
Workshop on Ontology Patterns

WOP 2009

Papers and Patterns from the ISWC workshop

Introduction

High-quality and reusable ontologies are considered as key element of the
Semantic Web and for successful semantic applications. Ontology Design Patterns
(ODPs) are addressing these quality and reusability issues by providing different
types of patterns supporting ontology designers. ODPs are collected in various
repositories, such as the catalogue maintained by the University of Manchester and
the ODP portal at ontologydesignpatterns.org. However, pattern catalogues are still
small and do not cover all types of patterns and all domains. Semantic Web
applications could also benefit from additional types of patterns, such as enterprise
model patterns and specialized software patterns for semantic applications.

Patterns are an approach to knowledge reuse that proved feasible and very
beneficial in various areas, such as software engineering and data modeling. Reuse
has been an important research subject in ontology engineering and the semantic web
community for many years. Patterns need to be shared by a community in order to
provide a common language and stimulate pattern usage and development. Hence, the
aim of this workshop was twofold

� providing an arena for proposing and discussing good practices, patterns,
pattern-based ontologies, systems etc.,

� broadening the pattern community that will develop its own “language” for
discussing and describing relevant problems and their solutions..

The workshop included a track for research papers addressing various aspects of
ontology patterns and investigating application areas, and a pattern track focusing on
presentation and discussion of actual ontology patterns.

We received 21 submissions for the paper and poster track of the workshop. The
program committee selected 7 submissions for oral presentation and 8 submissions as
short papers for presentation in the poster session. 13 ontology patterns were
submitted to the workshop, of which 3 patterns were selected for discussion in the
pattern writing session and 5 patterns for presentation in the poster session. Further
information about the Workshop on Ontology Patterns can be found at:
http://ontologydesignpatterns.org/wiki/WOP2009.

I

Acknowledgments

We thank all members of the steering committee, program committee, authors and
local organizers for their efforts and support. We appreciate support from the FP6
NeON Integrated Project (IST-2005-027595) and the DEON project (STINT IG
2008-2011).

Eva Blomqvist
Kurt Sandkuhl
François Scharffe
Vojt�ch Svátek

October 2009

II

Organization

WOP2009 Chairs

Paper chair: Kurt Sandkuhl, Jönköping University (SE)
Poster chair: Vojt�ch Svátek, University of Economics (CZ)
Pattern chairs: Eva Blomqvist, ISTC-CNR (IT) and François Scharffe, INRIA (FR)

Steering Committee

Eva Blomqvist, ISTC-CNR (IT)
Aldo Gangemi, ISTC-CNR (IT)
Natasha Noy, Stanford University (US)
Valentina Presutti, ISTC-CNR (IT)
Alan Rector, University of Manchester (UK)
Francois Scharffe, INRIA (FR)
Steffen Staab, University of Koblenz (DE)
Chris Welty, IBM Watson Research Center (US)

Program Committee

Alessandro Adamou, ISTC-CNR (IT)
Marie-Aude Aufaure, Ecole Centrale Paris (FR)
Fabio Ciravegna, University of Sheffield (UK)
Mathieu D'Aquin, Open University (UK)
Enrico Daga, ISTC-CNR (IT)
Violeta Damjanovic, Salzburg Research (AT)
Rim Djedidi, Paris-Sud University (FR)
Henrik Eriksson, Linköping University (SE)
Aldo Gangemi, ISTC-CNR (IT)
Jose-Manuel Gomez, Universidad Politécnica de Madrid (ES)
Gerd Groener, University of Koblenz (DE)
Luigi Iannone, University of Manchester (UK)
Holger Lewen, AIFB University of Karlsruhe (DE)
Pierluigi Miraglia, Gerson Lehrman Group (US)
Mark Musen, Stanford University (US)
Natasha Noy, Stanford University (US)
Wim Peters, University of Sheffield (UK)
Valentina Presutti, ISTC-CNR (IT)
Alan Rector, University of Manchester (UK)
Alan Ruttenberg, Science Commons Cambridge, MA (US)
Marta Sabou, Open University (UK)
Guus Schreiber, VU University Amsterdam (NL)

