

Abstract— The aim of this paper is to introduce AgentSeeker: a
distributed multi-agent platform for indexing local and online
textual files, with the semantic contribution of domain specific
ontologies. These ontologies describe the application domain and
the competences the user is referring to, during the interaction
with the platform, namely a query session. They are used by an
Ontology Agent which organizes the results of a user’s query,
according to the concepts which represent the relevant entities in
the company business.
AgentSeeker is addressed to enterprise applications, thanks to its
flexible and scalable structure managed by the Federation
Management Suite, which ensures a comfortable administration
of the distributed platform, balancing the computational load.

Index Terms— Document, multi-agent system, ontology, search
engine, MAS federation.

I. INTRODUCTION
earch engines represent a saving compass which enables
us to find an Internet page winnowing the whole network

or to find a personal document through a desktop application
which parses private files.

Usual search engines denote an intuitive behaviour: they
store the textual content of the parsed documents in a database
and they return an ordered list of files containing the
keywords suggested through a user’s query. Proper algorithms
calculate the rank for every hit and, according to this
evaluation, the search engines display first the most relevant
pages. In spite of this solution, it is a user’s experience that
sometimes the search engine gives a completely wrong page
link due to a misunderstanding of the meaning of the keyword
or neglects a page link which does not explicitly contain the
given term but it is anyway relevant.

The aim of AgentSeeker, the search engine presented in this
paper, is to make the document retrieval a more intelligent
process, finding texts which are semantically bound to the
user’s query. In order to achieve this goal, two aspects of
AgentSeeker are relevant: software agents and ontologies.
Based on a multi-agent platform, AgentSeeker is a scalable
and flexible solution which can be adapted to different
contexts, thanks to the AgentService Federation Management
Suite.

Even if AgentSeeker is not designed for competing with the
giant search engines as Google or Yahoo, it is aimed both to
index Internet pages and local files and it is especially focused
to enterprise contexts where the value of the digital
information is particularly high. A particular kind of agent is

able to manage ontologies, integrating the user’s queries with
semantically related words, discovered through the analysis of
concept relations, specializations, and synonyms.

AgentSeeker is able to manage different amounts of textual
documents: from a little corpus on a single file server, to a big
collection scattered on a network. The agent roles involved in
AgentSeeker are designed in order to operate in a variable
amount of instances and to interact with peers in a
circumscribed environment (a single PC) alike a distributed
platform federation. And exactly the management of this
distributed environment is a relevant topic of this extended
abstract and it represents an improvement in respect with the
first version of AgentSeeker presented in [1].

II. AGENTSEEKER
AgentSeeker has been developed by following few basic

principles: scalability, flexibility, and accurate management of
textual documents. In order to consider documents not only as
alphanumeric sequences but also as knowledge with a precise
meaning, several solutions use meta-tags in order to
semantically describe their content. Nevertheless, if we
consider as source of information Internet or large local
document corpora, the tagging of these resources become
very complicated due to the impossibility of modifying a file
or to the objective difficulty to manually catalogue thousands
of documents. For these practical reasons, AgentSeeker can
only manage the textual content. Ontologies are used to
describe the knowledge of the user, his competences, and his
expectations in order to apply them during the document
search.

Figure 1: The agent roles presently implemented in AgentSeeker.

AgentSeeker is essentially based on AgentService [2], a

framework for the development and execution of multi-agent
systems, implemented in the C# programming language and
by using the Microsoft .NET libraries. An overview of the
features and the programming paradigm provided with

AgentSeeker: an ontology-based
enterprise search engine

Extended abstract

A. Passadore, A. Grosso, and A. Boccalatte, University of Genova, Via Opera Pia 13, 16145 Genova

S

AgentService are detailed in [2] and [3].

A. Designing the AgentSeeker overall system
Following the agent oriented paradigm, AgentSeeker is

designed as a society of interoperating agents. All the
involved components are modeled as agents playing a specific
role within the community. Figure 1 shows the different roles
and their interactions. In addition to the usual AgentService
agents, equipped with behaviours and knowledge objects (here
referenced as internal agents), AgentSeeker includes also
external agents: namely external applications which act like
ordinary agents for easily interacting with the rest of the
platform. Finally, in order to make agents act in a coordinated
way, a set of interaction protocols are defined for modeling
their interoperations.

