
ISE language: the ADL for Efficient

Development of Cross Toolkits

Nikolay Pakulin and Vladimir Rubanov

Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia,

npak@ispras.ru vrub@ispras.ru

Abstract. Cross toolkits (assembler, linker, debugger, simulator, pro-
filer) are widely used for software-hardware codesign; an early creation
of cross toolkits is an important success factor for industrial embedded
systems. At the hardware design stage systems are subject to significant
design alterations including changes in the instruction set of target CPUs.
This is a challenging issue for early cross toolkit development. In this pa-
per, we present a new Architecture Description Language (ADL) called
ISE language and an approach to early cross toolkit development to
cope with hardware design changes. The paper introduces the MetaDSP
framework that supports ISE-based construction of cross toolkits and
gives brief overview of the MetaDSP applications to industrial projects
that proves the industrial strength of the presented approach and tools.

1 Introduction

Nowadays we witness creation of various embedded systems with rather strict
constraints (chip size, power consumption, performance) not only for aerospace
and military applications but also for industry and even consumer electronics.
The constant trend of cost and schedule reduction in microelectronics hardware
design and development makes it reasonable to develop special-purpose com-
puting systems for various applications and gives new impulse to the market
of embedded systems. Such systems consist of a dedicated hardware platform
developed for a particular application and a problem-specific software optimized
for that hardware.

Cross tools play an important role for bringing an embedded system to life as
they allow development, debugging and profiling of the target software on power-
ful workstations which do not suffer from the limitations of the target embedded
systems and typically run on CPUs which architecture and instruction set are
different from the target CPUs. Primary components of such cross toolkits are
assembler, linker, simulator, debugger, and profiler. Unlike chip production, de-
velopment of cross toolkits does not require precise hardware design description;
it is sufficient to have just high-level definition of the target hardware platform:
the memory/register architecture and the instruction set with cycle specifica-
tion. This allows developing cross tools as soon as the early design stages even
if exact VHDL/Verilog specification is not ready yet. Such co-development has
the following crucial benefits:

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 87

2

– Hardware prototyping and design space exploration (e.g. [1] and [2]) – early
development, execution and profiling of sample programs allows study and
estimation of the overall design adequacy as well as efficiency of particular
design ideas such as adding/removing instructions, functional blocks, regis-
ters or whole co-processors.

– Early software development including development, debugging and optimiz-
ing the software before the target hardware production. It reduces time-to-
market for the complete “Hardware + Software” product.

– Hardware design validation. The developed cross-simulator could be used to
run test programs against VHDL/Verilog-based simulators. This capability
could not be overestimated for the quality assurance before actual silicon
production.

The first feature mentioned above – design space exploration – results in
frequent changes of requirements. System designers may decide to add or remove
an instruction or modify the register file of the CPU. Cross toolkit developers
must rapidly answer to such changes and produce new version of the toolkit
in short terms. Besides, this practice imposes certain quality and performance
requirements on the cross toolkits and on the simulator in particular. Special
attention should be paid to the performance efficiency of the simulator.

1.1 Related Work

Efficient cross toolkit development process requires automation to minimize time
and effort necessary to update the toolkit to match new requirements. Such
automation is built around a machine-readable definition of the target hardware
platform. There are three groups of languages suitable for this task:

– Hardware Definition Languages (HDL, [3]) used for detailed definition of the
hardware;

– Architecture Description Languages (ADL, [4] and [5]) used for high-level
description of the hardware;

– and general purpose programming languages (such as C/C++).

HDL specifications define CPU operations with very high level of detail. All
three major modern HDL – VHDL [6], Verilog [7], and SystemC [8] – have exe-
cution environments that can serve as a simulator to run any assembly language
programs for the target CPU: Synopsys VCS, Mentor Graphics ModelSim, Ca-
dence NC-Sim and other. Still, low performance of HDL-based simulators is one
of the major obstacles for HDL application in cross toolkit development. Another
issue is the late moment of HDL description availability: it appears after complet-
ing the instruction set design and functional decomposition. Furthermore, HDL
does not contain an explicit instruction set definition that makes automated as-
sembler/disassembler development impossible. These issues prevent from using
HDL to automate cross toolkit development.

