Scripting Mobile Agents to Support Cooperative Work
in the 21st Century

Seng Wai Loke
CRC for Enterprise Distributed Systems
Technology

Monash University, Caulfield VIC 3145, Australia

swloke@dstc.monash.edu.au

ABSTRACT

This paper discusses a scripting language approach to de-
veloping mobile agent applications that support enterprise
work. We view an agent’s itinerary describing which tasks to
be performed when and at which location as a script glueing
the tasks of the agents together in a (possibly) complex way.
We present the ITAG (ITinerary AGent) scripting language
which is based on the notion of the itinerary. We also dis-
cuss the enterprise-wide infrastructure needed for executing
ITAG scripts, describe our current Web-based implemen-
tation and illustrate our approach with scripts for simple
workflows, parallel processing, and information gathering,
We also consider mobile agents for building applications over
dynamically formed ad hoc virtual communities, and peer
to peer applications.

1. INTRODUCTION

For building distributed applications, the evolution of dis-
tributed computing paradigms have taken us to the concept
of mobile agents [5]. Mobile agents can be regarded as soft-
ware components which on their own volition, instructed, or
invited can move from one host to another to perform com-
putations. Not just code but computational state (to an
extent) can be transported from host to host. As yet, most
of the applications mobile agents have been used for can be
done in a traditional way (e.g., using RPCs). However, mo-
bile agents can not only be used for what RPCs have been
used for but also offer a number of advantages [3] such as re-
duction of bandwidth utilization by moving computation to
where the data is, reduction in total completion time of tasks
by encapsulating multiple queries (e.g. to databases) in an
agent, exploitation of computational resources by moving
computation to idle resources, and flexible dynamic deploy-
ment of components by moving code (in the agent) to where

Arkady Zaslavsky, Brian Yap, Joseph

Fonseka
School of Computer Science and Software
Engineering

Monash University, Caulfield VIC 3145, Australia

Arkady.Zaslavsky@monash.edu.au,
brianl1@hotmail.com,
ruki@mbox.com.au

they are needed as needed. For mobile environments, agents
can be launched to perform tasks without maintaining an
expensive unreliable wireless network connection. Recent
work has begun to use mobile agents for families of appli-
cations in the area of Computer Supported Collaborative
Work (CSCW), and e-Business including workflow, efficient
database querying, virtual enterprises, supply chain man-
agement, parallel computing over networked desktops, and
electronic auctions (B2C or B2B) (e.g., see [6] and [10]).

As developments of distributed systems technology continue,
we note three related technological trends impacting work
in the present and for the future:

e The networked enterprise: The computational in-
frastructure of enterprises and businesses are becom-
ingly increasingly pervasive and geographically distri-
buted. Nodes can be of a variety of devices with widely
varying memory, CPU speed and connectivity. Con-
nectivity can span the enterprise and even cross enter-
prise boundaries.

e Dynamic ad hoc virtual communities over wired
and wireless environments: An enterprise can be
loosely viewed as a community which has clear bound-
aries, a long life time, and a clear purpose. In re-
cent years, we are witnessing a proliferation of digi-
tal communities formed ad hoc and virtually regard-
less of geographical locality or induced by geographi-
cal locality. Such communities might involve a small
or huge number of people, can last from several sec-
onds to years, and might have boundaries that change
frequently. With ubiquitous computing and network-
ing, we are seeing wireless LANs and WANSs of vary-
ing granularities connecting not only computers but
computer-controlled networked appliances and embed-
ded systems. Such wireless technologies enable wire-
less virtual communities [7] to be formed anytime and
anywhere. We will see the car’s wireless LAN, the
home’s wireless LAN, the office’s wireless LAN, and
beyond Internet cafes, restaurants could be offering
network services via their wireless LANs. The shop-
ping center in which the restaurant resides could of-
fer their wireless information services. Wireless con-

nectivity can be offered at conferences or stadiums
just for the period of the event. In addition, Blue-
tooth networking® enables ad hoc wireless networks to
be formed just when several mobile devices are close
enough to each other. Such LANSs become a means to
not just access wired neighbourhoods, global virtual
communities and electronic marketplaces, but also to
join (or form) a temporary ad hoc community to ex-
change or utilise resources. Many of such digital com-
munities are characterised by their dynamicity (e.g.,
membership and resources within them can change
rapidly). Communities themselves can be formed or
dissolved rapidly, and so can connectivity across com-
munities. With such work communities, computer sup-
ported cooperative work could happen anywhere and
anytime, not constrained within the walls of offices, or
working hours.

e Peer to peer computing: Peer to peer computing?
has recently been given tremendous attention by tech-
nologists, businesses, and trend watchers. Peer net-
works have enormous potential for providing efficient
CSCW via direct interaction by bypassing the single
point of control and centralization of the server.

