
Users’ Collaboration as a Driver for Reputation System Effectiveness: a

Simulation Study

Guido Boella and Marco Remondino

Department of Computer Science, University of Turin

boella@di.unito.it , remond@di.unito.it

Gianluca Tornese (for the implementation)

gianluca.tornese@libero.it

Abstract

Reputation management is about evaluating an

agent's actions and other agents' opinions about those

actions, reporting on those actions and opinions, and

reacting to that report thus creating a feedback loop.

This social mechanism has been successfully used,

through Reputation Management Systems (RMSs) to

classify agents within normative systems. Most RMSs

rely on the feedbacks given by the member of the social

network in which the RMS itself operates. In this way,

the reputation index can be seen as an endogenous and

self produced indicator, created by the users for the

users' benefit. This implies that users’ participation

and collaboration is a key factor for the effectiveness a

RMS. In this work the above factor is explored by

means of an agent based simulation, and is tested on a

P2P network for file sharing.

1. Introduction

In everyday's life, when a choice subject to limited

resources (like for instance money, time, and so on)

must be done, due to the overwhelming number of

possibilities that people have to choose from,

something is needed to help them make choices.

People often follow the advice of others when it comes

to which products to by, which movies to watch, which

music to listen, which websites to visit, and so on. This

is a social attitude that uses others’ experience They

base their judgments of whether or not to follow this

advice partially upon the other person's reputation in

helping to find reliable and useful information, even

with all the noise.

Using and building upon early collaboration

filtering techniques, reputation management software

gather ratings for people, companies, and information

sources. Since this is a distributed way of computing

reputation, it is implicitly founded on two main

assumptions:

1) The correctness of shared information

2) The participation of users to the system

While the negation of the first could be considered

as an attack to the system itself, performed by users

trying to crash it, and its occurrence is quite rare, the

second factor is often underestimated, when designing

a collaborative RMS. Users without a vision of the

macro level often use the system, but simply forget to

collaborate, since this seems to cause a waste of time.

The purpose of the present work is to give a

qualitative and, when possible, quantitative evaluation

of the collaborative factor in RMSs, by means of an

empirical analysis conducted via an agent based

simulation. Thus, the main research question is: what’s

the effectiveness of a RMS, when changing the

collaboration rate coming from the involved users?

In order to answer this question, in the paper an

agent based model is introduced, representing a peer-

to-peer (P2P) network for file sharing. A basic RMS is

applied to the system, in order to help users to choose

the best peers to download from. In fact, some of the

peers are malicious, and they try to exploit the way in

which the P2P system rewards users for sharing files,

by uploading inauthentic resources when they do not

own the real ones. The model is described in detail and

the results are evaluated through a multi-run coeteris

paribus technique, in which only one setting is

changed at a time. In particular, the most important

parameters which will be compared, to evaluate the

effectiveness of the RMS are: verification of the files,

performed by the users and negative payoff, given in

case a resource is reported as being inauthentic. The

verification of the files, i.e. users’ the collaboration, is

an exogenous factor for the RMS, while the negative

payoff is an endogenous and thus directly controllable

factor, from the point of view of a RMS’s designer.

The P2P framework has been chosen since there are

many works focusing on the reputation as a system to

overcome the issue of inauthentic files, but, when

evaluating the effectiveness of the system, the authors

[1] usually refer to idealized situations, in which users

always verify the files for authenticity, as soon as they

start a download. This is obviously not the case in the

real world: first of all, most resources require to be at

least partially owned, in order to be checked. Besides,

some users could simply decide not to check them for

long time. Even worse, other users could simply forget

about a downloaded resource and never check it. Last

but not least, other users might verify it, but simply not

report anything, if it’s not authentic.