Architecture Description Languages (such as nML[9], ISDL[10], EXPRES-
SION[11]) are under active development during the recent decade. There are

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 88

3

tools created for rapid hardware prototyping at the high level including cross
toolkit generation. Corresponding approaches are really good for early design
phase since they help to explore key design decisions. Unfortunately, at the
later design stages details in an ADL description become smaller, the size of
the description grows and sooner or later it comes across the limitations of the
language. As a result, is breaks the efficiency of the simulator generated from
the ADL description and makes the profiler to give only rough performance
estimates without clear picture of bottlenecks. Cross toolkits completely gener-
ated from an ADL description are not applicable for industrial-grade software
development yet.

Manual coding with C or C++ language gives full control over all possible
details and allows creation of cross toolkits of industrial quality and efficiency.
Many companies offer services on cross toolkit development in C/C++ (e.g.
TASKING, Raisonance, Signum Systems, ICE Technology, etc.). Still it requires
significant efforts and (what is more important) time to develop the toolkit
from scratch and maintain it aligned with the requirements. Long development
cycle makes it almost impossible to use cross toolkits developed in C/C++ for
hardware prototyping and design space exploration.

1.2 Paper Overview

In this paper, we present a new approach to cross toolkit development that
combines the power of high-level definition using ADL-like language and the
efficiency of the modern programming languages. The method provides rea-
sonable level of automation with support for rapid requirement changes and
co-development of hardware and software components of modern embedded sys-
tems.

The article is organized as follows. Section 2 presents the new ADL language
for defining instruction set called ISE. Section 3 introduces MetaDSP frame-
work for cross toolkit development that uses hybrid hardware description with
both high-level ADL part and efficient C/C++ part. Section 4 briefly overviews
several industrial applications of ISE and MetaDSP framework. Conclusion sum-
marizes the lessons learned and gives some perspectives for future development.

2 ISE Language

We developed ISE (Instruction Set Extension) language to specify hardware de-
sign elements that are subject to most frequent changes: memory architecture
and CPI instruction set. ISE description is used to generate assembler and dis-
assembler tools completely and to generate components of the linker, debugger
and simulator tool.

The following considerations guided the language design:

– the structure of an ISE description should follow the typical structure of an
instruction set reference manual (like [12] or [13]) that usually serve as the
input for the ISE description development;

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 89

4

– support for irregular encoding of instructions typical for embedded DSP ap-
plications including support for large number of various formats, distributed
encoding of operands in the word, etc.;

– operational definition of data types, logic and arithmetic instructions, other
executable entities should be specified in a C-like programming language.

ISE module consists of 7 sections:

1. .architecture defines global CPU architecture properties such as pipeline
stages, CPU resources (buses, ALUs, etc.), initial CPU state;

2. .storage defines memory structure including memory ranges, I/O ports,
access time;

3. .ttypes and .otypes define data type to represent registers and instruction
operands;

4. .instructions defines CPU instruction set (see 2.1);
5. .aspects defines various aspects of binary encoding of CPU instructions or

specifies additional resources or operational semantics of instructions;
6. .conflicts specifies constraints on sequential execution of instructions such

as potential write after read register or bus conflict; assembler uses conflict
constraints to automatically insert NOP instructions to prevent conflicts
during software execution.

2.1 Instruction Definition

.instruction section is the primary section an ISE module. It defines the in-
struction set of the target CPU. For each instruction cross toolkit developers
can specify:

– mnemonics and binary encoding;
– reference manual entry;
– instruction properties and resources used;
– instruction constraints and inter-instruction dependencies;
– definition of execution pipeline stage.

Mnemonics part of an instruction definition is a template string that specifies
fixed part of mnemonics (e.g. ADD, MOV), optional suffixes (e.g. ADDC or ADDS) and
operands. A singe instruction might have several definitions depending on the
operand types. For example, MOV instruction could have different definitions for
register-register operation, register-memory and memory-memory operations.

Binary encoding is a template that specifies how to encode/decode instruc-
tions depending on the instruction name, suffixes and operands.

