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Abstract 
 

Reputation management is about evaluating an 

agent's actions and other agents' opinions about those 

actions, reporting on those actions and opinions, and 

reacting to that report thus creating a feedback loop. 

This social mechanism has been successfully used, 

through Reputation Management Systems (RMSs) to 

classify agents within normative systems. Most RMSs 

rely on the feedbacks given by the member of the social 

network in which the RMS itself operates. In this way, 

the reputation index can be seen as an endogenous and 

self produced indicator, created by the users for the 

users' benefit. This implies that users’ participation 

and collaboration is a key factor for the effectiveness a 

RMS. In this work the above factor is explored by 

means of an agent based simulation, and is tested on a 

P2P network for file sharing. 

 

1. Introduction 
 

In everyday's life, when a choice subject to limited 

resources (like for instance money, time, and so on) 

must be done, due to the overwhelming number of 

possibilities that people have to choose from, 

something is needed to help them make choices. 

People often follow the advice of others when it comes 

to which products to by, which movies to watch, which 

music to listen, which websites to visit, and so on. This 

is a social attitude that uses others’ experience They 

base their judgments of whether or not to follow this 

advice partially upon the other person's reputation in 

helping to find reliable and useful information, even 

with all the noise. 

Using and building upon early collaboration 

filtering techniques, reputation management software 

gather ratings for people, companies, and information 

sources. Since this is a distributed way of computing 

reputation, it is implicitly founded on two main 

assumptions: 

 

1) The correctness of shared information 

2) The participation of users to the system 

 

While the negation of the first could be considered 

as an attack to the system itself, performed by users 

trying to crash it, and its occurrence is quite rare, the 

second factor is often underestimated, when designing 

a collaborative RMS. Users without a vision of the 

macro level often use the system, but simply forget to 

collaborate, since this seems to cause a waste of time. 

The purpose of the present work is to give a 

qualitative and, when possible, quantitative evaluation 

of the collaborative factor in RMSs, by means of an 

empirical analysis conducted via an agent based 

simulation. Thus, the main research question is: what’s 

the effectiveness of a RMS, when changing the 

collaboration rate coming from the involved users? 

In order to answer this question, in the paper an 

agent based model is introduced, representing a peer-

to-peer (P2P) network for file sharing. A basic RMS is 

applied to the system, in order to help users to choose 

the best peers to download from. In fact, some of the 

peers are malicious, and they try to exploit the way in 

which the P2P system rewards users for sharing files, 

by uploading inauthentic resources when they do not 

own the real ones. The model is described in detail and 

the results are evaluated through a multi-run coeteris 

paribus technique, in which only one setting is 

changed at a time. In particular, the most important 

parameters which will be compared, to evaluate the 

effectiveness of the RMS are: verification of the files, 

performed by the users and negative payoff, given in 

case a resource is reported as being inauthentic. The 

verification of the files, i.e. users’ the collaboration,  is 

an exogenous factor for the RMS, while the negative 



payoff is an endogenous and thus directly controllable 

factor, from the point of view of a RMS’s designer. 

The P2P framework has been chosen since there are 

many works focusing on the reputation as a system to 

overcome the issue of inauthentic files, but, when 

evaluating the effectiveness of the system, the authors 

[1] usually refer to idealized situations, in which users 

always verify the files for authenticity, as soon as they 

start a download. This is obviously not the case in the 

real world: first of all, most resources require to be at 

least partially owned, in order to be checked. Besides, 

some users could simply decide not to check them for 

long time. Even worse, other users could simply forget 

about a downloaded resource and never check it. Last 

but not least, other users might verify it, but simply not 

report anything, if it’s not authentic.  

 

2. Reputation and P2P Systems 
 

Since uploading bandwidth is a limited resource and 

the download priority queues are based on a uploading-

credit system to reward the most collaborative peers on 

the network, some malicious users create inauthentic 

files, just to have something to share, thus obtaining 

credits, without being penalized for their behavior. To 

balance this, RMSs have been introduced, which 

dynamically assign to the users a reputation value, 

considered in the decision to download files from them 

or not. RMSs are proven, via simulation, to make P2P 

networks safe from attacks by malicious peers, even 

when forming coalitions. In networks of millions of 

peers attacks are less frequent, but users still have a 

benefit from sharing inauthentic files. It’s not clear if 

RMSs can be effective against this selfish widespread 

misbehavior, since they make several ideal 

assumptions about the behavior of peers who have to 

verify files to discover inauthentic ones. This operation 

is assumed to be automatic and with no costs. 