III

Steffen Staab, University of Koblenz (DE)
Mari Carmen Suárez-Figueroa. Universidad Politécnica de Madrid (ES)
Tania Tudorache. Stanford University (US)
Boris Villazón-Terrazas, Universidad Politécnica de Madrid (ES)
Holger Wache, University of Applied Sciences Northwestern Switzerland (CH)
Chris Welty, IBM Watson Research Center (US)

Additional Reviewers

Guillermo Alvaro, Universidad Politécnica de Madrid (ES)
Andreas Billig, Fraunhofer ISST Berlin (DE)
Carlos Ruiz, Universidad Politécnica de Madrid (ES)

IV

Table of Contents

Part 1: Research Papers

A Pattern-based Ontology Building Method for Ambient Environments
Wolfgang Maass and Sabine Janzen ... 1

Using Semantic Relations for Content-based Recommender Systems
in Cultural Heritage
Yiwen Wang, Natalia Stash, Lora Aroyo, Laura Hollink and Guus Schreiber 16

Refining Ontologies by Pattern-Based Completion
Nadejda Nikitina, Sebastian Rudolph and Sebastian Blohm .. 29

Using Lexico-Syntactic Ontology Design Patterns
for Ontology Creation and Population
Diana Maynard, Adam Funk and Wim Peters .. 39

Representing the Component Library into Ontology Design Patterns
Aldo Gangemi and Vinay K. Chaudhri .. 53

Pattern-based OWL Ontology Debugging Guidelines
Oscar Corcho, Catherine Roussey, Luis Manuel Vilches Blázquez
and Iván Pérez .. 68

eXtreme Design with Content Ontology Design Patterns
Valentina Presutti, Enrico Daga, Aldo Gangemi and Eva Blomqvist 83

Part 2: Pattern Abstracts

Define Hybrid Class Resolving Disjointness due to Subsumption
Rim Djedidi and Marie-Aude Aufaure .. 100

OnlynessIsLoneliness (OIL)
Oscar Corcho and Catherine Roussey .. 104

Pattern for Re-engineering a Term-based Thesaurus,
Which Follows the Record-based model, to a Lightweight Ontology
Boris Villazón-Terrazas, Mari Carmen Suárez-Figueroa, and
Asunción Gómez-Pérez ... 108

V

 Patterns presented as Posters

Pattern for Re-engineering a Classification Scheme, which
Follows the Path Enumeration Data Model, to a Taxonomy
Boris Villazón-Terrazas, Mari Carmen Suárez-Figueroa, and
Asunción Gómez-Pérez .. 112

Pattern for Re-engineering a Classification Scheme, which
Follows the Adjacency List Data Model, to a Taxonomy
Boris Villazón-Terrazas, Mari Carmen Suárez-Figueroa, and
Asunción Gómez-Pérez ... 116

Negative Property Assertion Pattern (NPAs)
Olaf Noppens .. 120

ConceptTerms
Pierre-Yves Vandenbussche and Jean Charlet ... 124

Concept Partition Pattern
Olaf Noppens ... 127

Part 3: Short Papers (Posters)

Pattern Definitions and Semantically Annotated Instances
Ivan Perez and Oscar Corcho ... 131

Preliminary Results of Logical Ontology Pattern Detection
Using SPARQL and Lexical Heuristics
Ondřej Šváb-Zamazal, François Scharffe and Vojtĕch Svátek 139

Ontology Construction for Web Services
Aviv Segev and Quan Z. Sheng .. 147

Ontology Analysis Based on Ontology Design Patterns
María Poveda, María Carmen Suárez-Figueroa and Asunción Gómez-Pérez 155

View Inheritance as an Extension of the Normalization Ontology Design Pattern
Benedicto Rodriguez-Castro, Hugh Glaser and Ian Millard 163

Ontology Naming Pattern Sauce for (Human and Computer) Gourmets
Vojtĕch Svátek, Ondřej Šváb-Zamazal and Valentina Presutti 171

Ontology Patterns and Beyond - Towards a Universal Pattern Language
Olaf Noppens and Thorsten Liebig .. 179

The newsEvents Ontology - An Ontology for Describing Business Events
Uta Lösch and Nadejda Nikitina ... 187

