

A Distributed Agent Based System For Supporting Virtual Software
Corporations

ZSOLT HAAG, RICHARD FOLEY and JULIAN NEWMAN
Department of Computing, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA,
Scotland, UK

Abstract. Virtual Software Corporations (VSCs) are a novel organisational form that use the competitive
advantage provided by access to scarce competencies and economies of scale in software development. The main
feature of a VSC is the distributed and temporary nature of the teams involved and the use of communication and
information technology to support its activities. Large-scale software developments have always involved
significant co-operative work and have been supported by automated process support environments, which help
manage and support the associated workflow activities. However, VSCs are characterised by significantly more
dynamic processes which cannot be adequately supported by current process modelling representation and
enactment systems. Here we present a distribute multi-agent system using a deontic logic based formalism to
model the commitments of process actors in VSCs. The actions performed in a VSC are captured using this
formalism and support for specific co-ordination issues identified by the case study of a real-life VSC is provided.
We demonstrate how this distributed multi-agent system can support the dynamic nature of the executable process
model of VSCs.

Key words: Distributed Agents, Dynamic Process Modelling, Deontic Logic, Virtual Software Corporations

1. Introduction

The software development process has significantly evolved since the software process has been coined
(Humphrey 1989), however it remains a labour intensive occupation, requiring the involvement of an
increasing number of developers with varied fields of expertise. The challenges of managing such
complex processes lead to a number of organisational forms, which address some of the problems.
Virtual Software Corporations evolved into becoming the most important organisational solution
(Davidow and Malone 1992) with the potential of 80% of companies adopting it by 2003 (Phifer 1998).
 A Virtual Software Corporation is a temporary network of independent institutions, enterprises or
specialist individuals that through the use of information technology dynamically unite to utilise an
apparent competitive advantage (Boldyreff et al. 1996). They integrate vertically bringing their core
competencies and act in all appearances as a single organisational unit, which adapts itself to
requirement changes by switching resources as needed. The co-operation between several independent
units and the need for high volume unrestricted information exchange has caused a change in the
managerial structure whereby the classical hierarchy has been replaced by a flatter network of
commitments. Thus the very nature of a VSC generates highly dynamic processes due to resource
reallocation, process redefinition and changes in the managerial structures. These particularities of
VSCs have a considerable impact on systems designed to support software development; the majority
of such tools are not suited for supporting development processes within VSCs (Christie 1995).

The shortcomings of present tools are mostly due to failure in modelling the dynamic aspects of the
development process. Existing modelling approaches require an apriori process model (Bandinelli et al.
1994) which cannot readily adapt to “on the fly” modifications. On the fly modifications cannot be
foreseen in their entirety during the process model definition phase and are due to events such as
process roll backs after performed actions have been invalidated, changes in requirements, and changes
in personnel when firms are joining or leaving the VSC. Thus VSCs are a classic example of
environments requiring the support of adaptive workflow systems.
 Dynamic processes require a dedicated modelling approach, capable of integrating on the fly
changes and exception handling by capturing the different levels of interaction occurring in distributed
environments. It has been suggested that deontic logic is able to formalise different levels of
interaction; obligatory behaviour (duties) resulting from a formal definition, and discretionary actions
which result from individual initiatives of process actors (Meyer and Wieringa 1993). The logic has
been successfully applied to modelling processes with a high degree of complexity and dynamism,
such as organisational bureaucracies (Lee 1988).
 This paper presents a distributed agent prototype system based on a modelling approach using
deontic logic to address the identified needs of dynamic processes in VSCs. We build on the results of
(Meyer 1988) in reducing deontic logic to action logic and applying it to the work of (Castelfranchi
1995) in formalising commitments. The resulting modelling approach is suited to commitment

management, which we consider to be the most important software development issue requiring
support in VSCs (Haag et al. 1997).
 The next section will present a case study of a real life VSC from which we draw the requirements
for future support tools and conclude that VSCs are a classical example for dynamic process modelling
and support. We continue by introducing the distributed agent prototype system and show how it
addresses the identified VSC requirements. The paper discusses the results of this work as an approach
for implementing adaptive workflow systems.

2. The case study of a typical real life VSC

Research addressing support for VSCs is only now starting to investigate specific issues, mostly
concentrating on technical aspects of configuration management (VISCOUNT) or addressing solutions
to distributed process support environments (Bandinelli et al. 1996). However, VSCs are more than
distributed systems, their heterogeneous nature implies that modelling requirements are different.
Previous work indicates that the most important aspect in VSC process modelling is to address action
co-ordination and commitment management (Haag et al. 1997). Based on these initial findings a case
study has been conducted to identify the specific details to be captured by a modelling approach.