Moreover, since the files are usually shared before 

downloading is completed, peers downloading 

inauthentic files unwillingly spread them if they are not 

cooperative enough to verify their download as soon as 

possible. In the present work, the creation and 

spreading of inauthentic files is not considered as an 

attack, but as a way in which some agents try to raise 

their credits, while not possessing the real resource 

that's being searched by others. A basic RMSs is 

introduced, acting as a positive or negative reward for 

the users and human factor behind the RMSs is 

considered, in the form of costs and benefits of 

verifying files.  Most approaches, most notably 

EigenTrust [2], assume that verification is made 

automatically upon the start of download of the file. By 

looking as we do at the collaboration factor in dealing 

with RMSs, we can question their real applicability, an 

issue which remains unanswered in the simulation 

based tests made by the authors. To provide an answer 

to this question it is necessary to build a simulation 

tool which aims at a more accurate modeling of the 

users’ behavior rather than at modeling the reputation 

system in detail. 

 

3. Model Framework 
 

We assume a simple idealized model of reputation, 

since the objective is not to prove the effectiveness of a 

particular algorithm but to study the effect of users’ 

behavior on a reputation system. We use a centralized 

system which assumes the correctness of information 

provided by users, e.g., it is not possible to give an 

evaluation of a user with whom there was no 

interaction. When verifying a file, the agents give a 

negative payoff to the agent uploading it, in case it’s 

inauthentic. In turn, the system will spread it to the 

agents (if any) who uploaded it to the sender. There are 

two reputation thresholds: the first and higher one, 

under which it’s impossible to ask for resources to 

other agents, the second, lower than the other, which 

makes it impossible even to share the owned files. This 

guarantees that an agents that falls under the first one 

(because she shared too many inauthentic files), can 

still regain credits by sharing authentic ones and come 

back over the first threshold. On the contrary, if she 

continues sharing inauthentic files, she will fall also 

under the second threshold, being de facto excluded 

from the network, still being a working link from and 

to other agents. The agents are randomly connected on 

a graph and feature the following parameters: Unique 

ID, Reputation value, set of neighbors, set of owned 

resources, set of goals (resources), set of resources 

being downloaded, set of suppliers (by resource). At 

each time step, agents reply to requests for download, 

perform requests (according to their goals) or verify 

files. While an upload is performed – if possible - each 

time another agent makes a request, requesting a 

resource and verification are performed in alternative. 

Verification ratio is a parameter for the simulation and 

acts stochastically on agents’ behavior. All agents 

belong to two disjoint classes: malicious agents and 

loyal ones. They have different behaviors concerning 

uploading, while feature the same behavior about 

downloading and verification: malicious agents are 

simply agents who exploit for selfishness the 

weaknesses of the system, by always uploading 

inauthentic files if they don’t own the authentic ones. 

Loyal agents, on the contrary, only upload a resource if 

they own it. A number of resources are introduced in 

the system at the beginning of the simulation, 



representing both the owned objects and the agents' 

goals. For coherence, an owned resource can't be a 

goal, for the same agent. The distribution of the 

resource is stochastic. During the simulation, other 

resources (and corresponding goals) are stochastically 

distributed among the agents. Each agent 

(metaphorically, the P2P client) keeps track of the 

providers, and this information is preserved also after 

the download is finished. 

 To test the limits and effectiveness of a reputation 

mechanism under different user behaviors an agent 

based simulation of a P2P network is used as 

methodology, employing reactive agents to model the 

users; these have a deterministic behavior based on the 

class they belong to (malicious or loyal) and a 

stochastic idealized behavior about verifying policy. 

Their use shows how the system works at an aggregate 

level. However, reactive agents can also be regarded as 

a limit for our approach, since real users have a flexible 

behavior and adapt themselves to what they observe. 