In the peer to peer model, each peer has the same
capability and responsibility. Unlike the client server
model, communication is symmetric and a peer acts
as both a client and a server. Peers share or exchange
computer resources and services by direct exchange,
i.e. there is a decentralization away from heavy-weight
servers to equal-weight peers.

In this paper, we introduce a scripting language approach to
developing mobile agent applications in the enterprise, in ad
hoc virtual communities, and peer to peer computing. In the
scripting approach [9], a scripting language is used to glue
components together to assemble an application rather than
programming an application from scratch. In contrast with
imperative system programming languages (e.g., C, Java,
etc) which were designed for building data structures and
algorithms from scratch, scripting languages are designed
for connecting components together. These components are
assumed to already exist, and might be programmed in one
or more system programming languages. A scripting lan-
guage provides rapid application development and are typi-
cally typeless to simplify the connecting of components.

Our scripting language is based on the concept of the agent
itinerary. An agent’s itinerary describes which actions (or
tasks) are to be performed when and at which location (e.g.
which host), i.e. an agent’s itinerary glues the actions of the
agent in a (possibly) complex way while each action at a
location might involve complex algorithms and data struc-
tures. Since problems suitable for the scripting language ap-
proach are those of a glueing nature where the complexity
is in the connections, and problems suitable for the system
programming language approach are those where the com-
plexity is in the algorithms and data structures, we adopt
the approach of using a scripting language for the itinerary
and a system programming language for actions. This also

!See http://www.bluetooth.com
%See http://www.oreillynet.com/p2p

encourages separation of concerns to simplify mobile agent
programming since the mobility aspect of agents are ab-
stracted away from code details implementing the computa-
tions the agents are to perform on hosts.

As proposed in [11], a scripting language should closely
match the nature of the problem in order to minimize the
linguistic distance between the specification of the problem
and the implementation of the solution, thereby resulting in
cost reductions and greater programmer productivity. Our
itinerary scripting language provides a higher level of ab-
straction, and economy of expression for mobility behaviour:
the programmer expresses behaviour such as “move agent A
to place p and perform action a” in a simple direct succinct
manner without the clutter of the syntax of a full program-
ming language. Our approach not only encourages reuse of
components (implementing actions), for example, in differ-
ent itineraries, but also facilitates identification and reuse
of patterns in mobility behaviour. Also, since the itinerary
provides a bird’s eye view of the mobile agent application,
the itinerary scripting language enables high-level design of
the application to be represented.

In the following section, we first present a conceptual archi-
tecture of an enterprise-wide infrastructure over which mo-
bile agents can roam. Then in §3, we present our itinerary
scripting language, and in §4, present examples of enterprise
applications scripted in our language, and consider mobile
agents for CSCW in ad hoc virtual communities and peer
to peer computing. We conclude in §5.

2. A CONCEPTUAL ARCHITECTURE OF
MOBILE AGENTSIN THE ENTERPRISE

Because ITAG scripts involve mobile agents, an enterprise-
wide infrastructure is needed to execute ITAG scripts effec-
tively and usefully. Mobile agents run within agent server
programs which we call places that receive agents and ex-
ecute them. Two places might be on the same or differ-
ent machine. When at a place, an agent can utilise the
resources at the place. An enterprise needs to be equipped
with a network of places interfaced to resources or people
so that agents can utilize these resources (e.g., a database)
and interact with people (e.g., to ask for information) in
accomplishing actions. A place is also where a user can in-
teract with agents and issue commands to launch agents (or
applications).

Figure 1 depicts an agent infrastructure consisting of a net-
work of places interfaced to resources such as a database
management system (DBMS), an ERP system and people.
Such interfacing might involve wrapping resources with the
ability to interact with agents. Note that such an infras-
tructure is mainly useful for large organizations consisting of
distributed resources. Without such an infrastructure and
interfacing to resources, the actions agents can do will be
limited.

It is possible for the infrastructure to be organized into secu-
rity domains as proposed in [2], each domain consisting of a
set of places and agents have to obtain authorization to en-
ter a domain. Also, the infrastructure of two organizations
might be connected to allow agents from one organization
to move into another organization as in the case of inter-

agent

. PR
moylngO
B e

/
/

User launches agent

LA

agent places

Organization 1

Organization 2

Figure 1: A sketch of an agent infrastructure.

organizational workflows. The architectural details of such
an infrastructure is outside the scope of this paper.

