
WADE – An Open Source Platform for Workflows and
Agents

G. Caire, E. Quarantotto, G. Sacchi
Telecom Italia

Via Reiss Romoli 274
10148 Torino - Italy

Categories and Subject Descriptors
I.2.11 {Artificial Intelligence]: Distributed Artificial Intelligence
- Multiagent systems; C.2.4 {Computer Communication
Systems]: Distributed systems; D.2.11 [Software Engineering]:
Software architecture

General Terms
Management, Performance, Languages.

Keywords
Software Agent, workflow, JADE, Open Source, XPDL,
Scalability, Flexibility.

1. INTRODUCTION
WADE is the main evolution of JADE and adds to it the ability to
define system logics according to the workflow metaphor.
WADE is not just an add-on, but a complete platform (built on
top of JADE) providing advanced administration and fault
tolerance mechanisms and enabling a group of agents to
cooperatively execute complex tasks defined as workflow.
Nowadays workflows are mostly adopted in BPM (Business
Process Management) environments where they are used to
represent business processes and orchestrate existing systems
typically (but not necessarily) accessible by means of Web
Services-based interfaces.
The main challenge in WADE is to bring the workflow approach
from the business process level to the level of system internal
logics. That is, even if in principle it could be used for that
purpose too, WADE does not target high level orchestration of
services provided by different systems, but the implementation of
the internal behaviour of each single system. Each agent embeds a
micro-workflow engine and a complex process can be carried out
by a set of cooperating agents each one executing a piece of the
process.
The approach followed by WADE is to provide a workflow view
on top of a normal Java class. That is a workflow is implemented
as a Java class with a well defined structure. A key element in this
approach is WOLF (WOrkflow LiFe cycle management
environment), the graphical development environment for WADE
based applications.
The presentation will provide an overview of the WADE
platform, will highlight its most distinguishing features such as
workflow inheritance, support for web services and delegation.

2. WADE OVERVIEW
WADE (Workflow and Agent Development Environment) is a
domain independent platform, built on top of JADE 5, an open
source middleware for the development of distributed applications
based on the agent-oriented paradigm. The distribution of JADE
includes a runtime environment, a library of classes that
programmers can use to develop their application and some
graphical tools for administration and monitoring purposes.
Each running instance of the JADE runtime environment is called
Container and a set of containers is called Platform. In a JADE
Platform a single special Main Container must always be active
and the other containers register with it at startup.
One or more application agents can be started into a Container.
The actual job of an Agent is to perform some tasks assigned to it.
In JADE, a “Behavior” represents a task to be performed by an
Agent and it is implemented as an object of a class that extends
the class Behaviour of the JADE library.

An Agent to perform its tasks may need to communicate with
other Agents in the Platform. JADE provides the agents with the
ability to communicate. The communication model adopted is the
“Asynchronous Message Passing” and the format of the messages
is the ACL (Agent Communication Language) defined by FIPA 5.
WADE adds to JADE the support to the workflow execution and
a few mechanisms to manage the complexity of the distribution, in
terms of administration and fault tolerance. It should be noticed
that a WADE-based application may even not use Workflow
Engine agents at all and just exploit the administration and fault
tolerance features. In that case we end up with a WADE-based
application that does not use workflows. On the other side, it is
also possible to use the workflow metaphor inside of a Jade
platform.
Wade specific components are:

• BootDaemon processes: there is a bootDaemon process
for each host in the platform and it is in charge of the
Containers activation in its local host.

• Configuration Agent (CFA): the configuration agent
always runs in the Main Container and is responsible
for interacting with the boot daemons and controlling
the application life cycle.

• Controller Agents (CA): there is a controller agent for
each container in the platform and they are responsible
for supervising activities in the local container and for
all the fault tolerance mechanisms provided by WADE.

• Workflow Engine Agents (WEA): Workflow Engine
Agents embed an instance of the micro workflow engine
and therefore they are able to execute workflows.