We built a model which is less idealized about the 

verifying factor, but it’s still rigid when considering 

the agents’ behavior about sending out inauthentic 

files. That’s why we envision the necessity to employ 

cognitive agents based on reinforcement learning 

techniques. Though, reactive agents can also be a key 

point, in the sense that they allow the results to be 

easily readable and comparable among them, while the 

use of cognitive agents would have moved the focus 

from the evaluation of collaborative factor to that of 

real users’ behavior when facing a RMS, which is very 

interesting, but beyond the purpose of the present 

work. In future works, this paradigm for agents will be 

considered. 

The model is written in pure Java and does not 

make use of any agent development environment. 

 

4. Model Specifications and Parameters 
 

The P2P network is modeled as an undirected and 

non-reflexive graph. Each node is an agent, 

representing a P2P user. Agents are reactive: their 

behavior is thus determined a priori, and the strategies 

are the result of the stimuli coming from the 

environment and of the condition-action rules. Their 

behavior is illustrated in next section. Formally the 

multi agent system is defined as MAS = <Ag; Rel>, 

with Ag set of nodes and Rel set of edges. Each edge 

among two nodes is a link among the agents and is 

indicated by the tuple < ai; aj > with ai and aj 

belonging to Ag. Each agent features the following 

internal parameters: 

 

– Unique ID (identifier), 

– Reputation value (or credits) N(ai), 

– Set of agent’s neighbors RP(ai), 

– Set of owned resources RO(ai), 

– Set of goals (resource identifiers) RD(ai), 

– Set of resources being downloaded P(ai), 

– Set of pairs < supplier; resource >. 

 

A resource is a tuple <Name, Authenticity>, where 

Name is the resource identifier and Authenticity is a 

Boolean attribute indicating whether the resource is 

authentic or not. The agent owning the resource, 

however, does not have access to this attribute unless 

he verifies the file. 

The resources represent the object being shared on 

the P2P network. A number of resources are introduced 

in the system at the beginning of the simulation; they 

represent both the owned objects and the agents' goals. 

For coherence, an owned resource can't be a goal, for 

the same agent. The distribution of the resource is 

stochastic. During the simulation, other resources are 

stochastically introduced. In this way, each agent in the 

system has the same probabilities to own a resource, 

independently from her inner nature (malicious or 

loyal). In the same way also the corresponding new 

goals are distributed to the agents; the difference is that 

the distribution probability is constrained by its being 

possessed by an agent. Formally R be the set of all the 

resources in the system. We have that:  

RD�ai� � R, RO�ai� �  R and RD�ai�   RO�ai� � Ø. 

Each agent in the system features a set of neighbors 

N(ai), containing all the agents to which she is directly 

linked in the graph: N�ai�  �  �aj � Ag | � ��;  �� ��

 ��Rel�. This information characterizes the information of 

each agent about the environment. The implemented 

protocol is a totally distributed one, so looking for the 

resource is heavily based on the set of neighbors. 

In the real word the shared resources often have big 

dimensions; after finding the resource, a lot of time is 

usually required for the complete download. In order to 

simulate this the set of the "resources being 

downloaded" (Ris) introduced. These are described as 

Ris = <resource ID, completion, check status>, where 

ID is the resource identifier, completion is the 

percentage already downloaded and "check status" 

indicates whether the resource has been checked for 

authenticity or not. In particular, it can be not yet 

verified, verified and authentic and verified and 

inauthentic:  

check status � �NOT CHECKED; AUTH;� �INAUTH� 
Another information is ID of the provider of a certain 

resource, identified by P(ai). Each agent keeps track of 

those which are uploading to him, and this information 

is preserved also after the download is finished. The 

real P2P systems allow the same resource to be 

download in parallel from many providers, to improve 



the performance and to split the bandwidth load. This 

simplification should not affect the aggregate result of 

the simulation, since the negative payoff would reach 

more agents instead of just one (so the case with 

multiple provider is a sub-case of that with a single 

provider). 

