, e.g.
interrupt the interaction, enact compensation actions, publish
a low reputation rate for the partner. In other words, there is
a correspondence to what is known in game theory as a game
iterated forever [27].

Some correspondences with the technique “Planning as
Model Checking” proposed in [30] can be investigate. In
this approach, the planning domain is a semantic model, the
planning problem is represented through a set of global state
and plan generation is done by checking whether suitable
formulas are true in a semantic model. However, deal with
web services that have to cooperate in order to reach their
own goals seems to be more complicated. Indeed, planning
has to be performed by each service on its own, ignoring
which are the goals and which will be the substitutions used
by the interlocutors. At the end, the chosen plan must be
convenient for every service involved. Instead, by means of
the mechanism proposed in this paper planning is made only
by one service and the resulting set of compatible plans, at
the end of the negotiation, allows everyone to achieve its own
goal.

Some similarities can be found also with the proposal by
Son and Sakama [31], that concerns the process of creating
a joint plan in a MAS. They define a joint plan as one in
which there are somecooperative actions, i.e. actions that
are mutually requested/offered by agents. Indeed, also the
actions involved in a protocol can be seen as cooperative
actions, in the sense that a service is not able to achieve
its goal on its own, and needs the “cooperation” of other
services. The main difference between the two proposals is
that a protocol defines not only which actions can be invoked
on other services, but also when this can occur. One of the
advantages of choreographies is that they limit the number
of possible plans, restricting the search space of a joint plan.
Moreover, condition 1) in Section III is guaranteed by the fact
that whatever execution trace one of the partners focuses on,
the other surely has a compatible one, if all of the interacting
partners are conformant to the choreography and this is made
of a set of interoperable roles.

Some analogies can be found also with the case in which
protocols are defined bysocial commitments[32]. Indeed,
a commitment is a “promise” of an agent to another on
performing some actions. A protocols defined by commitments
does not specify when actions are to be taken. However, in this
case there is a common knowledge (i.e. the commitments) that
constrain somehow the behaviour of the involved parties. This
mechanism can guide the reasoning process in a better way.
Indeed the reasoning is not on the belief that one agent has on
the others –e.g. I believe that if he has provide this actionshe
will do it–, but is on the obligation one agent has taken: I know
that he has taken the obligation of performing this action when
I will ask him. Of course, this does not mean that the action
will be executed when required. Indeed, actions are defined in
terms of preconditions. Thus, its is possible that a condition
is not satisfied when the action should be executed.

REFERENCES

[1] W3C, “Web services description language (WSDL) version 2.0 part 1:
Core language.” [Online]. Available: http://www.w3.org/TR/wsdl20/

[2] OASIS, “Web services business process execution language version
2.0, working draft.” [Online]. Available: http://www.oasis-



open.org/committees/download.php/17355/wsbpel-specification-
draft.doc

[3] OWL-S Coalition. [Online]. Available:
http://www.daml.org/services/owl-s/

[4] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman,and
A. Polleres,Enabling Semantic Web Services : The Web Service Mod-
eling Ontology. Springer.

[5] B. Meyer, “Applying ”design by contract”,”Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[6] M. Pistore, L. Spalazzi, and P. Traverso, “A minimalist approach to
semantic annotations for web processes compositions.” inESWC, ser.
LNCS, Y. Sure and J. Domingue, Eds., vol. 4011. Springer, 2006, pp.
620–634.

[7] M. B. van Riemsdijk and M. Wirsing, “Goal-Oriented and Procedu-
ral Service Orchestration. A Formal Comparison,” inAWESOME007,
Durham, UK, September 2007.

[8] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “Rea-
soning on choreographies and capability requirements,”International
Journal of Business Process Integration and Management, vol. 2, no. 4,
pp. 247–261, 2007.

[9] G. Caire, D. Gotta, and M. Banzi, “WADE: A software platform to
develop mission critical applications exploting agents andworkflows,”
in Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Estoril, Portugal, 12-16 May 2008, pp. 29–36.

[10] M. Piunti, A. Ricci, and A. Santi, “SOA/WS Applications using Cogni-
tive Agents working in CArtAgO Environments,” inDecimo Workshop
Nazionale “Dagli Oggetti agli Agenti” (WOA 2009), Parma, 2009.

[11] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta, “CooWS:Adaptive
BDI agents meet service-oriented computing,” inProceedings of the Int.
Conference on WWW/Internet, 2005, pp. 205–209.