From a place, a user can configure and script applications,
and launch these agents into the infrastructure.

3. ITAG: THE ITINERAR Y SCRIPTING LAN-

GUAGE

Our itinerary scripting language which we call ITAG is based
on the itinerary algebra developed in [8]. For completeness,
we outline the algebra below. In [8] are more details of their
operational semantics and algebraic properties.

3.1 An Algebra of Itineraries

We assume an object-oriented model of agents (e.g., with
Java in mind), where an agent is an instance of a class given
roughly by:

mobile agent = state + action + mobility

State refers to an agent’s state (values of instance variables)
possibly including a reflection of the agent’s context. Action
refers to operations the agent performs to change its state
or that of its context. Mobility comprises all operations
modifying an agent’s location, including moving its state
and code to other than the current location. While mobility
assumes that an agent moves at the agent’s own volition,
the itineraries may be viewed as a specification or plan of
agent movements.

We assume that agents have the capability of cloning, that
is, creating copies of themselves with the same state and
code. Also, agents can communicate to synchronize their
movements, and the agent’s code is runnable in each place
it visits.

Let A, O and P be finite sets of agent, action and place sym-
bols, respectively. Itineraries (denoted by Z) are now formed
as follows representing the null activity, atomic activity, par-
allel, sequential, nondeterministic, conditional nondetermin-
istic behaviour, and have the following syntax:

I:=0|4; | (ZleD | (Z-7) | (ZID) | (Z:nT)

where A € A, a € O, p € P, @ is an operator which, after
a parallel operation causing cloning, recombines an agent
with its clone to form one agent, and II is an operator which
returns a boolean value to model conditional behaviour. We
specify how @ and II are used but we assume that their
definitions are application-specific.

We assume that all agents in an itinerary have a starting
place (which we call the agent’s home) denoted by h € P.

Given an itinerary I, we shall use agents(I) to refer to the
agents mentioned in I.

e Agent Movement (A;). A, means “move agent A to
place p and perform action a”. This expression is the
smallest granularity mobility abstraction. It involves
one agent, one move and one action at the destination.
The underlying mobility mechanisms are hidden. So
are the details of the action which may change the
agent state or the context in which it is operating at
the destination place:

a : states(A) x states(p) — states(A) x states(p)

In our agent model, each action is a method call of
the class implementing A. The implementation must
check that a is indeed implemented in A.

0 represents, for any agent A, the empty itinerary
Aid where the agent performs the identity opera-
tion ¢d € O on the state at its current place here.

o Parallel Composition (“|”). Two expressions com-
posed by “||” are executed in parallel. For instance,
(A% || BE) means that agents A and B are executed
concurrently. Parallelism may imply cloning of agents.
For instance, to execute the expression (A% || Af),
where p # ¢, cloning is needed since agent A has to
perform actions at both p and ¢ in parallel. In the
case where p = ¢, the agents are cloned as if p # q.
In general, given an itinerary (I || J) the agents in
agents(I) Nagents(J) are cloned and although having
the same name are different agents.

When cloning has occurred, decloning is needed, i.e.
clones are combined using an associated application-
specific operator (denoted by @& as mentioned earlier).
For example, given the expression (A? || A%) - Af and
suppose that after the parallel operation, the configu-
ration has clones. Then, decloning is carried out be-
fore continuing with Af. The resulting agent from
decloning resides in the original place (in this case s).
We have associated decloning with this operator in-
stead of the sequential operator as in [8] having found
this to be more intuitive and natural.

o Sequential Composition (“”). Two expressions com-
posed by the operator “” are executed sequentially.
For example, (A% - A®) means move agent A to place
p to perform action a and then to place g to perform
action b. Sequential composition is used when order
of execution matters. In the example, state changes
to the agent from performing a at p must take place
before the agent goes to q.

Sequential composition imposes synchronization among

agents. For example, in the expression (A% || BY) - C¢
the composite action (A% || B}) must complete before
Cy starts. Implementation of such synchronization
requires message-passing between agents at different
places or shared memory.

e Independent Nondeterminism (“”). An itinerary of

the form (I | J) is used to express nondeterministic
choice: “I don’t care which but perform one of I or
J”. If agents(I) N agents(J) # @, no clones are as-
sumed, i.e. I and J are treated independently. It is
an implementation decision whether to perform both
actions concurrently terminating when either one suc-
ceeds (which might involve cloning but clones are de-
stroyed once a result is obtained), or trying one at a
time (in which case order may matter).

e Conditional Nondeterminism (“”). Independent non-
determinism does not specify any dependencies be-
tween its alternatives. We introduce conditional non-
determinism which is similar to short-circuit evalua-
tion of boolean expressions in programming languages
such as C.