The Indexing Agent

The Indexing Agent (IA) is the core of the system. The main
goal of the IA is to index documents and inform the Merger
and the Manager Agent about the completion of its work. The
documents to be indexed are collected from web sites or from
local storages, both distributed on an intranet and stored in a
single PC. The IA is able to extract text from common html
files, simple text documents (txt), pdf files, and all the formats
of the Microsoft Office Suite. Parsing hypertexts, the agent
extracts also the hyperlinks and distinguishes from internal
links (namely pages which belong to the same site) and
external links (pages of other sites). In case of external page,
the IA collects the link in a list which will be sent to the
manager agent (its features are described below).

IA promotes its services by registering to the yellow pages
service included into the system. When IA receives a new job,
it first deregisters itself from the yellow pages till the job will
be completed, then it renews the registration becoming
available again for executing a new job. For each indexing
session, IA maintains its own database where stores
information extracted from the parsed files (path, content,
title, etc.). The local database is based on .NET Lucene: the C#
porting of a well-known Apache Foundation java project
named Apache Lucene [5]. Essentially developed to store
textual contents and to operate queries on them, Lucene is a
scalable solution that allows the implementation of large
architectures.

The session index is then accomplished in collaboration
with the Merger Agent, as shown in the next paragraph.

The Merger Agent

Once the IAs have created and stored their partial indexes,
there is the need to merge them in order to speed up the search
operation by avoiding fragmentations. The Merger Agent role
(MA) has been defined in order to collect the results of the
IAs once they have finished their indexing session. The MA
manages a central index (based on Lucene) where the user’s
queries are materially executed. For this reason the MA has
two main tasks: to maintain a central repository of the indexed
texts and to respond to the queries coming from the query

agent.
Considering the relation between the dimension of the

index and the search speed, AgentSeeker provides the
possibility to configure the system for involving more than
one MA.

The Query Agent

The Query Agent (QA) manages the search requests coming
from the users through the Web Interface Agent and the
Administration Console Agent or from different external
applications. Once a request is received, the QA checks if the
ontological support has been requested; in this case, it contacts
the Ontology Agent in order to have a semantic support for
improving the results. Then, it sends a request to all the MAs
and collects the consequent results. Finally, it furnishes the
results to the web-based interface agent.

Mastering the enterprise’s knowledge through the Ontology
Agent

The Ontology Agent (OA) is the keeper of the knowledge
of the system. Its functionalities will be fully described in the
section IV but, as an introduction, the OA is essentially able to
read ontologies in the OWL language, thanks to the libraries
SemWeb and Linq to RDF. The OA extracts the described
concepts and finds the relations among them. On the basis of
this information, the OA extends the query sent by the QA,
during a user’s session.

Another feature of the OA is the classification of the
document content. In particular, this service is used by the IA
during its indexing sessions, which then receives an estimate
of the arguments dealt in the examined text.

The Manager Agent

The Manager Agent plays the role of orchestrator,
coordinating the activities of the other agents. It is in charge of
distributing and balancing the workload among the agents and
it acts as supervisor monitoring the index and search
processes. In particular the manager has a knowledge object
containing the list of web sites (on shared folders) to parse.
This list can be increased by adding new sites received from
the external agent representing the administration console and
by receiving new links discovered by the IAs. In presence of
new links to visit, the manager searches for a free IA,
consulting the yellow pages. Due to the fact that the yellow
pages are distributed across the whole federation, the manager
is able to find free agents running also on remote computers.
The computational workload is then naturally balanced on
every machine and every agent.

The agent-based web interface

From the user’s point of view, AgentSeeker is a simple web
application with a look-and-feel similar to the usual search
engines. In the back-end of the web application, an agent is in
charge of interacting with a remote AgentSeeker installation
in order to submit the queries. The interoperation between
AgentSeeker and the web application is based on a web

service interface exposed by AgentService. The life-cycle of
this agent is tied with the user’s session; every user has his
own agent which helps him to interact with the platform. The
choice of implementing the web application as an agent
simplifies the development of the whole system and integrates
the user’s interface with the rest of the platform. From the
web page, the user can select or import an ontology which
represents the argument he has in mind during his query
session.