 

4.1. The Reputation Model 

In this work we assume a simple idealized model of 

reputation, since the objective is not to prove the 

effectiveness of a particular reputation algorithm but to 

study the effect of users' behavior on a reputation 

system. We use a centralized system which assumes 

the correctness of information provided by users, e.g., 

it is not possible to give an evaluation of a user with 

whom there was no interaction. The reason is that we 

focus on the behavior of common agents and not on 

hackers who attack the system by manipulating the 

code of the peer application. In the system there are 

two reputation thresholds: the first and higher one, 

under which it’s impossible to ask for resources to 

other agents, the second, lower than the other, which 

makes it impossible even to share the owned files. This 

guarantees that an agents that falls under the first one 

(because she shared too many inauthentic files), can 

still regain credits by sharing authentic ones and come 

back over the first threshold. On the contrary, if she 

continues sharing inauthentic files, she will fall also 

under the second threshold, being de facto excluded 

from the network, still being a working link from and 

to other agents. 

 

4.2. The User Model 
 

Peers are reactive agents replying to requests, 

performing requests or verifying files. While upload is 

performed each time another agent makes a request, 

requesting a file and verification are performed (in 

alternative) when it is the turn of the agent in the 

simulation. All agents belong to two disjoint classes: 

malicious agents and loyal agents. The classes have 

different behaviors concerning uploading, while they 

have the same behavior concerning downloading and 

verification: malicious agents are just common agents 

who exploit for selfishness the weaknesses of the 

system. When it is the turn of another peer, and he 

requests a file to the agent, he has to decide whether to 

comply with the request and to decide how to comply 

with it. 

  

- The decision to upload a file is based on the 

reputation of the requester: if it is below the "replying 

threshold", the requestee denies the upload (even if the 

requestee is a malicious agent). 

 - The "replyTo" method refers to the reply each 

agent gives when asked for a resource. When the agent 

is faced with a request he cannot comply but the 

requester's reputation is above the "replying threshold", 

if he belongs to the malicious class, he has to decide 

whether to create and upload an inauthentic file by 

copying and renaming one of his other resources. The 

decision is based depending on a parameter. If the 

resource is owned, she sends it to the requesting agent, 

after verifying if her reputation is higher than the 

"replying threshold". Each agent performs at each 

round of simulation two steps: 

 

 1) Performing the downloads in progress. For each 

resource being downloaded, the agents check if the 

download is finished. If not, the system checks if the 

resource is still present in the provider's "sharing pool". 

In case it's no longer there, the download is stopped 

and is removed from the list of the "owned resources".  

Each file is formed by n units; when 2/n of the file has 

been downloaded, then the file gets automatically 

owned and shared also by the agent that is 

downloading it. 

2) Making new requests to other peers or verifying 

the authenticity of a file downloaded or in 

downloading, but not both: 

a) When searching for a resource all the 

agents within a depth of 3 from the requesting 

one are considered. The list is ordered by 

reputation. A method is invoked on every agent 

with a reputation higher than the "requests 

threshold", until the resource is found or the list 

reaches the ending point. If the resource is found, 

it's put in the "downloading list", the goal is 

cancelled, the supplier is recorded and linked with 

that specific download in progress and her 

reputation is increased according to the value 

defined in the simulation parameters. If no 

resource is found, the goal is  given up. 

b) Verification means that a file is 

previewed and if the content does not correspond 

to its description or filename, this fact is notified 

to the reputation system. Verification phase 

requires that at least one file must be in progress 

and it must be beyond the 2/n threshold described 

above. An agent has a given probability to verify 

instead of looking for a new file. In case the agent 

verifies, a random resource is selected among 

those “in download” and not checked. If 

authentic, the turn is over. Otherwise, a 

"punishment" method is invoked, the resource 

deleted from the "downloading" and from the 



"owned " lists and put among the "goals" once 

again. 

 

The RMS is based on the "punishment" method 

which lowers the supplier's reputation, deletes her from 

the "providers" list in order to avoid cyclic punishment 

chains, and recursively invokes the "punishment" 

method on the punished provider.  A punishment chain 

is thus created, reaching the creator of the inauthentic 

file, and all the aware or unaware agents that 

contributed in spreading it. 

 

5. Results 
 

The simulation goes on until at least one goal exists 

and/or a download is still in progress. 

In the following table a summary of the most 

important parameters for the experiments are given: 

 

 

Table 1 – the main parameters 

In all the experiments, the other relevant parameters 

are fixed, while the following ones change: 

 

 

Table 2 – the scenarios 

A crucial index, defining the wellbeing of the P2P 

system, is the ratio among the number of inauthentic 

resources and the total number of files on the network. 