We first introduce status flag and global state function.
A status flag is part of the agent’s (say, A’s) state,
written as A.status. Being part of the state, A.status
is affected by an agent’s actions. A.status might be
changed by the agent as it performs actions at different
places. A global state function II need not be defined
in terms of status flags but it is useful to do so. For

[Symbol | ASCII | Controlled English |

Ag [A,p,al move A to p do a

: . then

s :{op} otherwise using op

| [or

lle #{op} | in parallel with using op

Table 1: Translations.

example, we can define II as the conjunction of the sta-
tus flags of agents in a set X: II(X) = A 5, A.status.
We can view II as producing a global status flag. From
the implementation viewpoint, agents in ¥ must com-
municate to compute II.

An itinerary of the form I :; J means first perform I,
and then evaluate II on the state of the agents. If II
evaluates to true, then the itinerary is completed. If
IT evaluates to false, the itinerary J is performed (i.e.,
in effect, we perform I - J).

The semantics of conditional nondeterminism depends
on some given II, expressed by writing “:1”.

3.2 An Example: Voting

An agent V, starting from home, carries a list of candidates
from host to host visiting each voting party. Once each party
has voted, the agent goes home to tabulate results (assum-
ing that home provides the resources and details about how
to tabulate), and then announces the results to all voters
in parallel (and cloning itself as it does so). Assuming four
voters (at places p, g, r, and s), vote is an action accept-
ing a vote (e.g., by displaying a graphical user interface),
tabulate is the action of tabulating results, and announce is
the action of displaying results, the mobility behaviour is as
follows:

vote vote vote vote tabulate announce announce
Vpannt;q‘l,/;gce .‘/;ann(.)}l,/ﬁce Vh (V;) || V:I ||
v; In%)

Note that we leave out brackets due to the associativity of
the binary operators. This example can be generalized to n
voters.

3.3 Pragmatic Considerations

This subsection outlines pragmatic considerations in our
current implementation of the above itinerary scripting lan-
guage involving syntax, semantics and execution environ-
ment.

3.3.1 ImplementatiorSyntax: ASCll and Controlled

EnglishRepesentations
To allow the programmer to type the itinerary expressions
into the computer, we provide an ASCII syntax and a Con-
trolled English version. The translations are given in Ta-
ble 1.

When the operators are used without op, we assume a pre-
specified system default one, i.e. using op is an optional
clause.

Hence, Aj -AZ - AS can be described as follows: “(move A to
a do p) then (move A to b do q) then (move A to ¢ do r).”

Apart from the above basic elements of the language, we
define the following five phrases that map down to more
complex expressions:

1. A% is translated as return A do a.

2. Ay - Ay - A7 - A7 is translated as tour A to p,q,7,s
in series do a.

3. A7||A7||A7]|AS is translated as tour A to p,q,r,s in
parallel do a.

4. Aj|A7|AT|AS is translated as
tour A to one of p,q,r,s do a.

5. Ap : Ay : A7 : A7 is translated as tour A if needed
to p,q,7,s do a. Similarly, we also have A} 1 A7 1
A7 i AS translated as tour A if needed to p,q,7,s
do a using IL

So, for example, the voting itinerary can be described as
follows:

((move V to p do vote)

then (move V to q do vote)

then (move V to r do vote)

then (move V to s do vote)

)

then (return V do tabulate)

then

((move V to p do announce)

in parallel with (move V to q do announce)
in parallel with (move V to r do announce)
in parallel with (move V to s do announce)

)

Using the phrases, the voting itinerary can also be described
more succinctly as follows:

(tour V to p,q,r,s in series do vote)
then (return V do tabulate)
then (tour V to p,q,r,s in parallel do announce)

In our current implementation, the actions of agents are
names of methods and places have the form:

<hostname>:<portnumber>/placename

or

<hostname>/placename

with a default port number. For example, for the host
nemesis.csse.monash.edu.au

and name a, we have:

nemesis.csse.monash.edu.au/a

Such long place names might make scripts unwieldy. Prede-
clared abbreviations might then be used.

3.3.2 ImplementatiorSemantics

Our current implementation is in the Java programming lan-
guage and is built on top of the Grasshopper mobile agent
toolkit.> We follow the operational semantics outlined above
as far as possible. We use Java multi-threading to implement
the parallel operator.