2.1. The information flow in the case study VSC

Recent research has indicated the importance of inter human communication within software
development and the need to identify the requirements for supporting communication (Saeki 1995).
Empirical research on process-oriented groupware (Prinz & Kolvenbach 1996) and efforts on designing
process centred environments (Conradi et al. 1994) offer relevant insight into local aspects. However,
there is no sufficient work addressing issues of interactions within large, distributed organisations or
between legally independent organisations (Riemp 1998).
 The case study was designed to identify human communication requirements within VSC
developments. It has concentrated on analysing the interaction between organisational roles and
individual process actors and identifying the information flows between them. The analysis consisted
of interviewing key organisational roles and accessing corporate documents, which formally described
the development process.
 The organisational pattern of the case study VSC, used for this purpose, included two distinct firms
having a common parent organisation, located in London and Edinburgh. The two firms constituted
what in the company documents was called “The Group”, and its main task was the development of the
“Core Product”. The Core Product was a system for the international financial investment market. The
product being developed by The Group required the involvement of a third firm located in Singapore
which had its own managerial structure and it was integrated in The Group by the Product Manager
who was acting as a communicational gateway. The role of the team in Singapore was to develop the
user interface for the core product being developed by the UK firms.
 The Group Manager and the Engineering Project Manager were located in London, while the
Product Manager and most of the development teams were located in Edinburgh. The site in Edinburgh
was designated as the main site, and owner of the core product. The source code of the core product
was physically situated on a machine at this location. The repositories for the core product and user
interface were being replicated between UK and Singapore, and between London and Edinburgh a
remote access link was set-up, to allow developers to co-operate in developing the product.
 The Steering Committee (SC), as an organisational body had the role of controlling the
development process. This was achieved by developing and maintaining the Product Development
Control Documents (PDCD) which included The Product Management Policy, Terms of Reference for
Organisational Roles, Product Management, Group Management Plan and Development Configuration
Control Procedures.
 The analysis of the PDCD has indicated that on the UK site, activities were formally described,
foreseeable exceptions were documented and metrics were collected to monitor progress. The
processes of the company in Singapore were well less documented and the project manager, in many
instances, was required to redefine processes when exceptions occurred. The differences in process
maturity meant that each site used different support tools and therefore a model for co-operation was
difficult to define and enact.
 Interviews with organisational roles have indicated that the documented processes failed in
capturing exceptions occurring from co-operation between sites, as these were highly dynamic and

impossible to foresee in the definition stage. From the interviews it emerged that there were a
considerable number of undocumented, informal information flows, which affected the development
process. Tracking the informal flows and their consequences would have required a model able to
capture highly dynamic and flexible processes. It can be argued that by a stricter co-operation process
definition and enforcement such difficulties would not arise. The penalty of such an approach, as
presented in (Josephson 1997) is a high increase of the cost of co-ordinating activities, which reduces
the advantages of a VSC development.
 The resulting information flow of the VSC is presented in Figure 1 and the flows critical to further
analysis and identification of requirements are explained in Table I. The key aspect, requiring support,
is the identified informal (undocumented) information flow represented in Figure 1 with a broken line.
The next subsection details these aspects in tightly coupled and loosely coupled co-operation.

Steering Committee
(London and Edinburgh)
 Group Manager
 Pre-sales Manager
 Marketing Manager
 Client Services

Product Manager
Technical Manager

 Co-operating site
(Singapore)

 Clients - internal
- external

 Market

Product Development
Control Documents

(London and
Edinburgh)

Core Product (CASE
Repository, Configuration

Management Tool)
(Edinburgh)

Project Teams
in London

Project Teams
in Edinburgh

User Interface
Repository

Project Teams
in Singapore

requirements

reports/upgrades

change requests

1

1

2

2
3

3
4

4

5

6

7

source versions

 Figure 1. The information flow in the case study VSC

Number Meaning
1 Information flow containing managerial and technical directives to the project teams. The

Product Manager and the Technical Manager are considered to provide the necessary feed-
back from Project Teams(PT) to the SC.

2 PT accessing the PDCD to retrieve information regarding formally defined procedures.
3 PT accessing the Core Product Repository (CRuk) in the process of implementing the

required functionality of the product. PT are only allowed to change the content and not the
structure of the CRuk.

4 SC accessing the PDCD and CRuk. SC’s responsibility is to maintain and develop the
PDCD and the CRuk while following the procedures defined in the PDCD.

5 Undocumented information flow; informal communication between the UK PT involving
actions undocumented in the PDCD

6 Undocumented information flow; change to the CRuk by PT due to technical constraints.
7 Undocumented information flow; change to the CRuk by a co-operating site due to

differences in development practices.

 Table I. Details for critical information flows in the case study VSC.