The Administration console

Similar to the previous one, another agent runs behind an
administration console which allows administrators to manage
AgentSeeker. For example, an Administrator can submit a
new web site to index, set the standby time for the platform, or
he can directly shut down the platform, stopping safely every
agent instance. He can also monitor the status of the platform,
namely the agent health, the progression of the indexing tasks,
etc.

III. THE FEDERATION MANAGEMENT SUITE
The simplest deployment of AgentSeeker consists in a

single platform (in execution on a single computer) with
single instances of each agent role. A manager sends jobs to
the unique IA, which parses each web site (or folder),
classifying every page with the help of the OA. The MA
collects the results of the IA, while the QA directly speaks
with the external agent behind the web application and with
the OA in order to extend the query. A console agent manages
the platform.

If the computer has enough resources, the platform
administrator could create different instances of the IA in
order to process in parallel several jobs. This is particularly
useful if the CPU is multi-core, considering also that every IA
alternates processing time and downloading of documents.

In case of large amount of textual documents to index, it
could be useful to add further computational resources. A new
computer is then connected to the first one, a new
AgentService platform is installed and new IAs are instanced.
The unique manager agent has now at its disposal new IAs
which can be contacted through the distributed yellow pages,
in a completely transparent way with no complications due to
the distributed environment.

Now, with different instances of IAs, only one MA could
be not enough. In this case, a new MA can be instanced and
the IAs can be instructed in order to refer to a particular MA.
With multiple MAs, the QA can submit the query in parallel
and then compose the incoming results.

If the catchment area is wide, the federation could be
integrated with several instances of query and ontology agents
in order to serve different users at the same time.

At this point the scenario can be configured in various
ways, with resources totally dedicated to a single type of
agent, and mixed platforms with various agent roles. The
single computer platform is now spread on a distributed

network, in a totally transparent way from the point of view of
the AgentSeeker developer and especially of the system
administrator. Furthermore, new computational resources and
agent instances can be added or removed dynamically during
the AgentSeeker execution.

A. Managing a distributed environment
As shown before, it is plausible a complex federation of

platforms with a common goal. In this case, AgentSeeker
becomes a distributed society of agents which must act and
react in unison. From the point of view of the administrator, it
is very important to manage the whole system in a centralized
way. Although the pseudo-agent playing the role of
Administration Console represents a useful tool for tuning
some parameters of AgentSeeker and monitoring the activity
of the running agents, it is however an entity of the platform
with no power on the life-cycle of peers or even of the entire
platform.

Web
Service

Peer
performance
monitoring

Administrator
console

Network
scan

The Service
Platform

Figure 2: The management infrastructure of a federation.

For this reason we developed an infrastructure which

allows a system administrator to easily manage distributed
AgentService applications, both at the level of platforms and
of agents. AgentSeeker represents a significant test-bed thanks
to its intrinsic distribution of resources and scalability.

This infrastructure is a sort of cloud for MASs which
enables the administrator to:
1) Install a platform on a PC
2) Join the platform to a particular federation of platforms
3) Discover new platform nodes
4) Deploy an application on one or more distributed

platforms
5) Manage the platform life-cycle
6) Create, execute, move, and stop single agent instances.

B. A platform as a service
Fig 2 shows the topology of a federation of AgentService

platforms. Each platform is, first of all, a service running on a
computer. Installed as a Windows Service, each platform is
instantiated at the computer wake up. The platform service

exposes a web service through which an administrator can set
the state of the platform: idle, when it is not yet launched;
ready, when every platform module is loaded; running, when
the platform is ready to execute agents; stopping; and
shuttingdown.

Every platform-service runs a thread which is in charge of
discovering new nodes on the same subnet. Every IP is
scanned in order to check if a possible peer platform is
listening. In this case, a handshake procedure starts in order to
determine if the candidate is available for joining the
federation (on the same subnet several federations can coexist
and every platform is set up to join one, more, or all the
federations). Periodically every node polls the federated
platforms to check their existence and to share the list of
discovered peers. In this way, the federation is updated,
thanks to the interactions of the federated nodes. From the
practical point of view, the list of federated platforms is used
by the AgentService messaging module to physically route the
messages to remote agents.

C. The management of a federation
Once the platforms are physically installed on a network,

the administrator can manage the federations connecting its
administration GUI to the web service exposed by whichever
remote platform. This platform represents the access point of
the federation and all the commands coming from the
administration GUI transit through it. From the GUI, the
administrator is able to see the node list and the status of the
related platforms. Further information, constantly updated,
regard the CPU occupancy, the available RAM, and, if the
platform is running, the number of hosted agents.