For non-determinism, we are implementing it by concur-
rency as well but retaining the result from the fastest branch
only and discarding the results from other branches. In do-
ing this, we assume that side-effects from other branches
are not significant. An alternative implementation is to first
choose at random (e.g., using a random number generator)
a branch to follow, and then execute only that branch. This
avoids side-effects but is only pseudo-random. In general, it
is difficult to achieve true non-determinism.

3.3.3 Web-BasedExecutionEnvironment

We intend our execution environment for the ITAG language
to be Web-based. Figure 2 shows the Web-based system
interfaced to the Grasshopper system. In our current im-
plementation, the user first types in itinerary scripts into
an applet (running in a Web browser). Then, the itinerary
script is parsed into a binary tree representation and exe-
cuted by an interpreter. Execution is as follows: the in-
terpreter translates the actions specified in the script into
commands which are then forwarded (via the communica-
tion handler) from the applet to a master Grasshopper agent
which, in turn, sends commands (via a proxy) to the slave
Grasshopper agents which are initially at a place (the home).
These agents on receiving the commands are then launched
into the network of places to do their work. Note that in
Grasshopper, each place is called an agency and each agency
registers itself with a directory facility called the region.
Only three agencies are shown in the figure - there could
be many more.

The code for the actions of agents at a place and operations
associated with parallelism (i.e., combining agents) and con-
ditional non-determinism are pre-written, stored on a Web
server (which we call the code server), and pulled in on-
demand. For example, if the agent is to move to a place p
to do action a, the agent first moves to p and pulls the code
(actually, a class with method a) for action a from the Web
server to p, and then executes it storing the results in its
state. A user, or a programmer on a user’s behalf, can write
his or her own actions and store it with the code server for
use in scripts.

Figure 3 shows a screen dump of the ITAG system running
as an applet in Internet Explorer. The applet displays the
set of available agents, places, actions and operations to aid
the writing of scripts. The “command” is the controlled En-
glish syntax which gets parsed and converted into the ASCII
syntax. The right hand side of the screen dump shows the

3See http://www.grasshopper.de

Wehserver | —————— Applet

User's \iew

h&tgﬁiﬁnamicaﬂy
ioaded cl 58S

Handler)
Gras;?pfﬁ rasshopper Grasshopper
ﬁﬁ cy 1 gency2 Agency 3

% 7 ':,3— O{:' e s —t } Slave

‘Proxy T A Agent : v
Master -]
Agent \ All agencies reg%tared with regio /

N~
-~

-~

\ GGrasshopper e

A
Region

ITAG System

Figure 2: Web based ITAG system.

execution trace of an agent collecting information from three
places in parallel. Note the interleaving of trace messages
which indicates the parallelism.

Web browsers are a common means of accessing an enter-
prise’s Intranet, and our use of a Web applet provides a view
that these mobile agent applications are just another service
of the enterprise’s Intranet. Launching and controlling mo-
bile agents from Web browsers have been supported in the
Fiji extension of the Aglets toolkit [4], and W-MAP [1],
though they do not have a scripting language such as ours.

4. APPLICATIONS

This section discusses applications of ITAG scripting. We
first give several examples of applications in the enterprise,
and then, propose the use of mobile agents in ad hoc virtual
communities and peer to peer computing.

4.1 Mobile Agentsfor the Enterprise

We aim mainly for lightweight applications (e.g., ad hoc
workflows), lightweight in the sense that they can be quickly
scripted as long as the required actions code are available
from the code server. We give four examples of such appli-
cations in this section.

4.1.1 MeetingSdeduling

Consider a meeting scheduling application whose itinerary
was first described in [8]. This is a two phase process: (1)
Starting from home, the meeting initiator sends an agent
which goes from one participant to another with a list of
nominated times. As each participant marks the times they
are not available, the list of nominated times held by the
agent shortens as the agent travels from place to place.
After visiting all places in its itinerary, the agent returns
home. (2) At home, the meeting initiator selects a meet-
ing time from the remaining unmarked times and informs
the rest. We assume that the code for the following actions
have been written and stored on the code server: ask is an
action which displays unmarked nominated times to a par-
ticipant and allows a participant to mark times he/she is
unavailable, finalize allows the meeting initiator to select
a meeting time from the remaining unmarked times, and
inform presents the selected meeting time to a participant.
Then, if the agent is named M with four participants (ex-
cluding the initiator) reachable from the places
www.mycompany . com/paul (abbreviated to p),
www.mycompany . com/john (abbreviated to j),
www.mycompany . com/rachel (abbreviated to r),

and www.mycompany . com/steiner (abbreviated to s),

the ITAG script is:

(tour M to p, j, r, s in series do ask)
then (return M do finalize)
then (tour M to p, j, r, s in parallel do inform)

Note that the expression of mobility is separated from the
coding of the three actions. One of the advantages of this
approach to meeting scheduling is that the participants are
prompted for action and are informed of the final meeting
time automatically. The system is pro-active as oppose to a
passive system such as a Web site where participants have
to visit several times in order to organize a meeting.