2.2. Tightly coupled and loosely coupled co-operation

The analysis indicated that the problems varied depending on the nature of the co-operation between
teams: tightly coupled or loosely coupled. For example, due to geographical, temporal and corporate

proximity, organisational borders were blurred between London and Edinburgh. The co-operation in
tightly coupled mode was characterised by a large volume of information being exchanged with several
“to do” lists generated; which often led to important actions on lists being delayed. It was noted that
most of the information exchanged was regarding individual commitments, such as identifying who is
doing what, who is assigned to a given organisational role, whose responsibility it is to perform a given
action.
 In contrast, the loosely coupled co-operation between UK and Singapore was characterised by a
low volume of information being exchanged and in many instances implicit knowledge was assumed
across cultural and corporate boundaries, which led in cases to misunderstandings of procedures and
subsequent process rollbacks. The loosely coupled co-operation also indicated that the actions carried
out in the development process are identical across organisational boundaries, however the execution
order for actions and the total set of actions are different. Therefore actions are the only constant
aspect, and as such represent the building element for a modelling approach suitable for integrating the
process of VSC member firms.
 Further study into the causes of the undocumented information flows (5 to 7 in Table I) identified
that the classical approach to action co-ordination leads to informational overload and managerial
bottlenecks (Haag et al. 1997). The Product Manager, was flooded with change reports from the
developer teams that he was supposed to make available to collaborating groups. This led to failure in
informing all relevant partners about changes and to the generation of the undocumented information
flows. The process of new developers joining and leaving the VSC implied that contact lists had to be
updated on a regular basis, and this resulted at times in not knowing whose responsibility a given
action was.
 The findings of the case study support the views emerging from research on Virtual Corporations
(Zimmermann 1997), which has identified a major process of change in the organisational structure of
corporations, involved in virtual organisations. The classical hierarchy of the managerial structures is
being replaced by a network of commitments, often with more than one actor assigned to the same
organisational role. The change leads to commitments being blurred across organisational borders
(including invisibility of key roles and artefacts), communication bottlenecks, and assumptions about
the practices of co-operating organisations.

2.3. Requirements for process modelling

From the formal definition of tasks within the development process it was observed that in many
instances the organisational roles authorising or performing certain co-operative activities were not
instantiated in the firm documents. The unavailability of the specific data required was one of the
possible causes of decisions being made without enough background information. However, two
reasons have been identified for the generic nature of the formal definitions. Firstly, the development
process is dynamic, commitments of organisational roles are changing, especially since alliances within
VSCs are temporary. Secondly, in some instances more than one organisational role (or even an
organisational body consisting of several roles) would have the authority to approve a request or to
perform an action.
 The network of commitments within VSCs requires a freer flow of information to which traditional
managerial hierarchies and support tools find it difficult to adapt. Using a hierarchical approach within
VSCs leads to information overload and managerial bodies becoming a bottle-neck in the process. This
is exemplified in Figure. 2. which presents the obligation of a process actor to report the performance
of an action to the manager in two scenarios: single firm and VSC development.

Single Firm
Development

Manager

Process Actor

Manager

Process Actor

VSC Development

Process Actor Comp. A

Process Actor Comp. B

Process Actor Comp. C

Figure 2. Example of reporting the performance of an action

 Actions within the development process could be discretionary or obligatory, however reporting the
performance of an action is an obligatory consequence. For a single site development this is achieved
by informing the line manager. This generally works since reporting channels are well established and
clear procedures are in place. Within VSCs, however, the network of commitments and the interactions
of the process actors mean that often one action at one site requires as a consequence several related
actions to take place at other sites. Therefore using the hierarchical reporting structure leads to
problems, examples of which have been identified in the case study.
 The case study indicates that there is a need to support human actors in VSC software development
processes. A support tool addressing specific issues in VSCs should provide two functions: to capture
formally documented and informal actions and; to provide a mechanism for managing commitments.
These functions have to be achieved in a highly dynamic and distributed environment and therefore
require a dynamic modelling approach able to adapt to “on the fly” changes.
 Workflow systems are often viewed as an essential approach to integrate heterogeneous and often
distributed information systems (Georgakopoulos et al. 1995). The basis of any workflow system is a
modelling approach, which allows the representation and enactment of organisational processes. Since
organisational processes are often not static and evolve over time, there is an increasing attention on
modelling approaches for adaptive workflows. In (Casati et al. 1996) the requirements for adaptive
workflow systems are presented, and these include dynamic changes and supporting informal co-
operation. These represent similar challenges to those identified by the VSC case study. Therefore we
conclude that VSCs are a classical example for adaptive workflow systems.

3. The distributed multi-agent based prototype system

The case study has identified the requirements for a support tool that can address specific VSC issues.
In the following paragraphs we make a case for a distributed multi-agent system using deontic logic
modelling which is able to adequately model the identified VSC issues.

3.1. The modelling formalism

The requirements emerging from the case-study and the research on deontic logic leads to the
definition of a formalism with two components. While deontic logic is able to capture both levels of
formally defined actions and informal actions it does not support commitment management. Therefore
the formalism is based on the work of (Meyer 1988) in reducing deontic logic to action logic and builds
on the research of (Castelfranchi 1995) in formalising individual and social commitments in
organisations.

 The operators defined by deontic logic formalise aspects regarding the nature of rules as being
obligatory, permitted or forbidden. The case study has identified that actions are the primary elements
to be used by the modelling paradigm. In (Meyer 1988) deontic logic is reduced to action logic, by this
the operators are applied to actions rather than abstract rules. The reduction defines V as the violation
atom, meaning a liability to some sanction or punishment as the result of an action. With the V atom
the operators of deontic logic are summarised in Figure 3.