The administrator can upload to a single node, or
automatically to the whole federation, a set of files like
assemblies containing the templates of agents, configuration
files, etc. In this manner, a new multi-agent application can be
rapidly deployed and executed.

D. Add an agent to the federation
During the usual execution of a distributed multi-agent

application as AgentSeeker, it is possible to add new agent
instances in order to increase the available resources in the
federation. Moreover, it could happen that an agent crashes
for some reason and must be stopped and replaced. In these
cases, the administrator must be able to create new instances
of agents. A first possibility is to select a particular node and
then to launch a new instance. Another way is to select the
whole federation and create an agent instance suggesting no
physical destination. Every node of the federation knows the
status of each peer node and is able to find the platform with
more free resource. In order to do it, the node classifies the
peer performances (CPU time, free RAM, and number of
agents) evaluated on a time slot (typically 10 minutes). Once
the best platform is selected, the current node checks if the
destination has the necessary assemblies containing the agent
template and related classes and only if the platform candidate
satisfies all the requirements, the agent is materially

instantiated on that node.

E. Moving agents instances
A federation of platforms is an environment where agent

activities and interactions evolve in time. An agent could
suddenly increase its needs of resources or densely interact
with a remote agent. In these cases, the presence of the agent
in the current platform could deteriorate the node
performances or saturate the network link with a high
throughput of messages. As described in [6] the AgentService
team developed a facility for moving agents from a platform
to another one, saving their state and then resuming them on
the destination. The agent state is represented by its collection
of knowledge objects which are persisted and sent to the
destination along with the needed assemblies.

Considering the GUI we are describing, the administrator is
able to select an agent and, evaluating the performances of the
other nodes, he can stop it, select the destination, move the
agent and resume its activities on the new node, balancing the
computational load of the federation.

IV. REPRESENTING KNOWLEDGE IN AGENTSEEKER
Ontological models of the discourse domains which

AgentSeeker deals with, allow a sensible growth of the multi-
agent application performances.

The aim is to help the user during the submission of a
query, taking into account the argument he is considering in
order to automatically add more details to the interrogation
submitted into the system.

Based on OWL ontologies, AgentSeeker, in its first
functioning prototype, provides three policies which exploit
the explicit semantic representation of the enterprise’s
knowledge.

A. A priori classification
This strategy is applied during the indexing sessions and

requires a strict interaction between the IA which extracts the
text and the OA which classifies it with the help of its
knowledge represented by ontologies.

The idea is to estimate the affinity of each processed text
with the topics modeled in the ontologies directly supported
by AgentSeeker. The MAS maintains a repository where it
stores the core ontologies. Since AgentSeeker is able to
manage the OWL language, it can accept further ontologies
imported by the users. For this reason we can state that
AgentSeeker is not tuned on a particular set of ontologies, but
it is up to deal with every ontology.

From the practical point of view, every document stored in
the Lucene index has a particular field where the URIs of the
supported ontologies are related to an estimate of its relevance
in respect with the supported semantic models. The measure is
expressed in term of percentage of document words which are
also described in the ontology. We apply the Porter Stemmer
algorithm [7] in order to extract the root of each term
suppressing any suffix (plurals, gerundive forms, etc.) and we
remove the so-called stop words (adverbs, conjunctions, etc.)

from the document, because of their irrelevance.
Once the classification has been completed, the user can

order the results on the basis of their relevance according to
the arguments supported by AgentSeeker. Usual queries and
selection of documents by arguments can be integrated.

B. Conceptual classification
In AgentSeeker we can exploit ontologies in order to

classify documents on the basis of a natural hierarchy
suggested by the relations of specialization and generalization
among concepts. The user suggests the depth of the sub-
cluster hierarchy in order to avoid a too detailed classification.

Following this policy, the QA obtains from the OA a
hierarchical structure whose nodes represents both the
concepts and the single queries to submit to the MA and then
to Lucene.

Furthermore, it is possible to restrict the number of
processed documents, by clustering only the results of a usual
query.