VI

Part 1:

Research Papers

A Pattern-based Ontology Building Method for
Ambient Environments

Wolfgang Maass1,2 and Sabine Janzen1

1 Research Center for Intelligent Media (RCIM)
Furtwangen University, Robert-Gerwig-Platz 1

D-78120 Furtwangen, Germany
{wolfgang.maass,sabine.janzen}@hs-furtwangen.de

http://im.dm.hs-furtwangen.de
2 Institute of Technology Management, University of St. Gallen

Dufourstrasse 40a, CH-9000 St. Gallen, Switzerland
wolfgang.maass@unisg.ch

http://www.item.unisg.ch

Abstract. Ambient environments are characterized by an ever increas-
ing amount of information that needs to be selected and organized in
order to make correct assumptions about users, entities, etc. within a
specific context. This issue can be addressed by using ontologies that
meet the specific requirements of such environments. In this paper, we
survey ontology engineering methods that represent an adequate ap-
proach to creating adequate ontologies. Because unprecedented, we intro-
duce a Pattern-based Ontology Building Method for Ambient Environ-
ments (POnA) and exemplify this method through the development of a
domain-specific ontology for cosmetic products within ambient shopping
environments.

Key words: Ambient environments, design patterns, ontology engineer-
ing methods

1 Introduction

In recent years, research in intelligent environments and entities has increased.
The embedding of adaptive information and communication services into every-
day physical things characterizes ambient environments (Ambient Intelligence
(AmI)). A number of prototype systems for ambient environments have been
designed and implemented, such as [1–4]. The challenge is to interpret sensor
data so that adaptive behavior of ambient environments can be generated which
naturally supports users in, for instance, situations of problem solving, relaxing,
informing, and communicating with other users. Available information needs to
be selected and organized so that ambient environments are able to make correct
assumptions about users and physical entities within a specific context [5]. How-
ever, a major shortcoming of these AmI systems is weak support of knowledge
sharing [6], i.e., AmI systems are typically based on proprietary and fixed sets of

1

2 Wolfgang Maass and Sabine Janzen

representations that are designed for particular AmI applications. This, in turn,
poses hurdles for integrating external information that is stored in the infos-
phere of digital environments, such as the World Wide Web (WWW). Bridging
the gap between sensor-data-driven applications and infospheres requires inter-
operable knowledge representations. Through this, information can be reused in
both directions. Because both AmI environments and infospheres can become
quite complex, a more principled, ontology-driven approach for the creation of
appropriate knowledge representations is required [6]. Initial approaches were
top-down approaches based on foundational ontologies that drilled down con-
ceptual structures until they reached a conceptual level compatible with infor-
mation derived from sensor data (e.g., [7]). For complexity reasons, these systems
neglected most of the ontological structure that are given by the overarching on-
tology, which meant that the ontology was only helpful at design time. In these
systems, semantics coded into ontological structures were typically not used at
run-time.

Some applications that used ontologies indicated the value of smaller pieces
of more abstract ontological structures, called design patterns, that could reused.
The idea of design patterns has several origins, such as Christopher Alexander’s
work on design patterns in architecture, Kevin Lynch’s work on mental models
of city structures, and computational knowledge patterns [8, 9]. Ontology design
patterns are conceptual macros that are repeatedly used by experts for solving
problems in their particular domains (cf. [10]). They are a means for extract-
ing knowledge from experts that can be used for designing applications with a
holistic understanding of a domain. Furthermore, machine-processible represen-
tations of design patterns can be used for the generation of a system behavior
itself.

AmI environments try to support natural behavior. Therefore ontology de-
sign patterns must combine domain knowledge and enhancements using infor-
mation services grounded in sensor data and Web-based infospheres. In gen-
eral AmI environments are required to be context-oriented, user-centered, and
network-enabled [7]. Context-orientation is achieved by adaptating to particular
situations, to objects within these situations, and to domain constraints such as
contractual restrictions. Furthermore, AmI environments adapt to users within
situations in a personalized and proactive manner. When an AmI environment
is network-enabled, any object can in principle establish relationships with any
other object or service within and beyond a particular situation. In summary,
ontology design patterns for AmI environments can be defined on various layers:
(1) users, (2) objects, (3) services, (4) physical space, (5) infosphere (informa-
tion space), and (6) social space [11]. (4) through (6) establish networks among
entities from (1) through (3). A detailled discussion is beyond the scope of this
article.

