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Abstract—The objective of the work undertaken here is to
endow an agent-oriented methodology (such as ADELFE) with
a semi-automatic tool for helping designers when drawing up
the agents composing an adaptive multi-agent system (AMAS).
This tool acts as a guide for enabling designers to influence the
emergent global behaviour of an AMAS by acting on the local
behaviour of its cooperative agents. The preliminary approach
proposed in this article can be seen as a feasibility study aiming
at developing a textual guide by considering the principles of
the AMAS theory. Simulation of the behaviour of healthy and
cancerous cells is used as a base for this study.

I. INTRODUCTION

Multi-Agent Systems (MAS) are a recognised paradigm
for designing and implementing complex applications and
several agent-oriented methodologies were proposed to guide
engineers in such a task [1] [2]. However when complexity
prevents designers from discovering an a priori algorithm,
designing MAS may also be a complex problem and new
approaches may be adopted, such as bottom-up ones. Agents
composing a MAS are identified, their behaviour and inter-
actions defined to let them build the actual organisation of
this MAS and let the global collective behaviour emerge from
these interactions. This approach is adopted when building
Adaptive Multi-Agent Systems (AMAS) in which every agent
has a cooperative attitude [3]. However this emergence at the
macro-level does not prevent engineers from having difficulties
for finding the right micro-level cooperative behaviours and
helping them is still an issue. ADELFE1 was proposed as a
guide dedicated for designing AMAS, but it has still some
lacks. Therefore, additional guidelines and tools have to be
provided for enriching it.

The objective of the work undertaken here is then to endow
ADELFE with a semi-automatic tool for helping engineers
when drawing up the agents composing an AMAS. This
tool acts as a guide for enabling designers to influence the
emerging global behaviour of an AMAS by acting on the local
behaviour of its cooperative agents. The approach proposed
in this article is still a preliminary one. It can be seen as
a feasibility study aiming at developing a textual guide to
facilitate designing agents. This textual guide is developed by
studying an application related to the biological domain and
simulating the behaviour of healthy and cancerous cells.
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Section II presents the context for this study and Section
III positions it according to existing works. The simulation
adopted as a base for the proposed approach is presented in
Section IV. This enables expounding how developing such a
simulation may be guided in Section V before concluding with
some prospects.

II. CONTEXT

The aim of this study is to facilitate the design of agents
composing a specific type of MAS, adaptive ones. This section
introduces the concepts to which this study is related.

A. AMAS Theory and Cooperative Agents

Adaptive multi-agent systems at the heart of this study apply
self-organisation principles according to the AMAS theory
detailed in [3]. According to it, for designing a system whose
functionality is adequate with what is expected by the designer,
it is sufficient to drawing this system up with parts which have
a cooperative attitude. This cooperative attitude means always
trying to avoid, otherwise repair, situations that are judged,
from the own point of view of an agent, as non cooperative. An
agent does this by changing its relationships with other agents.
This also changes the internal organisation of the multi-agent
system it belongs to and as a result transforms the collective
function the system is performing, making it adaptive.

A behavioural model of a cooperative agent was proposed
and used during the microMega2 project which aim was to
model and simulate the behaviour of a unicellular microor-
ganism [4]. Adopting such a model has firstly simplified the
visualisation of the different parts composing the behaviour of
a cooperative agent (see Fig. 1). Indeed, this model separates
the nominal behaviour of a cooperative agent from its adaptive
(or cooperative) one, this latter being itself broken into tuning,
reorganisation and evolution behaviours. A designer may then
work on each part of the agent’s behaviour almost indepen-
dently and implement and test them in a gradual way. These
behaviours may be described as follows:
• the nominal behaviour represents the basic behaviour of

an agent, what it does for achieving its local function
without necessarily coping with Non Cooperative Situa-
tions (NCS),
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Fig. 1: Behavioural model of a cooperative agent.

• the adaptive behaviour, added on top of the nominal one,
aims at dealing with these cooperative failures in three
different ways:

– by trying to adjust the values of the parameters used
during the nominal behaviour (tuning behaviour),

– by changing its relationships with others for trying
to solve dead-ends (reorganisation behaviour),

– and finally by self-removing or creating other agents
if NCS still remain (evolution behaviour).

B. ADELFE and Living Design

For assisting engineers when designing AMAS, ADELFE
was proposed. During the design phase, a specific activity is
provided as a guide for designing agents: every non coop-
erative situation has to be identified and every preventing or
repair action has also to be defined. This textual guide is still
insufficient because currently, nothing in ADELFE guarantees
that this identification is the proper and complete one. It is
therefore necessary to enrich ADELFE with a better tool.