Reference manual entry is a human-readable specification of the instruction.
Properties and resources specify external aspects of the instruction execution

such as registers that it reads and writes, buses that the instruction accesses, flags
set etc. This information is used to detect and resolve conflicts by the assembler
tool. Besides this the instruction definition might specify explicit dependencies
on preceding or succeeding instructions in the constraints and dependencies sec-
tion.

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 90

5

ISE language contains an extension of C programming language called ISE-
C. This extension is used to specify execution of the operation on each pipeline
stage. ISE-C has extra types for integer and fixed point arithmetic of various bit
length, new built-in bit operators (e.g. shift with rotation), built-in primitives
for bit handling. ISE-C has some grammar extension for handling operands and
optional suffixes in mnemonics. Furthermore ISE-C expression can use a large
number of functions implemented in ISE core library.

An example of instruction specification is presented at figure 1.

/*

* This is a C-style block comment.

*/

// This is a C++-style one-line comment.

// <ALU001> - the identifier of the definition.

// ADD[S:A][C:B] - instruction mnemonics with optional parts.

// Actually defines 4 instructions: ADD, ADDS, ADDC, ADDSC.

// GRs, GRt - identifiers of a general-purpose register.

// Rules for binary encoding of GRs and GRt are defined in

// .otypes section.

<ALU001> ADD[S:A][C:B] {GRs}, {GRt}

// Binary encoding rule.

// For example, "ADDC R0, R1" is encoded as

// 0111-0001-1000-1001

0111-0A0B-1SSS-1TTT

// The reference manual string.

"ADD[S][C] GRs, GRt"

// instruction properties:

// reads the registers GRs and GRt,

// writes the register GRs.

properties [wgrn:GRs, rgrn:GRs, rgrn:GRt]

// Operation of the EXE pipeline stage

// specifies using ISE-C language.

action {

alu_temp = GRs + GRt;

// If the suffix ‘C’ is set in mnemonics

// use ‘getFlag’ function from the core library.

if (#B) alu_temp += getFlag(ACO);

// If the suffix ‘S’ is set in mnemonics

// use ‘SAT16’ function from the core library.

if (#A) alu_temp = SAT16(alu_temp);

GRs = alu_temp;

}

Fig. 1. An example of instruction specification.

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 91

6

Please note that unlike classic ADL languages ISE specification does not
provide the complete CPU model. The purpose of ISE is to simplify definition
of the elements that are subject to the most frequent changes. All the rest of
the model is specified using C/C++ code. This separation allows for flexible and
maintainable hardware definition along with high performance and cycle-precise
simulation.

3 Development Process

The proposed hybrid ADL/C++ hardware definition is supported by the MetaDSP

framework for cross-toolkit development. The framework includes:

– ISE translator that generates components of cross tools from the ISE speci-
fication;

– pre-defined components for ISE development (e.g. ISE-C core functions li-
brary);

– an IDE for hardware definition development (in ISE and C++), target soft-
ware development (in Embedded C[14] and assembly languages), controlled
execution within simulator; the Embedded C compiler supports a number of
optimizations specific for DSP applications[15].

Figure 2 presents the structure of the MetaDSP framework.

Fig. 2. MetaDSP framework structure

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 92

7

MetaDSP toolkit uses ISE specification to generate cross tools and com-
ponents. For example, the MetaDSP tools generate assembler and disassembler
tools completely from the ISE specification. For linker MetaDSP generates infor-
mation about instruction binary encodings, instruction operands and relocatable
instructions. Debugger and profiler use memory structures and operand types
from the ISE specification.

The cycle-precise simulator is an important part of the toolkit. Figure 3
presents its architecture. MetaDSP tools generate several components from the
ISE specification: memory implementation (from .storage section), resources
(from .architecture section), instruction implementations and decoding ta-
bles (from .instruction section), as well as conflicts detector and instruction
metadata.

Fig. 3. MetaDSP simulator architecture

Within the presented approach certain components are specified in C++:

– control logic, including pipeline control (if any), address generation, instruc-
tion decoder;

– memory control;

– model of the peripheral devices including I/O ports.

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 93

8

For most of the manual components MetaDSP tools generate stubs or some
basic implementation in C++. Developers may use the generated code to im-
plement peculiarities of the target CPU, such as jumps prediction, instruction
reordering, etc.