Here, we discuss a tentative design method for ontology design patterns
(POnA) and its application to the design of AmI environments with a focus on
Natural Language Processing (NLP). A review of existing methods has revealed
(cf. Section 2&3) that a dedicated method suitable for ambient environments

2

A Pattern-based Ontology Building Method for Ambient Environments 3

is not yet available. Therefore we introduce a Pattern-based Ontology Building
Method for Ambient Environments (POnA) and exemplify this method through
the development of a pattern-based ontology for an AmI shopping environment.
Next, we will discuss existing ontology building approaches and their applica-
bility in AmI environments. In Section 3, we illustrate POnA through the de-
velopment of an exemplary ontology. We then discuss some findings (Section 4)
that exemplify patterns (Section 5). Finally, we conclude with a summary and
an outlook on future work.

2 Related Work

In general, there are diverse approaches for the design and development of on-
tologies [12]. Systematic methodologies concentrate on the ontology development
process and are independent of particular languages. Patterns are light-weight
versions of methodologies that include useful hints. Svatek argues that reposi-
tories of such reusable patterns might improve the accuracy, transparency and
reasonability of an ontology [12]. In the following, systematic methodologies and
pattern-based approaches for ontology engineering are briefly described.

2.1 Systematic Ontology Building Methods

There are diverse ontology building methods for designing ontologies (for a re-
view of earlier methodologies cf. [13] NeOn 5.4.1.). For instance, Uschold and
King describe a methodology for building ontologies anew [14] while METHON-
TOLOGY considers reuse of other ontologies [15]. The more recent NeOn method-
ology focusses on the reuse and combination of distributed ontologies with a spe-
cial emphasis on ontology design patterns [16]. The Unified Process for Ontology
building (UPON) [17] applies a phase-structured software engineering viewpoint
by following the Unified Process model. All these methodologies follow a basic
pattern. First, a scope is defined by a domain of interest. Second, scenarios are
defined, which are used to identify competency questions (CQ) to be answered
by the ontology [18]. Thereafter, terms are gathered and translated into for-
mal concepts that are connected. The final result is called a formal ontology.
The NeOn methodology defines ontology design patterns as best practices for
more efficient ontology engineering processes. Additionally it describes generic
processes for ontology evaluation, evolution, and localization [16].

Even though the NeOn methodology is rich with respect to complete ontol-
ogy life cycle, it lacks depth with regard to the application of design patterns. At
the moment, matching problems with ontology design patterns and reusing and
composing of ontology design patterns are complex tasks still left to the knowl-
edge engineer’s expertise [16]. In the following, we describe a methodology that
combines early phases of the NeOn methodology and the UPON methodology
for designing ontologies for AmI environments. Special emphasis is given to a
problem solving viewpoint often found in AmI scenarios.

3

4 Wolfgang Maass and Sabine Janzen

2.2 Building Pattern-based Ontologies

Christopher Alexander introduced the term “design pattern” for shared guide-
lines that help to solve architectural design problems [19]. He argued that a good
design can be achieved using rule sets, i.e. patterns. The potential for reusing
ontological structures through a pattern-based approach was first developed by
Clark et al. [20]. They emphasized the importance of combining concepts within
a vocabulary using “knowledge patterns”, i.e., frequently recurring, structurally
similar patterns of axioms. The notion of ontology design patterns was used by
Gangemi [10] when presenting Conceptual Ontology Design Patterns (CODePs)
as a useful resource for engineering ontologies for Semantic web infrastructures.
CODePs are represented by textual, semiformal, and formal descriptions similar
to Alexander’s initial approach.