Ideally this automatic (or semi-automatic) tool would enable
to develop the adequate behaviour for a cooperative agent, the
very one that would allow achieving the functional adequacy
of the AMAS this agent belongs to. This tool should also
take into account the benefits brought by the behavioural
model presented in the previous section by enabling designers
to separately act on the different parts composing such a
behaviour.

The following section presents this issue and gives insight
into existing works that have links with this one.

III. THE PROBLEM

Considering the model given in Fig. 1, each part of the
behaviour of an agent has an action on the other one. A NCS
occurring during the nominal behaviour may trigger a repair
action that will be performed during the adaptive behaviour.
Depending on the designer’s degree of familiarity with the
AMAS concepts, the behaviour of an agent may be devised
in two ways:
• The designer succeeds in identifying non cooperative

situations. He certainly designs the nominal behaviour

of agents by including some actions that enable an agent
to prevent or repair non cooperative situations it will en-
counter. Furthermore, he is also capable of separating the
nominal behaviour from the adaptive one and implements
an agent according to the behavioural model presented
above.

• In the second case, this designer does not really know
how to identify non cooperative situations for the agent
he is designing, or this identification is incomplete. Fur-
thermore, he does not know how to define the actions this
agent has to perform for staying in a cooperative state.
The nominal behaviour he designs essentially consists in
the basic behaviour of this agent and does not concern
the aspects related to its cooperative attitude. Such a de-
signer encounters difficulties for finding the behavioural
dichotomy the model lays down.

In both cases finding every non cooperative situation an agent
may encounter is not guaranteed, let alone defining every
action required for removing such situations. Theoretically this
would result in the inability of agents to collectively achieve a
functionally adequate global function: what emerges from their
interactions will not suit the designer’s expectations. Ideally
ADELFE should help designers for verifying these points
and/or complete the agent design they made.

A. Simulating for Designing?

In 2002, using simulation for AOSE and designing agents
was a challenge as underlined in [5]. For a few years now,
steps are made in this direction with several research works
using simulation in the AOSE domain [6]–[8].

Some works were made in this sense for enriching ADELFE
as mentioned above. Simulation has been used for automat-
ically detecting NCS in an AMAS prototype [9]. Simulation
has also be used for making agents self-adjust their be-
haviour by making their behavioural rules self-reorganise [10].
Although both approaches had conclusive results for rather
simple applications, they nevertheless have some drawbacks.
The kind of agents that was taken into account (which are
situated in an environment and communicate in an indirect
manner through this environment) and the underlying use of
the SeSAm platform [11] (need to become familiar with it,
performance problems when a great number of rather complex
agents are simulated) may be considered as limitations. Fur-
thermore enabling a designer to make a prototype of his system
before really implementing it is interesting; however, our main
aim is rather to make a first step towards enriching ADELFE
with a “good practice guide” before (semi-)automating this
guide through an appropriate tool.

B. The Adopted Approach

The issue here is therefore to study how general principles
may be extracted from the features of AMAS, and more
especially those of cooperative agents, in order to deliver this
guide.

An AMAS simulating a behaviour is used as the base for
this study. A designer of MAS, who is considered as being



unfamiliar with the way of implementing AMAS, follows
ADELFE and designs agents for achieving a first functional
version of this system. This version, probably only based
on the nominal part of agents, will likely not be the proper
one. Therefore, the second step is to try and improve this
implementation by acting on the different parts of the adaptive
behaviour an agent may have.

IV. CASE STUDY: SIMULATING CELLS

To stay in line with the application domain of microMega,
and because biological phenomena are complex and dynamic,
a simulation inspired from the biological world was chosen.
Actually, simulation and modelling in biology are a very
active field of research, notably when cells are involved [12].
Mathematical models, based on differential equations e.g., may
be used [13] or less classical tools such as Petri nets [14],
cellular automata [15] or neural networks. For a few years
now, MAS are also contributing to this effort, mainly because
they are able to scale and to model specific properties in a more
comprehensible way than mathematical models [16]. Among
these works, some are more precisely interested in simulating
the behaviour of microorganisms or cells [17]–[19].

This section therefore describes the features of the target
application and how it was implemented.