[12] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella,
“Service selection by choreography-driven matching,” inEmerging Web
Services Technology, ser. Whitestein Series in Software Agent Technolo-
gies and Autonomic Computing, T. Gschwind and C. Pautasso, Eds.
Birkhäuser, September 2008, vol. II, ch. 1, pp. 5–22.

[13] M. Baldoni, C. Baroglio, V. Patti, and C. Schifanella, “Conservative re-
use ensuring matches for service selection,” inProc. of the 6th European
Workshop on Multi-Agent Systems (EUMAS), 2008.

[14] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
interaction protocols for customizing web service selection and com-
position,” JLAP, special issue on Web Services and Formal Methods,
vol. 70, no. 1, pp. 53–73, 2007.

[15] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming
Rational Agents in a Modal Action Logic,”Annals of Mathematics
and Artificial Intelligence, Special issue on Logic-Based Agent
Implementation, vol. 41, no. 2-4, pp. 207–257, 2004. [Online].
Available: http://www.kluweronline.com/issn/1012-2443

[16] M. Baldoni, “Normal Multimodal Logics: Automatic Deduction and
Logic Programming Extension,” Ph.D. dissertation, Dipartimento di
Informatica, Universit̀a degli Studi di Torino, Italy, 1998.

[17] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,Web Services.
Springer, 2004.

[18] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Me-
cella, “Synthesis of Underspecified Composite e-Service bases on Ato-
mated Reasoning,” inProc. of ICSOC04. ACM, 2004, pp. 105–114.

[19] H. Ghaderi, H. Levesque, and Y. Lespérance, “Towards a logical theory
of coordination and joint ability,” inProc. of the 6th International
Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS07), 2007, pp. 532–534.

[20] ——, “A logical theory of coordination and joint ability,” in Proc. of
AAAI’07, 2007, pp. 421–426.

[21] S. K. Rajamani and J. Rehof, “Conformance checking for models of
asynchronous message passing software,” inCAV, ser. LNCS, vol. 2404.
Springer, 2002, pp. 166–179.

[22] L. Bordeaux, G. Saläun, D. Berardi, and M. Mecella, “When are two
web services compatible?” inTES 2004, ser. LNCS, vol. 3324. Springer,
2005, pp. 15–28.

[23] M. Bravetti and G. Zavattaro, “Contract based multi-party service
composition,” in FSEN, ser. LNCS, vol. 4767. Springer, 2007, pp.
207–222.

[24] M. Baldoni, C. Baroglio, A. Chopra, N. Desai, V. Patti, and M. Singh,
“Choice, interoperability, and conformance in interactionprotocols and
service choreographies,” inProc. of the 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS), 2009.

[25] Foundation for Intelligent Physical Agents, “http://www.fipa.org.”
[26] M. J. Osborne and A. Rubinstein,A Course in Game Theory. MIT

Press, July 1994.
[27] M. Wooldridge,An Introduction to Multiagent Systems. John Wiley &

Sons, March 2002.
[28] J. R. Steenhuisen, C. Witteveen, A. ter Mors, and J. Valk, “Framework

and Complexity Results for Coordinating Non-cooperative Planning
Agents,” inMATES, ser. Lecture Notes in Computer Science, vol. 4196.
Springer, 2006, pp. 98–109.

[29] C. Sibertin-Blanc and N. Hameurlain, “Participation Components for
Holding Roles in Multiagent Systems Protocols,” inEngineering Soci-
eties in the Agents World, ser. Lecture Notes in Computer Science, vol.
3451, August 2005, pp. 60–73.

[30] F. Giunchiglia and P. Traverso, “Planning as Model Checking,” in Recent
Advances in AI Planning, ser. LNCS. Springer, 2000, pp. 1–20.

[31] T. C. Son and C. Sakama, “Reasoning and Planning with Cooperative
Actions for Multiagents Using Answer Set Programming,” inDALT:
Declarative Agent Languages and Technologies, ser. LNAI. Budapest,
Hungary: Springer, May 2009.

[32] M. P. Singh, “Agent communication languages: Rethinkingthe princi-
ples,” in Communication in Multiagent Systems, ser. Lecture Notes in
Computer Science, M.-P. Huget, Ed., vol. 2650. Springer, 2003, pp.
37–50.