 Figure 3. Deontic operators and their reduction to action logic

 The notations in [1], [2] and [3] are: α represents a generic action, -α is the non-performance of α,

[α] is the execution of α and <α> a possible execution of α. Classical deontic logic presents a number
of paradoxes related to contrary-to-duty imperatives (Chisholm 1963, Forester 1984) which are
removed in the reduction to action logic. This makes it possible to use the action logic version for
consistency checking based on the deontic axioms and theorems of the standard system KD (Wieringa
et al 1991), the axioms of which are presented in Figure 4.

[1]: Fα ≡ [α] V : action α is forbidden if the performance of α yields a state where V holds.
[2]: Pα ≡ ¬Fα (≡ <α>¬V) : action α is permitted if action α is not forbidden (if there is
some way to perform α that leads to a state where V does not hold).
[3]: Oα ≡ F(-α) (≡ [-α] V) : action α is obligatory if not-doing α is forbidden.

 K
perfo
form
equiv
actio
consi

 H
an ab
conte
actio
are u
comm
the ta
previ
defin

 T
comm
proce
perm
requi
opera
appli
(TMu
 T
ident
aroun
initia
repos
perfo
main
to ch
who
docu
appro
decis
inclu
howe
KD0: All (or enough) tautologies of Propositional Calculus
KD1: O(α � β) � (Oα � Oβ)
KD2: Oα � Pα
KD3: Pα ≡ ¬O(-α)
KD4: Fα ≡ ¬Pα
KD5: Modus Ponens
 Figure 4. Axioms of the standard system used in deontic consistency checking.

D1 is the K-axiom formalising that the obligatory implication of two actions implies that
rming one action makes obligatory the execution of the implied action. KD2 is the D axiom and
alises “obligatory implies permitted”. Similarly in KD3, if an action is permitted then this is
alent to not doing the action being not obligatory. A forbidden action, in KD4, is equivalent to the

n being not permitted. Two theorems of the KD system, additional to the axioms, are important for
stency maintenance. These theorems are presented in Figure 5.

Figure 5. Theorems used in consistency checking

uman actors carry out the actions of a deontic rule. The actors are not free of context and therefore
straction of commitments is required. In (Castelfranchi 1995) an integration of an action and its
xt is provided. The abstraction considers that an organisational role is committed to perform an
n on a target object or transfer authority for an action; therefore triplet and quadruplet structures
sed to represent commitments. The triplet contains: the committed actor; the action the actor is
itted to perform (an elementary process such as inform, change structure, change content); and
rget of the action (an organisational role, artefact or commitment). The quadruplet extends the

ous structure with an additional element indicating a commitment, a construct allowing recursive
itions. These abstractions are summarised in Figure. 6.

T1: Oα ≡ ¬P(-α) it is impossible of being permitted not to perform an obligatory action
T2: ¬ (Oα ∧ Ο(−α)) one cannot be obliged to do conflicting actions
(actor, action, target)
(actor, action, target{, comm})
Figure 6. Representation of commitments

he two parts of the formalism (deontic operators defined in Figure 3 and abstractions for
itments in Figure 6) provide the means for capturing actions within the software development
ss. For example, in company documents it is specified that the Technical manager (TMuk) is
itted (P) to modify the content (m_c) of the UK core repository (CRuk). Similarly, TMuk is
red (O) to inform (i) the Project Manager (PMuk) about modifications to the CRuk. The deontic
tors used in this example are P and O (Pα and Oα in the reduction to action logic), which are
ed to actions formalised using commitments. The first process rule contains the commitment
k, m_c, CRuk) and by substituting α the first process rule is obtained: P(TMuk, m_c, CRuk).

he statements formalised by the rules in Figure 7 represent a part of a tightly coupled problem
ified in the case study. The tightly coupled co-operation between Edinburgh and London was built
d a remote access link between London and Edinburgh, which didn’t meet the requirements and
l expectations, therefore a request was formulated by the Project Team (PT) in London to copy the
itory from Edinburgh. This step was considered to increase the efficiency of the London team by
rming coding on a local version. It was proposed to upload regular updates from London to the
 repository in Edinburgh in order to maintain the consistency of the project repository. The request
ange the structure of the repository had been sent to the TMuk. The TMuk instructed by the PMuk
was the owner of the repository, performed an impact analysis as prescribed in the control

ments, and then the PMuk was informed of the result. Based on the impact analysis PMuk has
ved the request. The information unavailable to the managerial roles at the moment of taking the
ion was the impossibility of the repository management software in Edinburgh to automatically
de versions from distinct repositories for the same product. The PT in Edinburgh knew this fact,
ver they were not consulted in the impact analysis process.

3.2.