2. Reputation and P2P Systems

Since uploading bandwidth is a limited resource and

the download priority queues are based on a uploading-

credit system to reward the most collaborative peers on

the network, some malicious users create inauthentic

files, just to have something to share, thus obtaining

credits, without being penalized for their behavior. To

balance this, RMSs have been introduced, which

dynamically assign to the users a reputation value,

considered in the decision to download files from them

or not. RMSs are proven, via simulation, to make P2P

networks safe from attacks by malicious peers, even

when forming coalitions. In networks of millions of

peers attacks are less frequent, but users still have a

benefit from sharing inauthentic files. It’s not clear if

RMSs can be effective against this selfish widespread

misbehavior, since they make several ideal

assumptions about the behavior of peers who have to

verify files to discover inauthentic ones. This operation

is assumed to be automatic and with no costs.

Moreover, since the files are usually shared before

downloading is completed, peers downloading

inauthentic files unwillingly spread them if they are not

cooperative enough to verify their download as soon as

possible. In the present work, the creation and

spreading of inauthentic files is not considered as an

attack, but as a way in which some agents try to raise

their credits, while not possessing the real resource

that's being searched by others. A basic RMSs is

introduced, acting as a positive or negative reward for

the users and human factor behind the RMSs is

considered, in the form of costs and benefits of

verifying files. Most approaches, most notably

EigenTrust [2], assume that verification is made

automatically upon the start of download of the file. By

looking as we do at the collaboration factor in dealing

with RMSs, we can question their real applicability, an

issue which remains unanswered in the simulation

based tests made by the authors. To provide an answer

to this question it is necessary to build a simulation

tool which aims at a more accurate modeling of the

users’ behavior rather than at modeling the reputation

system in detail.

3. Model Framework

We assume a simple idealized model of reputation,

since the objective is not to prove the effectiveness of a

particular algorithm but to study the effect of users’

behavior on a reputation system. We use a centralized

system which assumes the correctness of information

provided by users, e.g., it is not possible to give an

evaluation of a user with whom there was no

interaction. When verifying a file, the agents give a

negative payoff to the agent uploading it, in case it’s

inauthentic. In turn, the system will spread it to the

agents (if any) who uploaded it to the sender. There are

two reputation thresholds: the first and higher one,

under which it’s impossible to ask for resources to

other agents, the second, lower than the other, which

makes it impossible even to share the owned files. This

guarantees that an agents that falls under the first one

(because she shared too many inauthentic files), can

still regain credits by sharing authentic ones and come

back over the first threshold. On the contrary, if she

continues sharing inauthentic files, she will fall also

under the second threshold, being de facto excluded

from the network, still being a working link from and

to other agents. The agents are randomly connected on

a graph and feature the following parameters: Unique

ID, Reputation value, set of neighbors, set of owned

resources, set of goals (resources), set of resources

being downloaded, set of suppliers (by resource). At

each time step, agents reply to requests for download,

perform requests (according to their goals) or verify

files. While an upload is performed – if possible - each

time another agent makes a request, requesting a

resource and verification are performed in alternative.

Verification ratio is a parameter for the simulation and

acts stochastically on agents’ behavior. All agents

belong to two disjoint classes: malicious agents and

loyal ones. They have different behaviors concerning

uploading, while feature the same behavior about

downloading and verification: malicious agents are

simply agents who exploit for selfishness the

weaknesses of the system, by always uploading

inauthentic files if they don’t own the authentic ones.

Loyal agents, on the contrary, only upload a resource if

they own it. A number of resources are introduced in

the system at the beginning of the simulation,

representing both the owned objects and the agents'

goals. For coherence, an owned resource can't be a

goal, for the same agent. The distribution of the

resource is stochastic. During the simulation, other

resources (and corresponding goals) are stochastically

distributed among the agents. Each agent

(metaphorically, the P2P client) keeps track of the

providers, and this information is preserved also after

the download is finished.

 To test the limits and effectiveness of a reputation

mechanism under different user behaviors an agent

based simulation of a P2P network is used as

methodology, employing reactive agents to model the

users; these have a deterministic behavior based on the

class they belong to (malicious or loyal) and a

stochastic idealized behavior about verifying policy.

Their use shows how the system works at an aggregate

level. However, reactive agents can also be regarded as

a limit for our approach, since real users have a flexible

behavior and adapt themselves to what they observe.