The total number is increasing more and more over 

time, since new resources are introduced iteratively. 

Another measure collected is the average reputation of 

loyal and malicious agents at the end of the simulation; 

in an ideal world, we expect malicious ones to be 

penalized for their behavior, and loyal ones to be 

rewarded. The results were obtained by a batch 

execution mode for the simulation. This executes 50 

times the simulation with the same parameters, 

sampling the inauthentic/total  ratio every 50 steps. 

This is to overcome the sampling effect; many 

variables in the simulation are stochastic, so this 

technique gives an high level of confidence for the 

produced results. In 2000 turns, we have a total of 40 

samples. After all the executions are over, the average 

for each time step is calculated, and represented in a 

chart. In the same way, the grand average of the 

average reputations for loyal and malicious agents is 

calculated, and represented in a bar chart. In figure 1, 

the chart with the trend of inauthentic/total resources is 

represented for the results coming from experiments 1, 

2, 3, 5 and 6. The results of experiment 4 is discussed 

later. 

 

 
 

Figure 1 – inauthentic/total ratio 

 

Experiment 5 depicts the worst case: no negative 

payoff is given: this is the case of a P2P network 

without a RMS behind it. The ratio initially grows and, 

at a certain point, it gets constant over time, since new 

resources are stochastically distributed among all the 

agents with the same probability. In this way also 

malicious agents have new resources to share, and they 

will send out inauthentic files only for those resources 

they do not own. In the idealized world modeled in this 

simulation, since agents are 50 malicious and 50 loyal, 

and since the ones with higher reputation are preferred 

when asking for a file, it’s straightforward that 

malicious agents’ reputation fly away, and that an high 

percentage of files in the system are inauthentic (about 

63%). Experiment 1 shows how a simple RMS, with 

quite a light punishing factor (3) is already sufficient to 

lower the percentage of inauthentic files in the network 

over time. We can see a positive trend, reaching about 

28% after 2000 time steps, which is an over 100% 

improvement compared to the situation in which there 

was no punishment for inauthentic files. In this 

experiment the verification percentage is at 30%. This 

is quite low, since it means that 70% of the files remain 

unchecked forever (downloaded, but never used). In 



order to show how much the human factor can 

influence the way in which a RMS works, in 

experiment 2 the verification percentage has been 

increased up to 40%,  leaving the negative payoff still 

at 3. The result is surprisingly good: the 

inauthentic/total ratio is dramatically lowered after few 

turns (less than 10% after 200), reaching less than 1% 

after 2000 steps. Since 40% of files checked is quite a 

realistic percentage for a P2P user, this empirically 

proves that even the simple RMS proposed here 

dramatically helps in reducing the number of 

inauthentic files. In order to assign a quantitative 

weight to the human factor, in experiment 3, the 

negative payoff is moved from 3 to 4, while bringing 

back the verification percentage to 30%. Even with a 

higher punishing factor, the ratio is worse than in 

experiment 2, meaning that it’s preferable to have a 

higher verification rate, compared to a higher negative 

payoff. Experiment 6 shows the opposite trend: the 

negative payoff is lighter (2), but the verification rate is 

again at 40%, as in experiment 2. The trend is very 

similar – just a bit worse - to that of experiment 3. In 

particular, the ratio of inauthentic files, after 2000 

turns, is about 16%. At this point, it gets quite 

interesting to find the “break even point” among the 

punishing factor and the verification rate. After some 

empirical simulations, we have that, compared with 

40% of verification and 3 negative payoff,  if now 

verification is just at 30%, the negative payoff must be 

set to a whopping value of 8, in order to get a 

comparable trend in the ratio. This is done in 

experiment 4 (figure 2): after 2000 turns, there’s 1% of 

inauthentic files with a negative payoff of 3 and a 

verification percentage of 40%, and about 0.7 with 8 

and 30% respectively. 