A. Description of the Simulation

In a living organism, mitosis enables division of a eukaryotic
cell into two daughter cells and apoptosis makes such a
healthy cell degrade and die. Mutations may also occur (due
to radiations, viruses, genetic predispositions, etc.) by copying
errors of genetic material during division. Most of the time,
mutations are not harmful for the cell or are repaired by
internal mechanisms. However, some changes may lead to
malignant cells leading to cancer. Among other properties, a
cancerous cell is not able to repair DNA anymore, divides
in an unchecked way and does not die. Cells “communicate”
with their environment by endocytosis, which enables them
to absorb material from outside, or exocytosis, by secreting
material to the extracellular environment. Molecules which
may be released are moving through the interstitial tissue.
Some of them play a role in the paracrine signalling by
carrying information from a cell to another one [20]. Some
molecules also supply cells with energy. In both cases, moving
make them degrade with time.

According to this simplified biological context, the aim
of the considered application is to simulate the behaviour
of healthy and cancerous cells. The development process of
ADELFE was applied for analysing the requirements, verify-
ing the AMAS adequacy and identifying the agents involved in
this MAS, and designing their nominal behaviour with respect
to the basic biological knowledge previously presented. Due
to lack of space and because the objective of the paper is not
to focus on it, only some details are given.

Because cells are autonomous, have a local goal (survive for
healthy ones and proliferate for malignant ones), have only a
partial view of their environment, two types of agents were

Fig. 2: Ratio of cancerous cells over time.

identified : healthy cells and cancerous ones. Molecules are
moving in an autonomous way, have also a limited perception
of their environment but they do not have a local goal and
are not considered as agents. Message passing simulates the
absorption of a paracrine molecule by a cell and the related
communication. Healthy cells may divide, mutate, die, signal
molecules, or detect and absorb molecules. Cancerous cells do
not mutate and die.

B. Collective Nominal Behaviour Obtained

The designer of this application is regarded as being able to
deal with only the nominal behaviour of agents. As a result, the
nominal behaviour of cells was implemented and the adaptive
behaviour is what the guide has to help finding.

To see how the collective behaviour obtained for this MAS
fits a user’s needs, the ratio R of cancerous cells was studied.
R = C

C+H where C is the number of cancerous cells and
H , the number of healthy ones. The curve obtained for R is
shown on the right part of Fig. 2.

A healthy cell has a given probability of mutation and
proliferates only if some free space is near it. On the contrary,
a cancerous cell tries to push healthy ones if it does not have
available space around it and divides itself if it succeeds. As a
result, a slow increase of the number of cancerous cells can be
seen on the curve at the beginning of the simulation because
few mutations occur yet. However, once several malignant
cells appear, they proliferate in a faster way than healthy ones,
also because they do not die, and invade the tissue with time.

Let us suppose now that this collective behaviour is not the
one expected by the end-user of this simulated system, e.g., a
biologist. This user would like to obtain a curve with another
shape; for instance, one that would express a more regular
appearance of cancerous cells which is shown on the left part
of Fig. 2. This shape has no biological reality and was chosen
only for studying how the engineer could be guided to adapt
the local behaviour of cells in order to obtain the new expected
collective behaviour.

V. GUIDING THE SIMULATION

Actually, changing the behaviour of an agent may be
done by changing the basic function it performs, its nominal
behaviour. However, this choice is contrary to the hypothesis



we previously made; only the adaptive behaviour has to be
built or modified. This means modifying one or all the parts
of this behaviour: tuning, reorganisation and evolution. Since
this study is a first step towards our goal, only the tuning part
will be reviewed.

A. Act on the Tuning Behaviour of Agents

In general, the tuning behaviour of an agent has to be
modified in order to get the expected global behaviour (the
expected shape for the studied curve, e.g.). Modifying the
value of the parameters that are used by an agent is going
to modify how the nominal behaviour, which uses these very
parameters, performs and therefore is going to influence the
global behaviour of its collective. The issue lies in identifying
the right parameters that have to be calibrated in order to get
the proper behaviour.

The approach proposed is to study first how the parameters
of an agent may promote its possible actions. Which actions
have to be influenced (fostered or encouraged) in order to get
the expected behaviour is then determined. Since a parame-
ter may influence one or several actions, these relationships
have to be gradually propagated for determining the proper
parameter to change in order to modify the actions previously
identified.