The p
with
betw
detai
of KQ

 L
actor
this l
and a
of th
(rules
actor
 L
provi
the c
layer
assig
 T
meet
huma
 P(TMuk, m_c, CRuk)
 O(TMuk, i, PMuk, (TMuk, m_c, CRuk))
 Figure 7. Formalised process rules

 The architecture of the distributed multi-agent system

rototype has been designed around a layered multi-agent architecture. Each layer contains agents
different functionality based on the level of abstraction they represent. There is a direct mapping
een the layers of the prototype and the sets of rules identified in defining the formalism. Figure. 8.
ls the different layers and the interaction between them. Individual agents are using a restricted set

ML (DARPA 1993) performatives for exchanging knowledge.

Figure 8. Architecture of prototype support tool.

ayer 1, formed by Generic Model Agents (GMA), formalises generic rules of the process. Here
s are not instantiated and reference is made to actor categories, not individual actors. The agents in
ayer are an abstraction for artefacts. Each agent has a knowledge base containing formalised rules
 deontic consistency checker. When a new partner joins the VSC, the GMAs exchange the content
eir knowledge base, the rules are parsed and human actors are informed about contradictory rules
 for which the violation atom holds). The resolution of such inconsistencies is left to the human

s who will have to define additional generic rules or modify existing ones.
ayer 2, formed by Role Level Agents (RLA), captures the commitments of organisational roles
ding a model of the development process within groups. The commitments at this level identify
ommitted roles and artefacts. The commitments of this layer are instantiated rules from the first
 and additional rules contained in artefacts local for the group. The organisational roles can be
ned to one human actor or a group of human actors.
he commitments captured by Layer 1 and 2 come from formal company documents or formal
ings. Layer 3 (Actor Level Agents - ALAs), in contrast, captures the commitments of individual
n actors as they might later emerge from daily interactions. This, together with the ability of the

User 1
 Human Actor

User 2
Human Actor

Central Directory

Validation Agent 1

Validation Agent 2

Validation Agent _

Layer I
Generic Model Agent 1

Generic Model Agent 2

Generic Model Agent _

Layer II

Role Level Agent 1

Role Level Agent 2

Role Level Agent _

Layer III

Actor Level Agent 1

Actor Level Agent 2

Actor Level Agent n

User Interface
Agent 1

User Interface
Agent 2

User n
Human Actor

User Interface
Agent n

formalism to capture informal actions, is the key to enabling subsequent “on the fly” changes to the
process model during enactment.

User Interface Agents (UIAs) provide the interface between the co-ordination mechanism and
human actors. Human actors initiate a work session by starting a UIA on their local machine. The UIA
retrieves current actions and their contexts from the ALA and provides a context for actions to be
carried out. The Deontic Consistency Maintenance Unit, which is integral part of all other agents, has
been replaced by a graphical user interface. This interface provides the user with a list of current
commitments stored by the corresponding Actor Agent. At present the human actor can perform only a
limited number of operation with the displayed rules (confirm performance of a commitment, deny
execution, check the feasibility of performing an action). The User Interface agent sends the operations
performed by the user to the corresponding Actor Agent where the actions are processed and the results
returned to the user. The approach of a lightweight User Interface agent has been considered useful in
the prototype stage. Since user needs are not yet clearly defined and further development of these
agents will be necessary, only the interaction with the actor agents has been specified allowing for
future functionality to be added.
 The implementation of the prototype uses generic functional blocks, with well-defined interfaces.
This implementation approach allows changes to be made to blocks without affecting the overall
operability of a given agent and provides support for incremental evolution of the architecture. For
instance, if there were a need to change the transport mechanism, this would require only changes to
the network interface modules. Since the blocks of an agent are highly generic (customisation is
achieved through configuration files), this means that once a block has been modified, all agents in the
system can use the new version.
 The message exchange between agents is structured in discussions, similar to the approach taken in
(Finkelstein and Fuks, 1989). Each message has a unique discussion code, which is generated by the
agent initiating a discussion and is used in any subsequent replies to it. Once a discussion has reached a
conclusion (a request has been fulfilled or denied) the discussion is marked finished and no further
processing will be done on it. This approach enables a categorisation of messages and acts as a log for
performed actions and their cause. In the eventuality of a process rollback, each discussion can be
rolled back to a specified point in time. This is possible since messages are time-stamped and assertions
can be removed from the knowledge base.

4. Evaluating the prototype distributed multi-agent system

The previous section presented the underlying formalism and the architecture of the distributed multi-
agent system. This section discusses the suitability of the prototype distributed multi-agent system by
applying it to sample software process fragments. The first sample is derived from the initial case
study; the second sample is derived from an independent study of a different VSC.

4.1. Evaluation against the case study example

This section presents the evaluation of the prototype, and implicitly of the underlying formalism,
against the initial case study. Firstly, the process example is defined, followed by a discussion on the
enactment of the example.

The enactment of the case study process models

Figure 9.details the structure of the prototype support system for the case study process example. The
aim of this representation, highlighting the agents creating the layers of the multi-agent system, is to
facilitate the process of including rules in the knowledge base of the individual agents. This process
begins by identifying the individual agents that will include a given rule.