Using C/C++ to implement CPU control logic and memory model facilitates
high performance of the simulator. Another benefit of using C/C++ compared
to true ADL languages is an early development of the cross toolkit: it might
start before completing the function decomposition of the target CPU; thus the
simulator could be used to experiment with design variations.

Figure 4 presents the snapshot of OSCAR Studio, the IDE for MetaDSP
framework.

Fig. 4. OSCAR Studio: the IDE for MetaDSP framework

Red numbers mark various windows of the IDE:

1. Project Navigator window. It displays the tree of the source files and data
files.

2. Source Code Editor window. The editor supports syntax highlight and in-
struction autocompletion (from the ISE specification). The editor window
is integrated with the debugger - it marks break points, frame count points
and trace points.

3. Stack Memory window displays the contents of the stack.
4. Call Stack window displays the enclosing frames (both assembly subroutines

and C functions).
5. Register window displays the contents of the CPU registers.
6. Memory dump window displays contents of various memory regions.

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 94

9

7. Watch window displays the current value of arbitrary C expressions.
8. Code Memory window displays the instructions being executed. It supports

both binary and disassembly forms as well as displaying the current pipeline
stage (fetch, decode, execute, etc.).

9. OS debugger window displays the current state of the execution environment
(OS): list of the current tasks, semaphores, mutexes, etc.

10. Profiler window displays various profiling data. The profiler is integrated
with the editor window as well – the editor can show profiling information
associated with code elements.

4 Industrial Applications

The approach presented in this paper and MetaDSP framework were applied to
five industrial projects. Please note that the each “major releases of the cross
toolkit” mentioned in the project list below is caused by a major change in CPU
design such as modification of the instruction set or memory model alteration.

– 16-bit RISC DSP CPU with fixed point arithmetic. Produced 25 major re-
leases of the cross-toolkit.

– 16-bit RISC DSP CPU with support for Adaptive Multi-Rate (AMR) sound
compression algorithm. Produced 25 major releases of the cross-toolkit.

– 32-bit RISC DSP CPU with support for Fourier transform and other DSP
extensions. Produced 39 major releases of the cross-toolkit.

– 16/32-bit RISC CPU clone of ARM9 architecture.
– 16/32-bit VLIW DSP CPU with support for Fourier transform, DMA, etc.

Produced 33 major releases of the cross-toolkit.

The following list summarizes lessons learned from the practical applications
of the approach. We compared time and effort needed in a pure C++ develop-
ment cycle of cross toolkits with the ISE-enabled process:

– size of assembler, disassembler and simulator sources (excluding generated
code), in lines of code: reduced by 12 times;

– cross-toolkit development team (excluding C compiler development): reduc-
ing from 10 to 3 engineers;

– number of errors detected in the presentation of hardware specifications in
cross tools: reduction by the factor of more than 10;

– average duration of the toolkit update: reduced from several days to hours
(even minutes in many cases).

4.1 Performance Study

This section presents a performance study of a production implementation of
the AMR sound compression algorithm. The study was performed on Intel Core
2 Duo 2.4 GHz.

The size of the implementation was 119 C source files and 142 C header files,
and 25 files in the assembly language; total size of sources was 20.2 thousand

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 95

10

LOC without comments and empty lines. The duration of the audio sample (10
seconds voice speech) lasted 670 million of cycles on the target hardware.

Table 1 presents elapsed time measurements of the generated cross tools for
the AMR case study. Table 2 presents measurements of the generated simulator
in MCPS (millions of cycles per second).

Table 1. AMR sample – cross toolkit performance

Operation Duration, sec.

Translation (.c → .asm) 22

Assembly (.asm → .obj) 14

Link (.obj → .exe) 1

Build, total 37

Execution on the audio sample (fast mode) 53

Execution on the audio sample (debug mode with
profiling)

93

Table 2. AMR sample – simulator performance

Execution mode MCPS

Fast mode 12.6

Debug mode with profiling 7.2

Peak performance on a synthetic sample 25.0

5 Conclusion

The paper presents an approach to automation of cross toolkit development for
special-purpose embedded systems such as DSP and microcontrollers. The ap-
proach aims at creation the cross tools, namely assembler/disassembler, linker,
simulator, debugger, and profiler, at early stages of system design. Early creation
of the cross tools gives opportunity to prototype and estimate efficiency of de-
sign variations, co-development of the hardware and software components of the
target embedded system, and verification and QA of the hardware specifications
before silicon production.