B. Relate Parameters and Actions of Agents

By leaning on the application domain knowledge, the de-
signer has to establish a table relating the actions agents may
perform and the parameters these agents use. Actually, this
table should be done before beginning implementation, it is
also a means to see how agents behave and to reflect on what
they perform according to what they have to do.

Such tables were built for healthy cell agents (see Table
I) and cancerous ones (see Table II). In this application, 18
parameters may influence the 7 actions of healthy cells:
• A1 - Proliferate,
• A2 - Mutate,
• A3 - Die,
• A4 - Absorb a paracrine molecule,
• A5 - Signal a paracrine molecule,
• A6 - Absorb a “simple” molecule,
• A7 - Signal a “simple” molecule.

or the 5 ones of cancerous cells (A1’, A4’, A5’, A6’ and A7’).
Due to lack of space, out of the 18 parameters, 12 parameters
are considered in the tables built, those that are only required
for the coming reasoning:
• P1 - Lifetime of a cell: lifetime in the means case,
• P2 - Energy of a cell: internal energy a cell has for living,
• P3 - Molecule concentration in the environment: number

of molecules a cell may perceive,
• P4 - Environmental conditions: occupied spaces sur-

rounding a healthy cell and free ones for a cancerous
one,

• P5 - Proliferation speed: expressed in simulation steps,
• P6 - Energy cost for proliferating: energy required for

this action,

TABLE I: Influence table for healthy cell-agents.

Param/Action A1 A2 A3 A4 A5 A6 A7
P1 + - -
P2 +++ ++ ++ ++ -
P3 + +++ - - - - +++
P4 - - +++ +++
P5 ++ -
P6 - ++
P7 + -
P8 + -
P9 + -
P10 ++
P11 + +++
P12 +++
. . .

• P7 - Energy cost for signalling a paracrine molecule,
• P8 - Energy cost for absorbing a molecule of any type,
• P9 - Energy cost for signalling a “simple” molecule,
• P10 - Apoptosis signals: signals which tend to influence

death when overpopulation occurs,
• P11 - Sensitivity threshold to paracrine: expresses the

ability of a cell to react to paracrine molecules,
• P12 - Mutation rate: number of cells that may mutate

during a lifecycle.
For each (parameter, action) pair, two criteria are repre-

sented in these influence tables:
• In which direction (increase/decrease) the given parame-

ter may vary for promoting the action. This is expressed
by + or −.

• The influence of the given parameter on the action. This
is expressed by the number of symbols + or − used.

For example, the parameter P1-Energy of a cell has to
increase for promoting the action A1-Proliferate of a healthy
cell and this influence on A1 is high because three + are used.
P1 has also an impact on the action A7-Signal a “simple”
molecule. In order to encourage a healthy cell to make this
action, P1 has to be decreased and this influence is low because
only one − is used.

Once these tables designed, a reasoning has to be done in
order to modify the behaviour of cell-agents.

C. Propagate Influences

A parameter may influence several actions (P1 influencing
A1 and A7, e.g.), and by modifying it, the related actions will
also be promoted or discouraged, depending on the impact
of this parameter. Therefore before modifying a parameter,
studying how its influences are propagated from an action to
another one is required. The influence tables previously built
will be a help for this study.

For trying to obtain a more linear curve for R, starting from
Fig. 2, R has to increase when R is below the straight line
which represents its expected value and it has to decrease when
it is above this line.



TABLE II: Influence table for cancerous cell-agents.

Parameter/Action A1’ A4’ A5’ A6’ A7’
P1
P2 +++ ++ ++ -
P3 + +++ - - - - +++
P4 ++
P5 ++
P6 -
P7 -
P8 -
P9 -
P11 +++
. . .

In a first step, R is going to be increased. Since R is
a fraction, it increases when its numerator does and/or its
denominator decreases. Since C cannot decrease, C has to
increase or S has to decrease. To make C increase and S
decrease, the action A1-Proliferate has to be promoted for
cancerous cells, A1’-Proliferate has to be repressed for healthy
ones and A2-Mutate as well as A3-Die have to be promoted
for healthy cells.

Each action has to be analysed depending on the rela-
tionships it has with the parameters and how this influence
propagates.

1) Promote “A1’-Proliferate” for Cancerous Cells: Pro-
liferation of cancerous or healthy cells are promoted by
the same parameters except P4-Environmental conditions.
Therefore, promoting A1’ by playing on P1, P2, P3, P5
or P6 will also promote A1, and A1 has to be deserved.
These parameters cannot be modified. The P4 parameter
represents the available space around a cell and is calculated
by (NCC + NHC + AS) − (NCC + NHC) where NCC
is the number of neighbouring cancerous cells, NHC is the
number of neighbouring healthy cells and AS is the number
of available spaces around the cell. This formula should give
the highest possible result for promoting A1’.