C. Query expansion
The third strategy is aimed to expand the user’s query. The

OA parses the query in order to add alternatives or more
details. According to the argument the user is considering
(namely the ontology), the QA analyzes each query term in
order to check if it is also an ontological concept. In this case
the term can be expanded by following up to three types of
policies. The first policy integrates the query, adding, for each
word which occurs also in the ontology, all the specialized
concepts.

For example, if the user’s query is car retailer and car is an
automobile ontology concept which is specialized in station
wagon, coupe, and convertible, the query is rewritten in this
manner: (station wagon retailer) OR (compact retailer) OR
(coupe retailer) OR (convertible retailer), allowing the user to
access also these pages where the term car is not explicitly
cited. Another type of integration similarly extends the query
to those terms which are related to the query keywords
through properties (owl:ObjectProperty).

Furthermore, each keyword can be integrated by suggesting
possible synonyms specified in the given ontology. For this
reason we use the owl constructs owl:sameAs and
owl:equivalentClass. Incidentally, this third type allows,
potentially, the multi-language support, if the concepts are
translated in several languages.

V. CONCLUSIONS AND FUTURE WORKS
At now, AgentSeeker is a fully working prototype, subject

to several improvements in term of usability and
performances. Moreover, it represents a platform on which we
can build specific applications that require large textual
repositories to process. Integrating a new application in
AgentSeeker is a relatively simple process, because it is
necessary only to add a platform (or just agents to the
federation) and to interact with the usual AgentSeeker agent
roles. The Federation Management Suite ensures a

comfortable tool for managing large deployments of
platforms, relieving the administrator from any effort for
balancing the computational load. Besides the flexibility
ensured by agent-oriented architectures, we can exploit also
their intrinsic scalability and adaptability, making
AgentSeeker able to tune itself to different contexts: from a
little academic laboratory which wants to manage its
collection of papers, to the large enterprise which wants to
keep the lid on its document corpus.

We use ontologies in order to formally describe the
domains where AgentSeeker is called to operate. Presently,
the ontology utilization can be considered basic and subject to
further improvements. For example we could develop a
behaviour for our ontology agent able to reason about the
concepts and their relations, in order to find implicit
associations and properties. Moreover, explicit properties are
now considered as simple links between two concepts; a
future improvement will enable the ontology agent to
consider, in some way, the meaning of the property.

We plan to introduce also the possibility to explore the web,
indexing only those sites which are relevant considering the
ontologies included in the AgentSeeker repository. An
indexing agent will visit few pages and then ask the ontology
agent to determine if the web site is relevant.

In conclusion, we think that AgentSeeker contributes to the
improvement of search engine performances, combining a
multi-agent system with ontological representations. By using
Lucene.NET and homemade spiders, AgentSeeker covers the
whole process, from the document parsing to the storage of
extracted data. This feature assures full control of every
aspect, in respect to other solutions which implement meta-
search engines leaning on results of online search engines
operations. The solution we propose is then more pragmatic
and voted to limit the user’s and the administrator’s efforts in
order to deploy a system which could be used in the everyday
work (or life) activity.

REFERENCES

[1] A. Passaodore, A. Grosso, A. Boccalatte, “Indexing enterprise
knowledge bases with AgentSeeker”, WOA 2009, From Objects to
Agents, Parma, Italy, July 2009.

[2] C. Vecchiola, A. Grosso, A. Passadore, and A. Boccalatte,
“AgentService: A Framework for Distributed Multi-agent System
Development,” to be published in International Journal of Computers
and Applications, ACTA Press, 2009.

[3] C. Vecchiola, A. Grosso, and A. Boccalatte, “AgentService: a
framework to develop distributed multi-agent systems, “ International
Journal of Agent-Oriented Software Engineering, vol. 2, no.3 pp. 290 –
323, 2008.

[4] Foundation of Intelligent Physical Agents (FIPA), Available:
http://www.fipa.org.

[5] E. Hatcher, O. Gospodnetić, and M. McCandlessvan Lucene in action,
Manning Publications Co, Greenwich, 2009.

[6] A. Boccalatte, A. Grosso, and C. Vecchiola, “Implementing a Mobile
Agent Infrastructure on the .NET Framework,“ in Proc. 4th
International Conference in Central Europe on .NET Technologies,
Plzen, Czech Republic, May, 2006.

[7] C. J. Rijsbergen, S. E.Robertson, and M.F. Porter, New models in
probabilistic information retrieval, British Library, chap. 6, London,
1980.