4.1.2 Parallel Processing

We can also write a script for parallel processing over a
network of places within the Intranet. Assuming that the
above four available places (assuming they are located on
different hosts for parallelism to be exploited), the agent is
D, and the action each agent 7 has to perform (jobi), and
the operation combine_results to combine results have been
coded. Then, the following ITAG script does the job:

((move D to p do jobl)

in parallel with (move D to j do job2)
in parallel with (move D to r do job3)
in parallel with (move D to s do job4)
)

then (return D do combine_results)

Note that if some place (say r) becomes unavailable and
another place is available, the above script can be easily
changed. Similarly, the actions can be changed if different
jobs are required reusing a similar itinerary.

4.1.3 InformationGathering

This final example involves an information gathering appli-
cation. The aim is to search three data resources sequen-
tially stopping as soon as the required information is found.
Assuming that the data resources are accessible from places
db1, db2, and db3, the agent is I, search is the action of
searching a data resource, and found determines if the re-
quired information is found, we can use the following script:

tour I if needed to dbl, db2, db3 do search
using found

4.1.4 Discussion

As shown in the above examples, ITAG scripting has the po-
tential to simplify the programming of complex applications
greatly but relies on an existing agent infrastructure over
which agents can roam and assumes that action code are
available from the code server. Such an infrastructure has
been proposed in [6] and in [10], an infrastructure has been
built which supports distributed database access and paral-
lel computing with mobile agents. Among the actions agents
can do are access Web databases, provide personalized views
of databases, and support data warehousing. However, they
do not use a scripting approach for their applications.

Other applications can be considered such as extending ser-
vices or upgrading software throughout the enterprise by
agents moving components to where needed when needed.
Moreover, such components might encapsulate protocols to
enable applications on distributed nodes to communicate via
a specialized protocol.

In our scripting approach, extensibility and reuse are ac-
commodated. Action code can be added to the code server
to enable scripts of greater functionality. The same action
code can be reused in different scripts (provided the ac-
tion code is appropriately written with reuse in mind), and
conversely, scripts themselves can be reused while the ac-
tion code changes. For example, if the database system is
replaced by a new one, the same script can be used but

3 Mobile Agents Itinerary Language Project - Microsoft Internet Explorer

JFiIe Edit Wiew Favorites Tools Help

B

J FBack + = - @ 7 | @Search (3 Favorites @History ‘ %v 5 - @ g

JAddress I@ http:ffnemesis. csse.monash, edu, auf~azaslavsfitagf

x| @a |JLinks »

L

Home
Downloads
Demo
Report
Credits

| »

ITAG System
Demo
Output Agent Status Served; 33527
Date: 1903/2001 17:9:16 586 S Time NEmesis.c558.mo...| Nemesis.c558.mo... | Nemesis.csse.ma...
Computer Address: nemesis.casemonasheduauanos | (17312449 agent moving
98470 = 17:9:13.362 migration complete
17:9:13.364 exet clearResults
Lyailable Commands 17913367 done result=true
17916517 cloned agent
|Test Case 2 (parallel operations) - | 178164521 agent moving
17:9:16.538 migration complete
Agent ocation ethod perator— [17:8:16.540 exec getinfo
17:9:18.679 done result=true
Slavg~ nermg* clear|* op |~ 17919.627 cloned agent
| x| el 17:9:19.630 agent moving
]] 1 hd 17:9:19.634 agent rmoving
17.9:21 657 migration complete
Enter your command: 17:9:21 658 exec getinfo
17.9:21.724 migration complete
move Slave to nemesiz case monash.adu auinformstionDesk d.. 17.9:21.726 axec getinfo
= 17:9:33.712 done result=false
Lese.monash.edu.auinformationDesk daing showResuItslz 17:9:23.761 dane resuli=false
4 17:9:23.77T1 combined agents
. 17:9:23.921 combined agents
Caret Positioh : 307
Convert 1792432 agent maving
ITAG Language : 17:9:25.726 migration complete
o (17925728 exec showResults
= (1792573 done result=true
-
Caret Position: 0 Execute | q] ¥

‘fou must have the Jawa Plugininstalled to run this applet. | you get any error messages, try installing the Plugin first!