Figure 1 – a WADE platform
Figure 1 shows the topology of a WADE-based application.
WADE specific components are highlighted in blue.
As mentioned, workflows are represented in Wade as Java classes,
so, in principle, Wade supports “notepad-programming” in the
sense that there is not hidden stuff that developers can’t control.
However, expecially considering that one of the main advantages
of the workflow approach is the possibility of representing
processes in a friendly graphical form, Wade comes with a
development environment called Wolf that facilitates the creation
of Wade-based applications. Wolf is an Eclipse plug-in and as a
consequence allows Wade developers to exploit the full power of
the Eclipse IDE plus additional Wade specific features.

3. Workflow approach
A workflow is a formal definition of a process in terms of
activities to be executed, relations between them, criteria that
specify the activation and termination and additional information
such as the participants, the software tools to be invoked, required
inputs and expected outputs and internal data manipulated during
the execution.
The key aspect of the workflow metaphor is the fact that the
execution steps as well as their sequencing are made explicit. This
makes it possible to give a graphical representation of a process
defined as a workflow. Such representation is clearly extremely
more intuitive with respect to a piece of software code and in
general is understandable by domain experts as well as by
programmers.
Domain experts can therefore validate system logics directly and
not only on documents that most of the time are not perfectly up
to date. In some cases they could even contribute to the actual
development of the system without the need for any programming
skill.
Another important characteristic is that, being the execution steps
explicitly identified, the workflow engine (i.e. a system able to
automatically execute a process defined as a workflow) can trace
them. This makes it possible to create automatic mechanisms to
facilitate system monitoring and problem investigation.

Additionally, when processes have to be executed within the
scope of a transaction, semi-automatic rollback procedures can be
activated in case of unexpected fault. Finally, since workflows are
fully self-documented, workflow-based development releases the
development team of the burden of keeping documentation
aligned each time design choices must be revisited to face
implementation details or evolving requirements.
Nowadays the workflow metaphor is mostly used in BPM
environments where a workflow represents a business process and
orchestrates a number of existing systems typically (but not
necessarily) accessible by means of Web Services based
interfaces.
The main challenge in WADE is to bring the workflow approach
from the business process level to the level of system internal
logics. That is, even if it could be used for that purpose too,
WADE does not target high level orchestration of services
provided by different systems, but the implementation of the
internal behaviour of each single system.
First of all it should be noticed that WADE does not include a
single powerful workflow engine as the majority of BPM oriented
tools. On the contrary WADE provides an extension of the basic
Agent class of the JADE library called
WorkflowEngineAgent that embeds a small and lightweight
workflow engine (we talk about "micro-workflow engine"). As a
consequence, besides normal JADE behaviours, all Workflow-
Engine agents active in a WADE-based multi-agent applications
are able to execute workflows represented according to a WADE
specific formalism.
The second important point to highlight is that, in order to allow
developers to exploit the workflow metaphor to define system
internal logics and, at the same time, to give them the same power
of a software programming language and a comparable execution
efficiency, the WADE workflow representation formalism is
based on the Java language. That is, a workflow that can be
executed by WADE Workflow-Engine agents is expressed as a
Java class with a well defined structure (as it will be explained in
the following). As such WADE workflows can be edited,
refactored, debugged and in general managed as all Java classes
and can include all pieces of code (methods, fields of whatever
types, inner classes, references to external classes and so on)
needed to implement the process details. In addition, of course,
the execution flow they specify can be presented and modified in
a friendly, graphical way. More in details WOLF (the
development environment for WADE based applications) is an
Eclipse plugin and allows developers to work with a graphical
view (suitable to manage the process flow) and a code view (the
usual Eclipse Java editor suitable to define execution details) that
are kept in synch.
Finally it must be noticed that WADE does not impose that all
system logics are defined as workflows. Developers are free to
exploit the workflow metaphor to describe those tasks for which
they think it is appropriate and use normal JADE behaviours (or
other purely Java patterns) elsewhere.
As mentioned the approach followed by WADE is to provide a
workflow view on top of a normal Java class.
As a consequence, a workflow is implemented as a Java class and
no standard workflow definition language is used. However, Wolf
adopts the workflow meta-model defined in the XPDL [2],