3 Pattern-based Ontology Building Method for Ambient
Environments (POnA)

Our goal is the development of an ontology design pattern library specific to
AmI environments that considers all six layers (cf. Section 1). These patterns
are grounded in the patterns of the Ontology Design Pattern ODP library.3 The
PoNA methodology reuses UPON’s detailed engineering approach and combines
it with an approach proposed by the NeOn methodology that is centered on
ontology design patterns. Currently, we focus on early development phases of
ontology engineering. Rigorous ontology evaluation and evolution phases will be
considered in our future work.

Ontological design patterns have several advantages. They improve explicit
modularizations of knowledge bases and enable separation of abstract theories
from real-world phenomena [20]. Their usage ensures that better explications
concerning structure and modeling decisions are made when constructing a for-
mal axiom-rich ontology [20, 10]. Furthermore, ontology design patterns provide
new opportunities for ontology integration [21]. Contrary to systematic method-
ologies, pattern-based approaches do not dispose of structured methodologies
that consist of specific activities and outcomes. Our hypothesis is that a combi-
nation of systematic methodologies (cf. Section 2.1) and ontology design patterns
(cf. Section 2.2) constitute a more detailled and thus efficient approach to de-
signing ontologies for ambient environments.

In the following, we present the Pattern-based Ontology Building Method
for Ambient Environments (POnA). Following UPON [17], POnA consists of
four engineering phases: Requirements, Design, Implementation and Test. Each
phase is subdivided into activities, contains decision points, and provides clearly
defined outcomes. The re-use of design patterns is integrated into the design
phase. We will exemplify POnA for an AmI application in the cosmetics domain
[22].

3 http://ontologydesignpatterns.org

4

A Pattern-based Ontology Building Method for Ambient Environments 5

3.1 Requirements Phase

The requirements phase aims at the identification of business needs for modeling
a domain of interest and specification of the environmental aspects of the ontol-
ogy, e.g., users and scenarios. This phase consists of the following activities: (1)
defining the domain of interest and scope, (2) identifying objectives, (3) defining
scenarios, (4) defining terminology and (5) identifying competency questions.

Defining Domain of Interest & Scope According to [14] and [17], defining
a domain of interest is an important step in focusing on a particular fragment of
the world to be modeled. Therefore, prospective users and the type of ontology
to be used are circumscribed. In line with the scope of a particular ontology, the
most important concepts and their characteristics are identified. Consequently,
some parts of a domain of interest are brought into focus. Within our cosmetics
domain, we focus on ontological representations of the following product con-
cepts: perfume and fragrances, make-up for eyes, makeup for lips, hand care,
nail care, foot care, make-up for facial skin, liquid hair care, hair spray, hair
color, dental care, shower gel, skin care, and sunscreen. Target groups of result-
ing ontologies are manufacturers, retailers and customers, which might use the
ontology for two different real-world situations:

– In-store purchase situation - The customer communicates with a cos-
metic product. She might search for an individual solution, e.g.”I have dry
skin. Which vanishing creme suits me?”

– Usage situation at home - A product advises a customer on correct ap-
plication procedure and initiates re-purchases through communication with
appropriate web-based shopping services.

Identifying Objectives In this step, motivations for an ontology are collected
together with associated problems. This step is important for later reuse of
ontologies. It indicates to other knowledge engineers the importance of this on-
tology and the problem types that are targeted. We found that physical products
are mainly described in a non-semantic way; their descriptions exist in terms of
static databases or XML structures (e.g., BMEcat R©, ETIM/eCl@ss and GS1).
Modeling of enterprises or processes is generally sophisticated, but the descrip-
tion of products rarely exceeds the scope of classification. We intend to integrate
physical products into communicative situations in ambient shopping environ-
ments. Therefore, semantically annotated product information is required to re-
alize personalized communications between different stakeholders and products.

Defining Situations Situations are textual descriptions of integrated perfor-
mances of a particular interaction type. Situations conceive different entities
(objects, subjects, information, and services) and their interactions (for a dis-
cussion cf. [11]). Situations are prototypes that reflect characteristic features of
a corresponding class of situations, e.g., shopping situations. Thus, situations

5

6 Wolfgang Maass and Sabine Janzen

resemble frames [8], schemas [9], and use cases. For instance:
”Anna has dry skin and searches for a vanishing creme matching her skin in a shop. She wants to take a look

at the cremes that are right for her, so she asks all products in the store for a solution to her specific skin

problem. Six vanishing cremes give notice that they want to solve her problem because they are suitable for

dry skin. Anna goes to the creme closest to her and initiates a dialogue with the intelligent product. She

asks whether the creme is a gel-based moisturizer. Furthermore, she wants to know about the ingredients.