GMA
UK

GMA
Singapore

RLA - PM
Singapore

RLA - PT
Singapore

RLA - PM
UK

RLA - TM
UK

RLA - PT
Edinburgh

RLA - PT
London

RLA – SC
London Validation

agent

ALA
 UK1

ALA
 UK2

ALA
 UK3

ALA
 S2

ALA
 S1

Layer I

Layer II

Layer III

Figure 9. The multi-agent system for the case study

Through the enactment process it was considered that the ALAs will be less in number than the RLAs.
This implies that one human actor will be assigned more than one organisational role. At the same
time, PM-UK and TM-UK constitute the SC-UK, and therefore, one role has more than one actor
associated with it. The relationship between actors and roles is detailed in Table II. This setting caters
for nearly all-possible associations between actors and roles, which is important for evaluating the
visibility of roles, the extent to which support is provided for identifying the actor associated to a role.

Role Performed by (actor)
PM – UK (PMuk) ALA-UK1
TM – UK (TMuk) ALA-UK2
SC – UK (SCuk) ALA-UK1, ALA-UK2
PTL ALA-UK3
PTE ALA-UK3
PMs ALA-S1
PTS ALA-S2

Table II. Roles and associated actors

Comments on the execution of the case study process model

The execution of the enacted process demonstrated how the prototype and the defined formalism are
able to identify and provide support in solving VSC specific issues, identified in section 2.3. These
issues are present in the enacted process example and are captured by rules of the defined formalism.
 One of the issues relates to identifying discrepancies between organisational practices, which is
exemplified in the case study by the co-operation of teams in UK and Singapore. The rule capturing the
discrepancy is presented in Figure 10.

(PMuk, g, (PTS, m_c, CRuk)) ∧ P(PMuk, m_c, CRuk) ∧
O(A1, i_a, (PTS, m_c, CRuk)) ∧
O(A1, i, *Auk ∧ (Ai, *E, CRuk), (PTS, m_c, CRuk)) ↔ (PMs, g, (PTS, m_c, CRuk))

Figure 10. Rule capturing the discrepancy between UK and Singapore

The rule is a double identity, represented by the ↔ sign. For the actions included in the rule to be
executed without raising the violation atom, each commitment has to be fulfilled. The left side contains
the commitments on the UK side. These are: for the PMuk to grant (g) permission, it must be permitted
(P) to modify the CRuk; and that some actor (A1) is obliged (O) to perform an impact analysis (i_a);
and that actor is obliged to inform all UK actors (*Auk) who can perform any action (*E) on CRuk.

The right side formalises the action at the Singapore site, where the Project Manager (PMs) grants
the permission to the project team (PTS) and this can only be valid if the left side commitments hold.
In reality, due to corporate cultural differences and communication difficulties, the action was carried
out prematurely and it produced a process roll back and significant rework.
 The prototype captures the discrepancy through the two GMAs storing the rules for the UK and
Singapore site (as presented in Figure 9). The GMAs exchange their knowledge base and in the System
messages panel of the GMA – UK Agent console the message presented in Figure 11 is displayed. The
message indicates that an “Inconsistency!” was detected and details the rules which caused the
inconsistency. The “Local rule” is the one stored by the current agent, while the “Remote rule” is
stored by the other agent taking part in the discussion.

Figure 11. Rules capturing discrepancy between organisational practices.

Another issue identified to be specific for VSCs, and addressed by the prototype, is the better visibility
of organisational roles, artefacts and commitments. The execution of example process models has
shown that the prototype is providing an increase visibility for these categories. This is observed when,
in the case study VSC example, several actors are associated with one role and one actor is performing
the duties of several roles. Under these circumstances the prototype is able to locate roles having a
specific commitment or artefacts required for a given action.

Inconsistency!
Local rule: P(A1, g, A2, (A2, E1, D1)) ↔ P(A1, E1, D1) ∧ O(A3, i_a, D1,
(A2, E1, D1)) ∧ O(A3, i, *, (A2, E1, D1)).
Remote rule: (A1, m_c, D1) ↔ O(PMs, g, A1, (A1, m_c, D1))

4.2. Evaluation against an independent VSC example

This section presents the evaluation of the prototype, and implicitly of the underlying formalism,
against an independent VSC case study. Firstly, the process example is defined, followed by a
discussion on the enactment of the example.

The independent VSC example

The case study process example, presented in the previous section, was used in developing the
formalism and the prototype support system. As a result there is a need to evaluate the prototype
against an independent VSC example too, to provide a level of generality to its applicability. The
independent VSC was studied as part of work undertaken in the Esprit funded VISCOUNT project
(VISCOUNT 1997). The information flow and the issues arising from the software development within
this VSC is detailed in (Haag et al. 1998).

The enactment of the independent VSC process model

The multi-agent system for this VSC is presented in Figure 12, which details the structure of the
prototype system when enacting example process. In this setting, each role has one and only one
associated actor, as this possibility was not considered in the case study example. Similarly to the case
study, the rules specifying the processes of the VSC are included in the knowledge base of agents.