We built a model which is less idealized about the

verifying factor, but it’s still rigid when considering

the agents’ behavior about sending out inauthentic

files. That’s why we envision the necessity to employ

cognitive agents based on reinforcement learning

techniques. Though, reactive agents can also be a key

point, in the sense that they allow the results to be

easily readable and comparable among them, while the

use of cognitive agents would have moved the focus

from the evaluation of collaborative factor to that of

real users’ behavior when facing a RMS, which is very

interesting, but beyond the purpose of the present

work. In future works, this paradigm for agents will be

considered.

The model is written in pure Java and does not

make use of any agent development environment.

4. Model Specifications and Parameters

The P2P network is modeled as an undirected and

non-reflexive graph. Each node is an agent,

representing a P2P user. Agents are reactive: their

behavior is thus determined a priori, and the strategies

are the result of the stimuli coming from the

environment and of the condition-action rules. Their

behavior is illustrated in next section. Formally the

multi agent system is defined as MAS = <Ag; Rel>,

with Ag set of nodes and Rel set of edges. Each edge

among two nodes is a link among the agents and is

indicated by the tuple < ai; aj > with ai and aj

belonging to Ag. Each agent features the following

internal parameters:

– Unique ID (identifier),

– Reputation value (or credits) N(ai),

– Set of agent’s neighbors RP(ai),

– Set of owned resources RO(ai),

– Set of goals (resource identifiers) RD(ai),

– Set of resources being downloaded P(ai),

– Set of pairs < supplier; resource >.

A resource is a tuple <Name, Authenticity>, where

Name is the resource identifier and Authenticity is a

Boolean attribute indicating whether the resource is

authentic or not. The agent owning the resource,

however, does not have access to this attribute unless

he verifies the file.

The resources represent the object being shared on

the P2P network. A number of resources are introduced

in the system at the beginning of the simulation; they

represent both the owned objects and the agents' goals.

For coherence, an owned resource can't be a goal, for

the same agent. The distribution of the resource is

stochastic. During the simulation, other resources are

stochastically introduced. In this way, each agent in the

system has the same probabilities to own a resource,

independently from her inner nature (malicious or

loyal). In the same way also the corresponding new

goals are distributed to the agents; the difference is that

the distribution probability is constrained by its being

possessed by an agent. Formally R be the set of all the

resources in the system. We have that:

RD�ai� � R, RO�ai� � R and RD�ai� RO�ai� � Ø.

Each agent in the system features a set of neighbors

N(ai), containing all the agents to which she is directly

linked in the graph: N�ai� � �aj � Ag | � ��; �� ��

 ��Rel�. This information characterizes the information of

each agent about the environment. The implemented

protocol is a totally distributed one, so looking for the

resource is heavily based on the set of neighbors.

In the real word the shared resources often have big

dimensions; after finding the resource, a lot of time is

usually required for the complete download. In order to

simulate this the set of the "resources being

downloaded" (Ris) introduced. These are described as

Ris = <resource ID, completion, check status>, where

ID is the resource identifier, completion is the

percentage already downloaded and "check status"

indicates whether the resource has been checked for

authenticity or not. In particular, it can be not yet

verified, verified and authentic and verified and

inauthentic:

check status � �NOT CHECKED; AUTH;� �INAUTH�
Another information is ID of the provider of a certain

resource, identified by P(ai). Each agent keeps track of

those which are uploading to him, and this information

is preserved also after the download is finished. The

real P2P systems allow the same resource to be

download in parallel from many providers, to improve

the performance and to split the bandwidth load. This

simplification should not affect the aggregate result of

the simulation, since the negative payoff would reach

more agents instead of just one (so the case with

multiple provider is a sub-case of that with a single

provider).