 

 
 

Figure 2 – weighting the collaboration factor 

 

 This clearly indicates that collaboration factor (the 

files verification) is crucial for a RMS to work 

correctly and give the desired aggregate results (few 

inauthentic files over a P2P network). In particular, a 

slightly higher verification rate (from 30% to 40%) 

weights about the same of a heavy upgrade of the 

punishing factor (from 3 to 8). This can be considered 

as a quantitative result, comparing the exogenous 

factor (resource verification performed by the users) to 

the endogenous one (negative payoff).  

Besides considering the ratio of inauthentic files 

moving on a P2P network, it’s also crucial to verify 

that the proposed RMS algorithm could punish the 

agents that maliciously share inauthentic files, without 

involving too much unwilling accomplices, which are 

loyal users that unconsciously spread the files created 

by the former ones. This is considered by looking at 

the average reputations, at the end of simulation steps 

(figure 3). 

 

 
 

Figure 3 – final average reputations 

 

 In the worst case scenario, the malicious agents, 

that are not punished for producing inauthentic files, 

always upload the file they are asked for (be it 

authentic or not). In this way, they soon gain credits, 

topping the loyal ones. Since in the model the users 

with a higher reputation are preferred when asking 

files, this phenomenon soon triggers an explosive 

effects: loyal agents are marginalized, and never get 

asked for files. This results in a very low average 

reputation for loyal agents (around 70 after 2000 turns) 

and a very high average value for malicious agents 

(more than 2800) at the same time. In experiment 1 the 

basic RMS presented here, changes this result; even 

with a low negative payoff (3) the average reputations 

after 2000 turns, the results are clear: about 700 for 

loyal agents and slightly more than 200 for malicious 

ones. The algorithm preserves loyal agents, while 

punishing malicious ones. In experiment 2, with a 

higher verification percentage (human factor), we see a 

tremendous improvement for the effectiveness of the 

RMS algorithm. The average reputation for loyal 

agents, after 2000 steps, reaches almost 1400, while all 

the malicious agents go under the lower threshold (they 

can’t  either download or share resources), with an 

average reputation of less than 9 points. Experiment 3 



explores the scenario in which the users just check 

30% of the files they download, but the negative 

payoff is raised from 3 to 4. The final figure about 

average reputations is again very good. Loyal agents, 

after 2000 steps,  averagely reach a reputation of over 

1200, while malicious ones stay down at about 40. 

This again proves the proposed RMS system to be 

quite effective, though, with a low verification rate, not 

all the malicious agents get under the lower threshold, 

even if the negative payoff is 4. In experiment 6 the 

verification percentage is again at the more realistic 

40%, while negative payoff is reduced to 2. Even with 

this low negative payoff, the results are good: most 

malicious agents fall under the lowest threshold, so 

they can’t share files and they get an average 

reputation of about 100. Loyal agents behave very well 

and reach an average reputation of more than 900. 

Experiment 4 is the one in which we wanted to harshly 

penalize inauthentic file sharing (negative payoff is set 

at 8), while leaving an high laxity in the verification 

percentage (30%). Unlikely what it could have been 

expected, this setup does not punish too much loyal 

agents that, unwillingly, spread unchecked inauthentic 

files. After 2000 turns, all the malicious agents fall 

under the lowest threshold, and feature an average 

reputation of less than 7 points, while loyal agents fly 

at an average of almost 1300 points. The fact that no 

loyal agent falls under the “point of no return” (the 

lowest threshold) is probably due to the fact that they 

do not systematically share inauthentic files, while 

malicious agents do. Loyal ones just share the 

inauthentic resources they never check. Malicious 

agents, on the other side, always send out inauthentic 

files when asked for a resource they do not own, thus 

being hardly punished by the RMS, when the negative 

payoff is more than 3. 

 

6. Whitewashing 
 

A "whitewashing" mode is implemented and 

selectable before the simulation starts, in order to 

simulate the real behavior of some P2P users who, 

realizing that they cannot download anymore (since 

they have low credits or, in this case, bad reputation), 

disconnect their client, and then connect again, so to 

start from the initial pool of credits/reputation. When 

this mode is active, at the beginning of each turn all the 

agents that are under a given threshold reset it to the 

initial value, metaphorically representing the 

disconnection and reconnection. In experiments 7, 8 

and 9 this is tested to see if it affects previous results. 