Figure 3: Screen dump of ITAG system.

the action code implementing how the agent queries the
database system can be changed. Moreover, as far as the
scripts are concerned, the action code need not be written
in Java but any other full programming language (e.g. C
or a rule-based language such as Prolog) can be employed.
Moreover, although we have used Grasshopper in our cur-
rent implementation, note that the scripts are independent
of the underlying agent system.

We have not been concerned with the execution performance
of ITAG scripts since this relies very much on the underlying
agent toolkit and overall execution time is dominated by
action execution.

We have not dealt with the issue of security in depth since
we assume that ITAG scripts are executed within a secure
Intranet of the enterprise and that action code are pro-
grammed by parties friendly to the enterprise. We also rely
on the security facilities provided by the underlying mobile
agent toolkit.

4.2 Mobile Agentsfor Ad Hoc Virtual Com-

munities

Mobile agents can be a useful paradigm for building and
deploying CSCW applications over ad hoc virtual commu-
nities. For example, applications usually possible within an
enterprise such as ad hoc workflows, information gathering
and monitoring, or parallel processing can be made possible
within such ad hoc communities. Redeployment of compo-
nents by moving the agent (with such components) to where
needed when needed is particularly useful for dynamically
formed ad hoc communities where long set up times are in-
convenient, lifetime is relatively short, and connectivity and
resources might vary. Such components can also encapsu-
late protocols to enable applications on distributed nodes to
communicate via a specialized protocol. We do not claim
that mobile agents is the only paradigm to use but contend
that it is one of the paradigms which can be usefully em-
ployed.

We believe that a scripting approach is suitable for develop-
ing mobile agent applications in such communities by allow-
ing applications to be assembled quickly and easily, changes
to be made more easily, and diversity to be accommodated
(e.g., actions within an itinerary can in principle be pro-
grammed in several different programming languages). Our
language is also interpreted, and thus, immediately exe-
cutable without long compile times.

Moreover, we believe that a Web (or even WAP*) based
approach is convenient not only for accessing such mobile
agent applications but also for building communities of agent
places. A Web site could provide a facility for registering
new places which are added to the existing set of places.
When new places appear (or disappear), the applets for the
human participants are updated to show the list of available
places.

4.3 Mobile Agentsfor Peerto PeerComputing

“Wireless Application Protocol. See

http://www.wapforum.org

We think that mobile agents have much to contribute to
peer to peer computing and to CSCW software. One model
in which mobile agents can be applied in peer to peer com-
puting is to treat an agent running at a place as a peer.
Then, such mobile peers can be relocated from one machine
to another to exploit resources. New peer to peer systems
can be spawned and existing systems dynamically extended
by sending agents (the peers or peer extensions) to the ap-
propriate sites.

A network of peers can form the infrastructure over which
mobile agents can roam. Mobile agents can be sent to inter-
act with peers in a peer network. Instead of the default
means in which query messages are routed through peer
networks as in the Gnutella peer to peer file sharing sys-
tem,® the agents can autonomously move through the peer
network with their behaviour specified in itineraries. Each
peer can determine how to forward its arriving agents (e.g.,
either according to an existing itinerary or overriding the
itinerary with its own). Then, the itinerary script does not
contain addresses or place names but uses peer identifiers.
For example, a model of the enterprise can be used as a map
of places to which agents can roam. Such a model need not
necessarily be a low-level model of available hosts and places
but might be a map of people and roles they play. Instead
of place names (which identify agent servers), one could use
the names of persons or the names of roles (e.g., CEO, Hu-
man Resource manager, administrator, etc) in itineraries.
Person or role names dynamically resolve to the name of a
place from which a person or the person playing the speci-
fied role can be reached. For instance, at one time, manager
might resolve to a place running on a desktop but at another
time (say, when the manager is out of the office) to a place
running on a PDA.

Many peer to peer systems have their own peer identifiers.
For example, the Internet messaging and chat system ICQ®
uses its own ICQ numbers as peer identifiers. Itineraries
could make use of such peer identifiers in place of hostname
and port number (in place names). This would allow agents
to be routed to the right people whichever host they are
logged on to without the script writer’s intervention.

5. CONCLUSIONS AND FUTURE WORK

We contend that a scripting approach is well-suited for de-

veloping mobile agent applications and presented ITAG based
on the notion of the agent itinerary. We have also discussed

the infrastructure for executing ITAG scripts, a Web-based

implementation, and presented examples of scripts for ad

hoc workflows, parallel processing, and information gather-

ing. In addition, the uses of mobile agents for ad hoc dy-

namically formed communities and peer to peer computing

have been briefly considered.