4.1. The Reputation Model

In this work we assume a simple idealized model of

reputation, since the objective is not to prove the

effectiveness of a particular reputation algorithm but to

study the effect of users' behavior on a reputation

system. We use a centralized system which assumes

the correctness of information provided by users, e.g.,

it is not possible to give an evaluation of a user with

whom there was no interaction. The reason is that we

focus on the behavior of common agents and not on

hackers who attack the system by manipulating the

code of the peer application. In the system there are

two reputation thresholds: the first and higher one,

under which it’s impossible to ask for resources to

other agents, the second, lower than the other, which

makes it impossible even to share the owned files. This

guarantees that an agents that falls under the first one

(because she shared too many inauthentic files), can

still regain credits by sharing authentic ones and come

back over the first threshold. On the contrary, if she

continues sharing inauthentic files, she will fall also

under the second threshold, being de facto excluded

from the network, still being a working link from and

to other agents.

4.2. The User Model

Peers are reactive agents replying to requests,

performing requests or verifying files. While upload is

performed each time another agent makes a request,

requesting a file and verification are performed (in

alternative) when it is the turn of the agent in the

simulation. All agents belong to two disjoint classes:

malicious agents and loyal agents. The classes have

different behaviors concerning uploading, while they

have the same behavior concerning downloading and

verification: malicious agents are just common agents

who exploit for selfishness the weaknesses of the

system. When it is the turn of another peer, and he

requests a file to the agent, he has to decide whether to

comply with the request and to decide how to comply

with it.

- The decision to upload a file is based on the

reputation of the requester: if it is below the "replying

threshold", the requestee denies the upload (even if the

requestee is a malicious agent).

 - The "replyTo" method refers to the reply each

agent gives when asked for a resource. When the agent

is faced with a request he cannot comply but the

requester's reputation is above the "replying threshold",

if he belongs to the malicious class, he has to decide

whether to create and upload an inauthentic file by

copying and renaming one of his other resources. The

decision is based depending on a parameter. If the

resource is owned, she sends it to the requesting agent,

after verifying if her reputation is higher than the

"replying threshold". Each agent performs at each

round of simulation two steps:

 1) Performing the downloads in progress. For each

resource being downloaded, the agents check if the

download is finished. If not, the system checks if the

resource is still present in the provider's "sharing pool".

In case it's no longer there, the download is stopped

and is removed from the list of the "owned resources".

Each file is formed by n units; when 2/n of the file has

been downloaded, then the file gets automatically

owned and shared also by the agent that is

downloading it.

2) Making new requests to other peers or verifying

the authenticity of a file downloaded or in

downloading, but not both:

a) When searching for a resource all the

agents within a depth of 3 from the requesting

one are considered. The list is ordered by

reputation. A method is invoked on every agent

with a reputation higher than the "requests

threshold", until the resource is found or the list

reaches the ending point. If the resource is found,

it's put in the "downloading list", the goal is

cancelled, the supplier is recorded and linked with

that specific download in progress and her

reputation is increased according to the value

defined in the simulation parameters. If no

resource is found, the goal is given up.

b) Verification means that a file is

previewed and if the content does not correspond

to its description or filename, this fact is notified

to the reputation system. Verification phase

requires that at least one file must be in progress

and it must be beyond the 2/n threshold described

above. An agent has a given probability to verify

instead of looking for a new file. In case the agent

verifies, a random resource is selected among

those “in download” and not checked. If

authentic, the turn is over. Otherwise, a

"punishment" method is invoked, the resource

deleted from the "downloading" and from the

"owned " lists and put among the "goals" once

again.

The RMS is based on the "punishment" method

which lowers the supplier's reputation, deletes her from

the "providers" list in order to avoid cyclic punishment

chains, and recursively invokes the "punishment"

method on the punished provider. A punishment chain

is thus created, reaching the creator of the inauthentic

file, and all the aware or unaware agents that

contributed in spreading it.

5. Results

The simulation goes on until at least one goal exists

and/or a download is still in progress.

In the following table a summary of the most

important parameters for the experiments are given:

Table 1 – the main parameters

In all the experiments, the other relevant parameters

are fixed, while the following ones change:

Table 2 – the scenarios

A crucial index, defining the wellbeing of the P2P

system, is the ratio among the number of inauthentic

resources and the total number of files on the network.

The total number is increasing more and more over

time, since new resources are introduced iteratively.