In figure 4, the ratio among inauthentic and total 

resources is depicted, and in figure 5 the final average 

reputation for agents, when whitewashing mode is 

active. 

Even with CBM activated, the results are very 

similar to those in which this mode is off. They are 

actually a bit worse when the negative payoff is low 

(3) and so is the verification percentage (30%): the 

ratio of inauthentic files in the network is quite high, at 

about 41% after 2000 turns versus the 27% observed in 

experiment 1, which had the same parameters, but no 

CBM. When the verification percentage is increased to 

40%, though, things get quite better. Now the ratio of 

inauthentic files has the same levels as in experiment 2 

(less than 1% after 2000 steps). Also with a lower 

verification percentage (again at 30%), but leaving the 

negative payoff at 4, the figure is almost identical to 

the one with the same parameters, but without a CBM. 

After 2000 turns, the inauthentic files ratio is about 

12%. 

 

 
 

Figure 4 – inauthentic/total ratio in whitewashing mode 

 

The experiments show that malicious agents, even 

resetting their own reputation after going below the 

lowest threshold, can’t overcome this basic RMS, if 

they always produce inauthentic files. This happens 

because, even if they reset their reputation to the initial 

value, it’s still low compared to the one reached by 

loyal agents; if they shared authentic files, this value 

would go up in few turns, but since they again start 

spreading inauthentic files, they almost immediately 

fall under the thresholds again. 

 



 
 

Figure 5 – final average reputations in whitewashing mode 

 

7. Conclusion and Outlook 
 

The main purpose of the work was to show, by 

means of an empirical analysis based on simulation, 

how the collaboration coming from the agents in a 

social system can be a crucial driver for the 

effectiveness of a RMS. 

As a test-bed we considered a P2P network for file 

sharing and, by an agent based simulation, we show 

how a basic RMS can be effective to reduce 

inauthentic files circulating on the network. In order to 

enhance its performance, though, the collaboration 

factor, in the form of verifying policy, is crucial: a 33% 

more in verification results in about thirty times less 

inauthentic files on the network. While a qualitative 

analysis of this factor is straightforward for the 

presented model, we added a quantitative result, trying 

to weight the exogenous factor (the verification rate) 

by comparing it to the endogenous one (the negative 

payoff). We showed that a 33% increase in verification 

percentage leads to similar results obtained by 

increasing the negative payoff of 66%. Again, the 

collaboration factor proves to be crucial for the RMS to 

work efficiently. 

While the provided results are encouraging, the 

model is not yet realistic under certain aspects. The 

weakest part is not the simplicity of the RMS 

algorithm or of the representation of the P2P network, 

rather the deterministic (reactive) behavior of the 

agents: the agents involved are too naive to represent 

real users. In particular, potentially malicious users try 

to exploit the weaker points of the system, by changing 

their behavior according to what they observe, like 

satisfaction of their own goals. It’s very unlikely that 

users, when realizing not to download at the same rate 

as  before, would go on sending out inauthentic files in 

the same way as before. Real users are flexible, and 

adapt themselves to different situations. If they see that 

many inauthentic files are moving on the network since 

informal norms regulating the P2P are not respected, it 

is likely that they would also start producing them, in 

order to gain credits, by an imitative behavior. While 

the use of reactive agents keeps the results more 

readable and easy comparable, in future works we’ll 

implement cognitive ones, in order to explore their 

behavior under a RMS; they feature a policy which is 

dynamically created through trial and error, and 

progressive reinforcement learning. Two are the 

dimensions of learning that should be considered: one 

regarding the long term satisfaction of goals (related to 

the action of sending out an inauthentic file or not) and 

the other about the convenience in verifying a file (thus 

potentially losing a turn) related to the risk of being 

punished as an unwilling accomplice in spreading 

inauthentic files. 

Besides, the threshold study now carried on at an 

aggregate level will be made also from the point of 

view of the individual agent: when does it become too 

costly to "cheat" for an agent so that it ceases to be 

beneficial? Such study will be made at a higher scale, 

referring to the number of agents and resources. 

Also, if control through user collaboration has been 

studied, rewarding control should be considered as an 

individual incentive to control (with possible biases 

from malicious agent) and thus relate more to the 

collaboration objective of the study. This will also be 

studied in future works. 
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