The execution of the enacted processes consists of initiating a message exchange between the
agents of the system. For example, to evaluate the ability of the prototype to identify discrepancies
between the practices of co-operating companies, a message exchange will be initiated between the
GMAs in the case study example. The results of the process execution and their analysis are presented
in the following sections.

GMA
 MAC

RLA
 Master A
 MAC A

RLA
 Designer
 MAC A

RLA
 Designer
 MAC B

RLA
Contractor 1

RLA
Contractor 2

RLA
Contractor 3

ALA
MACB1

ALA
MACA1

ALA
MACA2

ALA
C1

ALA
C2

ALA
C3

Validation
agent

Layer I

Layer II

Layer III

Figure 12. The multi-agent system for the independent VSC

Comments on the execution of the independent VSC process model

In the case of the independent VSC, the prototype provides the context for modifying the contents of a
Module 1 for an actor. A particularity of performing this action is the interdiction on parallel locking,
which proved to be difficult to achieve in the distributed environment of the VSC. Figure 13 presents
the rule generated by the prototype to capture the commitments of a process actor when intending to
perform a change in Module 1.

Figure 13. The rule controlling changes to Module 1

The commitments emerging from this action are three obligations and one interdiction. The first two
obligations relate to the process of checking out a document. In the VSC, loosely coupled co-operation
was characterised by a failure in enforcing these commitments, as actors were unaware of them. The
prohibition caters for the scenario of parallel locking and models the practice of the VSC by which
such actions are forbidden. The prohibition was impossible to achieve in the studied process with the
existing support, in either loosely coupled (i.e. co-operation between the two MACs) or tightly coupled
case (i.e. between MAC A and LCs). This was due to commitments being obscured and thus
impossible to identify if somebody has already checked out a copy from the replicated or original site.

(A, m_c, Module 1) → O(A, r, Master 1, (A, m_c, Module 1)) ∧ O(Master 1, g, A, (A, m_c,
Module 1)) ∧ F(Master 1, g, *A-A, (*A-A, m_c, Module 1)) ∧ O (Master A, i, (*A, *E, Module
1), (Master 1, m_c, Module 1))

The final obligation captures the commitment of the Master actor to inform all involved roles about the
change being performed. From all commitments, this proved to be the most difficult to achieve and the
failure in enforcing it was the cause of inconsistency between repositories. A typical example was the
omission of informing a development team from a change made to Module 1 which lead to parallel
development and difficulties in negotiating the resulting versions at a later time.

The previous points presented in the evaluation indicate that the formalism addresses the issues
emerging within VSCs. The deontic consistency axioms and theorems, and the violation atom provide
a mechanism through which enactment and process monitoring can be achieved in a physical
implementation. By this the prototype, and therefore the underlying formalism, provides support for
co-operative processes in VSCs.

5. Conclusions

This paper has presented the case study of a VSC, as a novel approach to software development. The
main characteristics of VSC developments have been identified as being the dynamic nature of their
processes, the replacement of classical hierarchies by a flatter network of commitments and frequent
exceptions from defined process models. The informal interactions between human actors, leading to
exceptions, had a significant contribution to the overall development, however no existing support for
them could be identified. Therefore, there is a significant need for supporting inter human
communication within VSCs.
 The result of the case study was to indicate that future support environments will have to provide
two functions: to capture formally documented and informal actions, and to provide a mechanism for
managing commitments. Support systems require the use of a modelling approach in order to represent,
reason and support processes. To address this need a formalism has been defined, building on work in
formalising commitments and using a variant of deontic logic. The formalism formed the basis of a
distributed multi-agent system which was detailed next. Based on the examples of the case study and
experiences from an independent VSC, the distributed multi-agent system has been applied to concrete
situations. This evaluation concluded that formal and informal actions are handled by the formalism
and that support for commitments management is able to make visible crucial organisational roles.
These results constitute the basis of using the formalism in modelling and enacting processes within
VSCs.
 The requirements for adaptive workflow systems identified by (Casati et al. 1996) have a
significant overlap with the issues being addressed by the current formalism. Based on these
considerations we conclude that the modelling approach could be used as the underlying paradigm of
future workflow systems, addressing distributed and heterogeneous developments.

References

Bandinelli, S., Fuggetta, A., Ghezzi, C. and Lavazza, L. (1994): SPADE: An Environment for Software Process

Analysis, Design, and Enactment. In (Finkelstein et al. 1994) p223-248
Bandinelli, S., Di Nitto, E., Fuggetta, A. (1996): Supporting co-operation in the SPADE-1 Environment. In IEEE

Transactions On Software Engineering, vol. 22 no. 12 December 1996
Boldyreff, C., Newman, J., Taramaa, J. (1996): Managing Process Improvement in Virtual Software Corporations.