The presented approach relies on a two-level description of the target hard-
ware: description of the most flexible part – the instruction set and memory
model – using the new ADL language called ISE and description of complex fine

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 96

11

grained functional aspects of CPU operations using a general purpose program-
ming language (C/C++). Having ADL descriptions along with a framework to
generate components of the target cross toolkits and common libraries brings
high level of responsiveness to frequent changes in the initial design that are a
common issue for modern industrial projects. Using C/C++ gives cycle-accurate
simulation and overall efficiency of the cross toolkits that meets the needs of in-
dustrial developers. The approach is supported by a family of tools comprising
MetaDSP framework.

The approach is applicable to various embedded systems with RISC core
architectures. It supports simple pipelines with fixed number of stages, multiple
memory banks, instructions with fixed and variable cycle count. These facilities
cover most of modern special purpose CPUs (esp. DSP) and embedded systems.
Still some features of modern general purpose high performance processors lay
beyond the capabilities of the presented approach: superscalar architectures,
microcode, instruction multi-issue, out-of-order execution. Besides this, the basic
memory model implemented in MetaDSP does not support caches, speculative
access, etc.

Despite the limitations of the approach mentioned above it was successfully
applied in a number of industrial projects including 16 and 32-bit RISC DSPs
and 16/32 ARM CPUs. Number of major design changes (with corresponding
releases of cross toolkits) ranged in those projects from 25 to 40. The industrial
applications of the presented approach proved the concept of using the hybrid
ADL/C++ description for automated development of cross toolkits in a volatile
design process.

References

1. M. Hartoog, J. Rowson, P. Reddy. Generation of Software Tools from Processor De-
scriptions for Hardware/Software Codesign. Design Automation Conference (DAC)
1997.

2. Lin Yung-Chia. Hardware/Software Co-design with Architecture Description Lan-
guage. Programming Language Lab. NTHU. 2003.

3. Z. Navabi. Languages for Design and Implementation of Hardware. The VLSI Hand-
book2nd ed. CRC Press, 2007.

4. P. Mishra and N. Dutt. Architecture description languages for programmable em-
bedded systems. IEEE Proceedings Computers and Digital Techniques. Vol. 152, No.
3, May 2005.

5. H. Tomiyama, A. Halambi, P. Grun, N. Dutt, A. Nicolau. Architecture Description
Languages for Systems-on-Chip Design. Proc. Asia Pacific Conf. on Chip Design
Language, 1999, pp. 109116.

6. VHDL Language Reference Manual. IEEE Std 1076-1987.

7. Hardware Description Language Based on the Verilog Hardware Description Lan-
guage. IEEE Std 1364-2005.

8. System C Language Reference Manual. IEEE Std 1666-2005.

9. A. Fauth, J. Van Praet, M. Freericks. Describing instruction set processors using
nML. In Proc. of EDTC, 1995.

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 97

12

10. G. Hadjiyannis, S. Hanono, S. Devadas. ISDL: An Instruction Set Description
Language for Retargetability. Design Automation Conference (DAC) 1997.

11. A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt and A. Nicolau. EXPRES-
SION: A Language for Architecture Exploration through Compiler/Simulator Retar-
getability. DATE 99.

12. MicroDSP 2 Instruction Set Description. VIA Technologies Manual, 2005.
13. TMS320C6000 CPU and Instruction Set Reference Guide. Texas Instruments Lit-

erature Number SPRU189F. http://focus.ti.com/lit/ug/spru189g/spru189g.pdf.
14. ISO/IEC TR 18037:2008. Programming languages – C – Extensions to support

embedded processors. 2004.
15. V. Rubanov, A. Grinevich, D. Markovtsev. Programming and Computing Software

Vol. 32-1, pp. 19-30, 2006

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 98