2) Promote “A1-Proliferate” for Healthy Cells: As above,
some parameters cannot be changed. However other parame-
ters have an impact on A1 and do not influence A1’:
• P1-Lifetime of a cell has a low influence on A1. Deserving

it should be obtained by decreasing P1 and this would
strongly promote A3-Die which is the expected effect.

• P4-Environmental conditions has a high influence on
A1. It represents the occupied spaces around an healthy
cell. P4 is increased by promoting A1/A1’ for each kind
of cells or by deserving A3. The former alternative is
contrary to the expected effect for healthy cells and
redundant for what was done above for cancerous ones.
The latter alternative is the opposite of the expected
effect. Another solution would be to compute the value
of P4 in a different way. The current formula is (NCC+
NHC)/(NHC+NCC+AS). By adding the respective
coefficients a, b and c to NCC, NHC and AS in order

to reflect their importance, a new formula may be used:
(a×NCC+b×NHC)/(a×NCC+b×NHC+c×AS).
Furthermore, increasing this parameter would also pro-
mote, with the same importance, the actions A2-Mutate
and A3-Die and this goes in the right direction.

3) Promote “A3-Die” for Healthy Cells: This action is
influenced by P1-Lifetime of a cell and P4-Environmental
conditions which were studied before. Some other parameters
are also involved (from P5 to P10). P10-Apoptosis signals
influence solely this action and acting on them may be
easy. Energy costs (from P6 to P9) could be increased for
promoting A3-Die. However, by studying propagation, these
costs have also an impact on other actions such as absorption
and signalling of molecules, and this could modify A2-Mutate;
on the other hand, A1-Proliferate could also be deserved, and
so on. Not modifying these parameters seems to be a good
choice to try and avoid a too great influence on the system.

4) Promote “A2-Mutate” for Healthy Cells: Among the
parameters that were not examined before, P12-Mutation rate
has no influence on any other actions than A2, therefore it may
be modified as needed. Adjusting P11-Sensitivity threshold
would be propagated on A4-Absorb paracrine without any
harmful effect on the system.

Once this propagation studied, some parameters may vary
while others cannot. According to these new conditions, mod-
ification of some of the potential modifiable parameters has
then to be done.

D. Tune Parameters
Table III shows the parameters that may vary (in bold font)

or not (normal font) for promoting (+ before the name of an
action) or deserving (−) actions of healthy or cancerous cells
(their specific parameters or actions are distinguished from
those of healthy cells by a ’ following their name).

Parameters for which propagation is not opposite to the
expected result are first modified. P1, P4, P11 and P12 are
chosen, especially because they have the highest influence.
The formula related to P4 is thus modified for making can-
cerous cells have a higher impact and becomes (2×NCC +
NHC)/(2×NHC + NCC + AS).

E. Verify the Impact of Tuning
Once the above reasoning done and parameters modified in

the simulation code, a new kind of curve for R was obtained
(see Fig. 3). The first part of this curve is more linear than
previously and gets closer to a straight line. However, its
second part (from step 800) does not properly fit expectations.

Therefore, the same reasoning has to be done in order to
make the top curve as linear as possible by decreasing R
without cancelling the work done previously. An opposite op-
eration has to be done: deserve A1’-Proliferate for cancerous
cells, A2-Mutate and A3-Die for healthy ones, and promote A1-
Proliferate for healthy cells. Since the benefits brought by the
previous adjustment have to remain, the parameters that may
be modified are those that were still untouched. In this case,
only P4’ was not modified and the value of environmental
conditions for cancerous cells is then turned down.



TABLE III: Influence table for making R increase.

Parameter/Action − A1 + A2 + A3 + A1’
P1 - - - -
P2 - - - ++ +++
P3 - +
P4 +++ +++ +++
P4’ ++
P5 - - - ++
P6 + + -
P7 +
P8 +
P9 +
P10 ++
P11 +
P12 +++

F. Observe the Collective Behaviour Obtained

After these two adjustments, a typical final curve obtained
is shown in Fig. 4. It is more linear and looks like the one
end-users expected. Therefore the collective behaviour of the
cells is more in line with the expected one. As expected, the
shape of the curve shows that cell-agents have modified their
behaviour in the right direction.