In Proceedings, IEEE 5th Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE ’96), June 19-21, 1996, Stanford University Californian, USA

Casati, F., Ceri, S., Pernici, B., Pozzi, G. (1996): Workflow Evolution. In Proc. of the 15th ER'86 International
Conference, October, Cottbus, Germany, Springer-Verlag Lectures Notes in Computer Science, 1996

Castelfranchi, C. (1995): Commitments: From Individual Intentions to Groups and Organizations. In Proceedings
ICMAS ’95 The First International Conference on Multiagent Systems. June 12-14, 1995 San Francisco,
California

Chisholm, R.M. (1963): Contrary-to-duty imperatives and deontic logic. Analysis, vol 24 p33-36
Christie, A. M. (1995): Software Process Automation - The Technology and Its Adoption. Springer-Verlag 1995
Conradi, R., Fernström, C., and Fuggetta, A. (1994): Concepts for Evolving Software Processes. In Software

Process Modelling and Technology - edited by: A. Finkelstein, J. Kramer and B. Nuseibeh - Research Studies
Press Ltd. 1994 p9-31

DARPA Knowledge Sharing Initiative (1993): Specification of the KQML Agent-Communication Language.
Electronically available at: http://www.cs.umbc.edu/kqml/papers/

Davidow, W.H., Malone, M.S. (1992): The Virtual Corporation: Structuring and Revitalizing the Corporation for
the 21st Century. Harper Business, New York

Finkelstein, A. and Fuks, H. (1989): Multi Party Specification. In Proceedings of the 5th International Workshop
on Software Specification and Design. IEEE CS Press

Forester, J.W. (1984): Gentle murder, or the adverbial Samaritan. Journal of Philosophy, vol 81 p193-197
Georgakopoulos, D., Hornick, M., Sheth, A. (1995): An Overview of workflow management: from process

modeling to workflow automation. In A. Elmagarmid, editor, Distributed and Parallel Databases, Volume 3.
Kluwer Academic Pub., Boston 1995

Haag, Zs., Foley R., Newman, J. (1997): Software Process Improvement in Geographically Distributed Software
Engineering: An Initial Evaluation. In Proceedings of The 23rd Euromicro Conference, Budapest September
1997, Hungary, IEEE-CS Press

Haag, Zs., Rahikalla, T., Taramaa, J., and Välimäki. A. (1998): Case Study of a VISCOUNT VSC Development.
Technical Report - COS/CSCW/01/1998, Glasgow Caledonian University

Humphrey, W.S. (1989): Managing the Software Process. Adisson-Wesley Publishing Company
Josephson, F. (1997): Distributed Software Design. Presented at the EuroBest Seminar on Distributed Software

Development, SISU, Stockholm, February 1997
Lee, R.M. (1988): Bureaucracies as Deontic Systems. In ACM Transactions on Office Information Systems. vol 6

no 2 p87-108
Meyer, J.-J. Ch. (1988): A Different Approach to Deontic Logic: Deontic Logic Viewed as a Variant of Dynamic

Logic. In Notre Dame Journal of Formal Logic 29 (1) p109-136
Meyer, J.-J.Ch. and Wieringa, R.J. (eds) (1993): Deontic Logic in Computer Science: Normative System

Specification. Wiley 1993
Phifer, G (1998): The Future of the Virtual Organization. GartnerGroup, Research Note, Strategic Planning, 11

September 1998, electronically available at www.gartnerweb.com/gg/purchase/0/00/725/39/doc/
00072539/00072539.html

Prinz, W., Kolvenbach, S. (1996): Support for workflows in a minsterial environment. In Proceedings of CSCW 96
ACM Boston, MA

Riemp, G. (1998): Wide Area Workflow Management – Creating Partnership for the 21st Century. Springer-Verlag
1998

Saeki, M. (1995): Communication, Collaboration and Cooperation in Software Development – How Should We
Support Group Work in Software Development. In Proceedings of the 1995 Asia Pacific Software Engineering
Conference

VISCOUNT (1997): VIrtual Software COrporation UNiversal Testbed (VISCOUNT), Esprit Project No. 25754
Wieringa, R.J., Weigand, H., Meyer, J.-J.Ch., and Dignum, F.P.M. (1991) “The Inheritance of Dynamic and
Deontic Integrity Constraints” in Annals of Mathematics and Artificial Intelligence 3, pp393-428.
Zimmermann, F.-O. (1997): Structural and Managerial Aspects of Virtual Enterprises. electronically available at

http://www.teco.uni-karlsruhe.de/IT-VISION/vu-e-teco.htm

	1. Introduction
	2. The case study of a typical real life VSC
	2.1. The information flow in the case study VSC
	2.2. Tightly coupled and loosely coupled co-operation
	2.3. Requirements for process modelling

	3. The distributed multi-agent based prototype system
	3.1. The modelling formalism
	3.2. The architecture of the distributed multi-agent system

	4. Evaluating the prototype distributed multi-agent system
	4.1. Evaluation against the case study example
	4.2. Evaluation against an independent VSC example

	5. Conclusions
	References