Then, Anna asks for the price as well as current discount campaigns and matching products. The creme

informs Anna about a bundle price with a 5% discount for the vanishing creme and the corresponding eye

care. Anna decides to buy both products.”

Defining Terminology The terminology was extracted from situation reports
gathered in workshops with experts and was automatically extracted based on
Web-based product descriptions. For the cosmetics domain, 130 terms were ex-
tracted and categorized into five term categories (for an excerpt see Table 1):
Actors and Roles, Products and Features, Environment and Situation, Problems
and Solutions.

Actors and
Roles

Products
and Features

Environment
and Situa-
tion

Problems Solutions

User Name Shop Colored hair Protecting lips

Manufacturer Price Services Oily skin Treating skin

Father Bundle Retailer Dry skin Coloring hair

Desire Perfume Time Oily hair Painting nails

Table 1. Extract of the cosmetics terminology

Identifying Competency Questions Competency questions (CQs) are con-
ceptual questions that the ontology must be able to answer [23]. They were

CQ1 Does the product fit to me?

CQ2 Does the product solve my problem?

CQ3 How long does the product last?

CQ4 Is my purchase decision correct?

CQ5 Which product can I use for protecting my lips (in winter)?

CQ6 How can I apply the product?

Table 2. Examples of CQs for the cosmetics domain

identified through analysis of scenarios and terminology as well as through brain-
storming with domain experts. CQs were used during the test phase of POnA
to evaluate the quality of resulting ontologies [17]. Some examples of CQs are

6

A Pattern-based Ontology Building Method for Ambient Environments 7

presented in Table 2. The output of the requirements phase consists of CQs,
scenarios, and the terminology with corresponding term categories.

3.2 Design Phase

The design phase aims at the identification of semantic structures, more pre-
cisely the definition of design patterns for answering CQs. First, relations be-
tween terms are identified, which results in coarse term structures. Based on
descriptions of situation types, CQs and term structures, prototypical ontology
design patterns (PODPs) are derived and formally modeled by reusing ODPs
grounded in DOLCE [10]. Complex prototypical ontology patterns require the
combination and adaptation of ODPs. Resulting ontology design patterns are
discussed with domain experts again. PODPs are informal conceptual struc-
tures that are derived from analysis of situations, terms, and CQs. Therefore,
PODPs resemble more mental models of real world perceptions [24] than formal
logic representations and fit very well to the requirements of AmI environments.
PODPs consist of conceptual entities, called scopes, and relations. Scopes are
themes that frequently occur in situations, terms and CQs and share a common
meaning. The design phase consists of the following activities: (1) identification
of prototypical ontology design patterns, (2) terminology setup, and (3) mapping
PODPs onto ODPs.

Identification of Prototypical Ontology Design Patterns In contrast to
UPON [17], CQs are mapped onto PODPs that in turn are mapped onto formal
ODPs [19, 20, 10]. PODPs and ODPs provide levels of granularity that sup-
port discussions with experts much better than discussions of isolated concepts
and relationships. Generally, it is proposed that an accurate domain ontology
specifies all and only those conceptualizations that are required for answering
all the CQs formulated within the requirements phase [10]. The most general
CQ for product-centered situations is classified as a problem-solution situa-
tion, i.e., “Which solutions exist for this problem?” Through analysis of the 55
CQs, seven POSPs are derived: Product-Pattern (P), Product-Product-Pattern
(PP), Context-Pattern (C), Product-User-Pattern (PU), Product-Information-
Pattern (PI), Product-User-Context-Pattern (PUC), and Product-Context-User-
Information-Pattern (PUIC). Prototypical design patterns conceive a general
conceptualization of a set of situations, dominant terms, and corresponding CQs.
Furthermore, they highlight candidates for key concepts, called scopes. PODPs
have a conceptual or rather architectural nature [25] and arrange the answering
of the CQs by scopes according to the categories of the terminology (Actors
and Roles, Products and Features, Environment and Situation, Problems and
Solutions) (cf. Fig. 1).