It is also worth observing that the collective behaviour
before and after modifications made on the tuning behaviour of
cells does not give the same spatial distribution for cancerous
cells, as shown in Fig. 5. In this figure, healthy cells are empty
hexagons, cancerous ones are black hexagons and paracrine
molecules are dots between cells. To simulate an “infinite”
tissue, cells on opposite borders are neighbours. These snap-
shots were taken when around 10 cancerous cells appeared.
They show that cancerous cells tend to be more scattered in
the simulated tissue when only the nominal behaviour was
concerned. After tuning, they tend to form clusters because
these cancerous cells can mainly be created at the frontiers of
clusters, and this prevents their exponential development. Of
course as time goes by, the number of cancerous cells increases
and their distribution tends to be more dense in both cases.
However the initial disparity is consistent with the results and
the aim of obtaining a straight curve.

Furthermore, this disparity and clusterisation was obtained
without reasoning on this macro-level; only by studying re-
lationships between parameters and actions inside the agents.
Here also, there is emergence of a phenomenon at the macro-
level which was controlled by cooperation at the micro-level.
More precisely, there are three levels:

1) The macro-level which corresponds to the cell tissue.
It is used to observe the global behaviour and to enter
feedbacks according to the end-user wishes.

2) The meso-level constituted by the individual cells, where
ad hoc feedbacks arrive according to their type (cancer-
ous or not).

3) The micro-level corresponding to the cell components,
where cooperative “negotiations” (as the “good practice

Fig. 3: New ratio obtained after the first tuning.

Fig. 4: Final ratio obtained.

Fig. 5: Example of distribution obtained before (left) and after
(right) tuning.

guide” will explain in ADELFE) allows the determina-
tion of the relevant adjustments to do.

VI. CONCLUSION

In this article a first step was made towards integrating
a methodological guide into ADELFE for helping engineers
when designing the behaviour of cooperative agents. This
preliminary textual guide may be summed up as follows. The
designer has first to devise the nominal behaviour of agents
involved in the AMAS he has to engineer. Depending on
the feedbacks given by end-users, he has then to act on the
adaptive behaviour of these agents to improve the collective
behaviour of this AMAS. For the time being, only the tuning
part of this adaptive behaviour was studied. The designer has
then to establish relationships between parameters involved in
the AMAS and actions agents may do (and this may be done



before, as a help for finding the nominal behaviour also). Then,
these relationships have to be quantified and studied, especially
by propagating effects a parameter may have on different
actions (promote or deserve them). This enables finding which
and how some parameters have to be changed for positively
influencing the collective behaviour towards what is expected
by end-users.

A MAS simulating cancerous cell proliferation in a tissue
was used for grounding this demonstration. Although it cannot
be considered as having a strong biological reality, it accounts
for an interesting complex use case, at least for tuning,
because it has several interrelated actions and parameters. The
proposed approach was applied on this cell simulation for
playing on the evolution of the ratio of cancerous cells over
time and trying to influence the shape of the related curve.
By changing some parameters used by healthy and cancerous
cells, this curve was actually changed in the right direction.
As a consequence the distribution of cells in the tissue was
also modified which shows that emergence of a phenomenon
at the global level may be influenced by changes in the local
behaviours.

However, a lot of work has to be done yet. First, it
is necessary to study how reorganisation and evolution be-
haviours could be used for guiding the engineer, then enriching
ADELFE with this (still textual) guide could be done, once
formalised. The last step would be to automate this guide by
implementing the related tool as an AMAS. Indeed, discover-
ing the parameters and actions to adjust in a complex adaptive
system clearly corresponds to a specific agentification level,
not directly required by the end-user problem. In this tool,
for at least the tuning part, actions and parameters would be
considered as cooperative agents. Their collective goal would
be to find the right parameters to modify depending on the
feedbacks given by end-users which would be considered as
NCS that these agents should avoid and solve. Furthermore,
all the results observable by an end-user would have to be
agentified (e.g. the curve shown on Fig. 2 would be an
agent in order to reason cooperatively on function R when
an external feedback occurs). Consequently, engineering semi-
automatically the development of a complex adaptive system
must be AMAS-compliant, even when this complex system
itself is not AMAS-designed.

Consequently this tool is not ADELFE-dependent and could
be included in any methodology devoted to the development
of complex adaptive systems. Nevertheless, a lot of work
and tests are required before considering such a kind of
deployment.
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