Another measure collected is the average reputation of

loyal and malicious agents at the end of the simulation;

in an ideal world, we expect malicious ones to be

penalized for their behavior, and loyal ones to be

rewarded. The results were obtained by a batch

execution mode for the simulation. This executes 50

times the simulation with the same parameters,

sampling the inauthentic/total ratio every 50 steps.

This is to overcome the sampling effect; many

variables in the simulation are stochastic, so this

technique gives an high level of confidence for the

produced results. In 2000 turns, we have a total of 40

samples. After all the executions are over, the average

for each time step is calculated, and represented in a

chart. In the same way, the grand average of the

average reputations for loyal and malicious agents is

calculated, and represented in a bar chart. In figure 1,

the chart with the trend of inauthentic/total resources is

represented for the results coming from experiments 1,

2, 3, 5 and 6. The results of experiment 4 is discussed

later.

Figure 1 – inauthentic/total ratio

Experiment 5 depicts the worst case: no negative

payoff is given: this is the case of a P2P network

without a RMS behind it. The ratio initially grows and,

at a certain point, it gets constant over time, since new

resources are stochastically distributed among all the

agents with the same probability. In this way also

malicious agents have new resources to share, and they

will send out inauthentic files only for those resources

they do not own. In the idealized world modeled in this

simulation, since agents are 50 malicious and 50 loyal,

and since the ones with higher reputation are preferred

when asking for a file, it’s straightforward that

malicious agents’ reputation fly away, and that an high

percentage of files in the system are inauthentic (about

63%). Experiment 1 shows how a simple RMS, with

quite a light punishing factor (3) is already sufficient to

lower the percentage of inauthentic files in the network

over time. We can see a positive trend, reaching about

28% after 2000 time steps, which is an over 100%

improvement compared to the situation in which there

was no punishment for inauthentic files. In this

experiment the verification percentage is at 30%. This

is quite low, since it means that 70% of the files remain

unchecked forever (downloaded, but never used). In

order to show how much the human factor can

influence the way in which a RMS works, in

experiment 2 the verification percentage has been

increased up to 40%, leaving the negative payoff still

at 3. The result is surprisingly good: the

inauthentic/total ratio is dramatically lowered after few

turns (less than 10% after 200), reaching less than 1%

after 2000 steps. Since 40% of files checked is quite a

realistic percentage for a P2P user, this empirically

proves that even the simple RMS proposed here

dramatically helps in reducing the number of

inauthentic files. In order to assign a quantitative

weight to the human factor, in experiment 3, the

negative payoff is moved from 3 to 4, while bringing

back the verification percentage to 30%. Even with a

higher punishing factor, the ratio is worse than in

experiment 2, meaning that it’s preferable to have a

higher verification rate, compared to a higher negative

payoff. Experiment 6 shows the opposite trend: the

negative payoff is lighter (2), but the verification rate is

again at 40%, as in experiment 2. The trend is very

similar – just a bit worse - to that of experiment 3. In

particular, the ratio of inauthentic files, after 2000

turns, is about 16%. At this point, it gets quite

interesting to find the “break even point” among the

punishing factor and the verification rate. After some

empirical simulations, we have that, compared with

40% of verification and 3 negative payoff, if now

verification is just at 30%, the negative payoff must be

set to a whopping value of 8, in order to get a

comparable trend in the ratio. This is done in

experiment 4 (figure 2): after 2000 turns, there’s 1% of

inauthentic files with a negative payoff of 3 and a

verification percentage of 40%, and about 0.7 with 8

and 30% respectively.

Figure 2 – weighting the collaboration factor

 This clearly indicates that collaboration factor (the

files verification) is crucial for a RMS to work

correctly and give the desired aggregate results (few

inauthentic files over a P2P network). In particular, a

slightly higher verification rate (from 30% to 40%)

weights about the same of a heavy upgrade of the

punishing factor (from 3 to 8). This can be considered

as a quantitative result, comparing the exogenous

factor (resource verification performed by the users) to

the endogenous one (negative payoff).