standard specified by the Workflow Management Consortium.
The XPDL meta-model has been chosen, because the XPDL
language has been conceived as interchange formalism between
different systems. WADE supports the import of XPDL files and
the adoption of this meta-model facilitates these operations.
Moreover, the XPDL meta-model is based on a Finite State
Machine computational model that is the same model supported
by the WADE agents.
In the XPDL meta-model a process is represented as a workflow,
consisting of one or more activities that can be thought as tasks to
be executed.
In a workflow, the execution entry point is defined, specifying the
first activity to be performed; this activity is called Start Activity.
On the other hand, a workflow must have one or more termination
points, named Final Activities.
The execution flow is defined by means of transitions. A
transition is an oriented connection between two activities and
may have a condition associated. Regular or exception transitions
can be defined. Exception Transitions allow specifying branches
that are taken only when an Exception is raised in the source
activity.
Excluding the final ones, each activity may have one or more
outgoing transitions. When the execution of an activity is
terminated, the conditions associated to its outgoing transitions
are evaluated. As soon as a condition is verified the corresponding
transition is activated and the execution flow proceeds towards the
destination activity.
Normally a process execution uses some internal data, for
instance, to pass intermediate results between activities and/or for
evaluation of conditional expressions. In the XPDL meta-model
internal data are modeled by Data Fields.
A process can have one or more inputs to be provided and one or
more outputs expected at the end of its execution. Inputs and
outputs of a process can be formalized in the XPDL meta-model
by means of the workflow Formal Parameters.
The XPDL meta-model defines some predefined types of activity.
The most important ones are:

• Tool Activity: a tool activity is an activity that is
implemented by means of the invocation of one or more
software tools, named Applications.

• Subflow Activity: a subflow activity is an activity that
requires the execution of another workflow. When a
workflow is called by a subflow activity, the workflow
formal parameters permit the exchange of necessary
data between calling and called process. A
distinguishing characteristic of the WADE workflow
engine is the Delegation mechanism that allows a set of
agents to cooperatively execute a complex process.
More in details the agent executing the calling workflow
can decide to delegate the subflow to another agent on
the basis of conditions evaluated at runtime. Such
conditions may be related for instance to the current
load (thus supporting the implementation of a GRID-
like system) or to specific abilities required to carry out
a portion of the whole process. The delegation
mechanism is implemented by means of a an extension
of the fipa-contract-net protocol (5) where the agent
executing the calling workflow acts as initiator while

the agent executing the subflow acts as responder. This
protocol allows managing, when required, a process
carried out by a set of cooperating agents as a single
transaction.

• Route Activity: a route activity is an activity which
performs no work processing, but simply supports
routing decisions among its incoming and out coming
transitions.

Finally, WADE introduces a few types of Activity, among
them the CodeActivity and the Web Services Activity.

In a Code Activity the operations are specified directly by a
piece of Java code embedded in the workflow process
definition.

A Web Service Activity, instead, provides an easy way to
invoke Web Services from a workflow. Two kinds of Web
Services invocations are allowed: static and dynamic.
In the first case, it is necessary to import the WSDL
describing the Web Service using WOLF. This operation
generates a set of classes that will be used at workflow
execution time to actually invoke the web service described
by the imported WSDL. These classes can be extended by
users with development skills, in order to satisfy some
specific requirements (e.g.: logging some information before
and after the invocation of the Web Service).
In the second case, the dynamic invocation is performed
without the need of generating new classes. This approach is
useful if the user doesn’t need to customise these classes.

As mentioned a workflow is implemented by a Java class and it
extends directly or indirectly the WADE class
WorkflowBehaviour.

The WorkflowBehaviour class provides a set of APIs,
consistent with the XPDL meta-model described in the previous
section, which can be used by developers to implement their own
workflows.
The mapping between the meta-model objects and the workflow
implementation is shown in the example depicted in Figure 2.

Figure 2 – Mapping between meta – model objects and
workflow implementation

The methods registerActivity() and
registerTransition() must be used respectively to add an
activity and a transition.
When the registerActivity() method is called, its first
parameter is an instance of the activity to be added.
The actual tasks to be performed by an activity (no matter of its
type) are specified in a void method of the workflow class; this
method must have the same name of the activity, preceeded by the
prefix “execute” (execute<ActivityName>). The
workflow engine is in charge of invoking that method when the
activity is visited.
In the same way, the registerTransition() method takes
a transition instance as parameter. For transitions with conditions,
the boolean expression to be evaluated by the workflow engine
is specified in a boolean method that has same name of the
condition, preceeded by the prefix “check”
(check<ConditionName>).