There are several promising directions for future work. Firstly,
although our scripts provide agents with a degree of auton-
omy and flexibility in performing tasks via the nondetermin-
ism and conditional nondeterminism operators, we aim to
provide greater autonomy by allowing methods to generate
(or choose) places instead of explicitly specifying places as

®See http://www.gnutella.co.uk
5See http://www.icq.com

in the current scripts. Such methods could be governed by
a well-defined decision procedure so that there is a clear ra-
tionale (to the programmer) concerning which places will be
generated (or chosen). However, there is a trade-off between
autonomy and control - users might desire more predictable
and controllable behaviour. Secondly, we would like to sup-
port scripts which involve multiple agents as is possible in
theory in the itinerary algebra. Thirdly, building exception
handling into the agent infrastructure will be important -
some agent toolkits have exception handling features and
reflecting these features up to the scripting level without
cluttering scripts will be a challenge. Other interesting areas
of work include connecting infrastructures across organiza-
tions to support inter-organizational information gathering
and workflows, and to involve wireless connectivity among
nodes. Scripts that cater for possible changes in connectivity
will be needed.

6. ACKNOWLEDGEMENTS

The work reported in this paper has been funded in part
by the Co-operative Research Centre Program through the
Department of Industry, Science & Tourism of the Common-
wealth Government of Australia.

7. REFERENCES
[1] M. Avvenuti, A. Puliafito, and O. Tomarchio.
W-MAP: A Web Accessible Mobile Agent Platform.
In Proceedings of the Austrian-Hungarian Workshop
on Distributed and Parallel Systems, Budapest,
Hungary, September 1998. Available at
<http://sun195.iit.unict.it/Papers/dapsys98.ps.gz>.

[2] M. Cremonini, A. Omicini, and F. Zambonelli.
Modelling Network Topology and Mobile Agent
Interaction: an Integrated Framework. In Proceedings
of the 1999 ACM Symposium on Applied Computing,
pages 410-412, San Antionia, USA, Feb/Mar 1999.
ACM Press.

[3] R. Gray, G. Cybenko, D. Kotz, and D. Rus. Mobile
Agents: Motivations and State of the Art. In
J. Bradshaw, editor, Handbook of Agent Technology.
AAAI/MIT Press, 2000. Draft available as Technical
Report TR2000-365, Department of Computer
Science, Dartmouth College.

[4

[llaa

IBM. Fiji - Running Aglets in Web Pages. (updated)
1999. Web page at
<http://www.trl.ibm.co.jp/aglets/infrastructure/fiji/
fiji.html>.

[5

—_

D. Kotz and R. Gray. Mobile Code: The Future of the
Internet. In Proceedings of the Workshop on Mobile
Agents in the Context of Competition and Cooperation
at Autonomous Agents ’99, Seattle, U.S.A., May 1999.
Available from
<http://mobility.lboro.ac.uk/MAC3/>.

[6] S. Loke. An Overview of Mobile Agent Technology for
Distributed Applications: Possibilities for Future
Enterprise Systems. Accepted and being revised for
Informatica Journal, 2001.

[7

—

S. Loke, A. Rakotonirainy, and A. Zaslavsky. An
Enterprise Viewpoint of Wireless Virtual Communities

(8]

[10]

[11]

[12]

and the Associated Uses of Software Agents. In
Internet Commerce and Software Agents. Idea Group
Publishing, 2001.

S. Loke, H. Schmidt, and A. Zaslavsky. Programming
the Mobility Behaviour of Agents by Composing
Itineraries. In P. Thiagarajan and R. Yap, editors,
Proceedings of the 5th Asian Computing Science
Conference (ASIAN’99), volume 1742 of Lecture Notes
in Computer Science, pages 214-226, Phuket,
Thailand, December 1999. Springer-Verlag.

J. Ousterhout. Scripting: Higher Level Programming
for the 21st Century. IEEE Computer, March 1998.
Available at
<http://www.scriptics.com/people/john.ousterhout/
scripting.html>.

G. Samaras, P. Evripidou, and E. Pitoura. A Mobile
Agent Based Infrastructure for eWork and eBusiness
Applications. In Proceedings of the E-Business and
E-Work Conference, Madrid, Spain, October 2000.

D. Spinellis and V. Guruprasad. Lightweight
Languages as Software Engineering Tools. In
Proceedings of the USENIX Conference on
Domain-Specific Languages, California, U.S.A.,
October 1997.

A. Tripathi, T. Ahmed, V. Kakani, and S. Jaman.
Distributed Collaboration Using Network Mobile
Agents. February 2000. Available at
<http://www.cs.umn.edu/Ajanta/papers/asa-
ma.ps>.