Besides considering the ratio of inauthentic files

moving on a P2P network, it’s also crucial to verify

that the proposed RMS algorithm could punish the

agents that maliciously share inauthentic files, without

involving too much unwilling accomplices, which are

loyal users that unconsciously spread the files created

by the former ones. This is considered by looking at

the average reputations, at the end of simulation steps

(figure 3).

Figure 3 – final average reputations

 In the worst case scenario, the malicious agents,

that are not punished for producing inauthentic files,

always upload the file they are asked for (be it

authentic or not). In this way, they soon gain credits,

topping the loyal ones. Since in the model the users

with a higher reputation are preferred when asking

files, this phenomenon soon triggers an explosive

effects: loyal agents are marginalized, and never get

asked for files. This results in a very low average

reputation for loyal agents (around 70 after 2000 turns)

and a very high average value for malicious agents

(more than 2800) at the same time. In experiment 1 the

basic RMS presented here, changes this result; even

with a low negative payoff (3) the average reputations

after 2000 turns, the results are clear: about 700 for

loyal agents and slightly more than 200 for malicious

ones. The algorithm preserves loyal agents, while

punishing malicious ones. In experiment 2, with a

higher verification percentage (human factor), we see a

tremendous improvement for the effectiveness of the

RMS algorithm. The average reputation for loyal

agents, after 2000 steps, reaches almost 1400, while all

the malicious agents go under the lower threshold (they

can’t either download or share resources), with an

average reputation of less than 9 points. Experiment 3

explores the scenario in which the users just check

30% of the files they download, but the negative

payoff is raised from 3 to 4. The final figure about

average reputations is again very good. Loyal agents,

after 2000 steps, averagely reach a reputation of over

1200, while malicious ones stay down at about 40.

This again proves the proposed RMS system to be

quite effective, though, with a low verification rate, not

all the malicious agents get under the lower threshold,

even if the negative payoff is 4. In experiment 6 the

verification percentage is again at the more realistic

40%, while negative payoff is reduced to 2. Even with

this low negative payoff, the results are good: most

malicious agents fall under the lowest threshold, so

they can’t share files and they get an average

reputation of about 100. Loyal agents behave very well

and reach an average reputation of more than 900.

Experiment 4 is the one in which we wanted to harshly

penalize inauthentic file sharing (negative payoff is set

at 8), while leaving an high laxity in the verification

percentage (30%). Unlikely what it could have been

expected, this setup does not punish too much loyal

agents that, unwillingly, spread unchecked inauthentic

files. After 2000 turns, all the malicious agents fall

under the lowest threshold, and feature an average

reputation of less than 7 points, while loyal agents fly

at an average of almost 1300 points. The fact that no

loyal agent falls under the “point of no return” (the

lowest threshold) is probably due to the fact that they

do not systematically share inauthentic files, while

malicious agents do. Loyal ones just share the

inauthentic resources they never check. Malicious

agents, on the other side, always send out inauthentic

files when asked for a resource they do not own, thus

being hardly punished by the RMS, when the negative

payoff is more than 3.

6. Whitewashing

A "whitewashing" mode is implemented and

selectable before the simulation starts, in order to

simulate the real behavior of some P2P users who,

realizing that they cannot download anymore (since

they have low credits or, in this case, bad reputation),

disconnect their client, and then connect again, so to

start from the initial pool of credits/reputation. When

this mode is active, at the beginning of each turn all the

agents that are under a given threshold reset it to the

initial value, metaphorically representing the

disconnection and reconnection. In experiments 7, 8

and 9 this is tested to see if it affects previous results.

In figure 4, the ratio among inauthentic and total

resources is depicted, and in figure 5 the final average

reputation for agents, when whitewashing mode is

active.