An important feature of the object-oriented programming
languages is the possibility to reuse the code by means of
inheritance mechanisms. In order to bring the programming
languages power also to the workflow representation, it has been
choosen to provide the workflow with the inerithance mechanism
too. Therefore it is possible to define a new workflow extending
an old one, and then adding/removing activities and transitions.
The overriding of methods associated to the activities and to the
conditions of transitions is also permitted.

4. CONCLUSIONS
In this paper we described WADE, an open source framework to
develop distributed applications based on the agent programming
paradigm. WADE is based on JADE and in particular adds to it

the possibility of modeling the agents’ behaviours following the
workflow metaphor. Moreover some administration and fault
tolerance features are provided too.

As mentioned, in WADE a workflow is represented as a java class
and WOLF provides a graphical view of it, making available to
the developers both the expressiveness of a visual representation
and the power of usual programming languages.

As well known, the workflow metaphor is traditionally used in the
BPM context for web service orchestration. Because WADE
provides support for Web Service invocation, it can be used even
in this context, but its actual challenge is to bring the workflow
approach from the business process level to the level of system
internal logics. A direct consequence of the approach described is
that the full power of WADE can be exploited for applications
that imply the execution of possibly long and fairly complex tasks.

Furthermore, unlike the majority of existing workflow systems
that provide a powerful centralized engine, in WADE each agent
can embed a “micro workflow engine” and therefore a complex
process can be carried out by a set of cooperating agents through
the delegation mechanism.

From an industrial point of view WADE can be particularly useful
to develop applications with strong requirements of both
performance and scalability and high flexibility in defining the
systems’ logics.

5. REFERENCES
[1] JADE - Java Agent Development framework.

http://jade.tilab.com
[2] FIPA – Foundation for Intelligent Physical Agents

http://www.fipa.org
[3] FIPA – The FIPA Contract Net interaction protocol
[4] XPDL XML Process Definition Language,

http://www.wfmc.org/standards/xpdl.htm
[5] Shapiro, R. 2002. A comparison of XPDL, BPML and

BPEL4WS (Rough Draft), Cape Vision
[6] BPMN Business Process Modeling Notation

http://www.bpmn.org/
[7] G. Caire “WADE: An Open Source Platform for Workflows

and Agents”
http://jade.tilab.com/wade/doc/tutorial-aamas2008.zip

[8] Caire G., Gotta D., Banzi “WADE: A software platform to
develop mission critical applications exploiting agents and
workflows”, M., Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008) – Industry
and Applications Track, Berger, Burg, Nishiyama (eds.),
May, 12-16., 2008, Estoril, Portugal, pp. 29-36.

[9] “WADE User Guide”
http://jade.tilab.com/wade/doc/WADE-User-Guide.pdf

[10] G. Caire, M. Porta, E. Quarantotto, G. Sacchi “ Wolf – An
Eclipse Plug-in for WADE”

public class SendMail extends WorkflowBehaviour {...
protected void defineActivities() {
 //ACTIVITY Prepare Mail …
 registerActivity(prepareMail, INITIAL);
 //ACTIVITY Verify Mail…
 registerActivity(verifyMail);
 …}

protected void defineTransitions() {
 registerTransition(new Transition(), PREPARE_MAIL,
 VERIFY_MAIL);
 registerTransition(newTransition("IsCorrect", this),

VERIFY_MAIL, SEND_MAIL);}
protected void executePrepareMail (final ApplicationList
 applications) throws Exception {…
}
protected boolean checkIsCorrect() {...

}

Verify MailSend

Prepare Mail

Modify Mail

SEND MAIL PROCESS

http://jade.tilab.com/wade/doc/WADE-User-Guide.pdf
http://jade.tilab.com/wade/doc/tutorial-aamas2008.zip
http://www.bpmn.org/
http://www.wfmc.org/standards/xpdl.htm
http://www.fipa.org/
http://jade.tilab.com/

	1. INTRODUCTION
	2. WADE OVERVIEW
	3. Workflow approach
	4. CONCLUSIONS
	5. REFERENCES