Even with CBM activated, the results are very

similar to those in which this mode is off. They are

actually a bit worse when the negative payoff is low

(3) and so is the verification percentage (30%): the

ratio of inauthentic files in the network is quite high, at

about 41% after 2000 turns versus the 27% observed in

experiment 1, which had the same parameters, but no

CBM. When the verification percentage is increased to

40%, though, things get quite better. Now the ratio of

inauthentic files has the same levels as in experiment 2

(less than 1% after 2000 steps). Also with a lower

verification percentage (again at 30%), but leaving the

negative payoff at 4, the figure is almost identical to

the one with the same parameters, but without a CBM.

After 2000 turns, the inauthentic files ratio is about

12%.

Figure 4 – inauthentic/total ratio in whitewashing mode

The experiments show that malicious agents, even

resetting their own reputation after going below the

lowest threshold, can’t overcome this basic RMS, if

they always produce inauthentic files. This happens

because, even if they reset their reputation to the initial

value, it’s still low compared to the one reached by

loyal agents; if they shared authentic files, this value

would go up in few turns, but since they again start

spreading inauthentic files, they almost immediately

fall under the thresholds again.

Figure 5 – final average reputations in whitewashing mode

7. Conclusion and Outlook

The main purpose of the work was to show, by

means of an empirical analysis based on simulation,

how the collaboration coming from the agents in a

social system can be a crucial driver for the

effectiveness of a RMS.

As a test-bed we considered a P2P network for file

sharing and, by an agent based simulation, we show

how a basic RMS can be effective to reduce

inauthentic files circulating on the network. In order to

enhance its performance, though, the collaboration

factor, in the form of verifying policy, is crucial: a 33%

more in verification results in about thirty times less

inauthentic files on the network. While a qualitative

analysis of this factor is straightforward for the

presented model, we added a quantitative result, trying

to weight the exogenous factor (the verification rate)

by comparing it to the endogenous one (the negative

payoff). We showed that a 33% increase in verification

percentage leads to similar results obtained by

increasing the negative payoff of 66%. Again, the

collaboration factor proves to be crucial for the RMS to

work efficiently.

While the provided results are encouraging, the

model is not yet realistic under certain aspects. The

weakest part is not the simplicity of the RMS

algorithm or of the representation of the P2P network,

rather the deterministic (reactive) behavior of the

agents: the agents involved are too naive to represent

real users. In particular, potentially malicious users try

to exploit the weaker points of the system, by changing

their behavior according to what they observe, like

satisfaction of their own goals. It’s very unlikely that

users, when realizing not to download at the same rate

as before, would go on sending out inauthentic files in

the same way as before. Real users are flexible, and

adapt themselves to different situations. If they see that

many inauthentic files are moving on the network since

informal norms regulating the P2P are not respected, it

is likely that they would also start producing them, in

order to gain credits, by an imitative behavior. While

the use of reactive agents keeps the results more

readable and easy comparable, in future works we’ll

implement cognitive ones, in order to explore their

behavior under a RMS; they feature a policy which is

dynamically created through trial and error, and

progressive reinforcement learning. Two are the

dimensions of learning that should be considered: one

regarding the long term satisfaction of goals (related to

the action of sending out an inauthentic file or not) and

the other about the convenience in verifying a file (thus

potentially losing a turn) related to the risk of being

punished as an unwilling accomplice in spreading

inauthentic files.

Besides, the threshold study now carried on at an

aggregate level will be made also from the point of

view of the individual agent: when does it become too

costly to "cheat" for an agent so that it ceases to be

beneficial? Such study will be made at a higher scale,

referring to the number of agents and resources.

Also, if control through user collaboration has been

studied, rewarding control should be considered as an

individual incentive to control (with possible biases

from malicious agent) and thus relate more to the

collaboration objective of the study. This will also be

studied in future works.

8. Acknowledgements

This work has been partially funded by the project

ICT4LAW, financed by Regione Piemonte.

9. References

[1] A. Josang, R. Ismail, and C. Boyd. A survey of trust and

reputation systems for online service provision. Decis.

Support Syst., 43(2):618–644, March 2007.

[2] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.

The eigentrust algorithm for reputation

management in p2p networks. In WWW ’03: Proceedings of

the 12th international conference

on World Wide Web, pages 640–651, New York, NY, USA,

2003. ACM Press.