The P-Pattern represents solutions to problems concerning the product it-
self, e.g., its price, whereas the PP-Pattern covers semantics on product bundles
and their features. The C-Pattern semantically describes the current context,
e.g., time and space of a situation, present objects, and individuals. The PU-
Pattern describes information that relates products with user attributes. The

7

8 Wolfgang Maass and Sabine Janzen

Fig. 1. Design patterns for ambient environments

PUC-Pattern enhances the PU-Pattern with contextual information. Solutions
for problems concerning additional information about the product, e.g., user
reviews, images, videos, etc. are represented by the PI-Pattern. The most com-
plex pattern, the PUIC-Pattern, represents solutions to problems concerning the
matching of information about products to user-specific attributes and needs
within a context. All PODPs combine scopes that were extracted from the ter-
minology. The product scope covers the term category Product and Features
whereas the user scope represents the term category Actors and Roles. The con-
text scopes contain terms subsumed by the category Environment and Situation.
The lollipop relationship between pattern P and pattern C indicate that they
conceptually contribute to what is a problem solving situation (cf. Figure 2).
More complex PODPs are derived from simpler ones, e.g., pattern PI is an ex-
tension of pattern P. Patterns can be composed, which creates new patterns,
e.g., the PUIC pattern. By discussion of PODPs, the requirement for an in-
dependent information scope appeared that supports CQs such as “How can I
apply this product?” The information scope refers to information about a prod-
uct, e.g. product images, application videos, and user-generated or professional
product reviews.

PODPs dispose a template-based and compact visualization [10], which con-
sists of the following slots:

(a) Graphical visualization of the pattern [19, 10]
(b) Name of the pattern [19, 10]
(c) Description of the intention of the pattern [19, 26]
(d) CQs that are addressed by the pattern [26]
(e) Terms that characterize the pattern
(f) Situations that exemplify a pattern [26]
(g) Consequences, side effects, references to other patterns [19, 10, 26]
(h) Components of the pattern, e.g., product scope and information scope [19,

26]

8

A Pattern-based Ontology Building Method for Ambient Environments 9

Fig. 2. Tree of design patterns for ambient environments

Slot (e) represents the linkage of the different patterns. For example, the PP-
Pattern evolves from the P-Pattern when more than one product is part of a
communicative situation within an ambient environment. On the other hand, the
PU-Pattern has a strong reference to the P-Pattern representing one product as
well as the PP-Pattern focusing on solutions to problems concerning product
bundles (cf. Fig. 2).

Terminology Set-up Next, scopes within patterns are refined and structured
by arranging relevant terms (cf. Section 3.1) and further analyzing the CQs. For
concept identification, a middle-out approach is used that starts with salient
concepts and proceeds with generalization and specialization [27]. This seems
to be the most effective approach because concepts “in the middle” are more
informative about the domain. Table 3 shows the four scopes and an extract of
their corresponding terms. The product scope covers all necessary information

Product Scope User Scope Context Scope Information
Scope

Name Characteristic Space Animation

Price Problem Time Video

Ingredients Feeling Temperature Image

Table 3. Pattern scopes and exemplary terms

that is part of the product itself, e.g., information about price and material. In
contrast, external product information, such as manuals or brochures, is covered
by the information scope. The user scope covers terms and questions related to a
user whereas the context scope conceives characterizations of a general context.

9

10 Wolfgang Maass and Sabine Janzen

Mapping PODPs onto ODPs Operations that support the reuse of formal
ODPs try to find patterns that optimally cover CQs [16]. In PoNA, PODPs are
mapped onto ODPs. Within the cosmetics domain, ODPs proposed by [26] fit
well with requirements given by PODPs (cf. Fig. 2). Typically several ODPs are
required, which leads to pattern composition. For instance, the ODP mapping of
the PI-pattern uses the ODP mapping of the P-pattern based on the Description
and Situation ODP in conjunction with the information-object ODP [10]. Cur-
rently, mapping tasks are executed manually. Our goal is to reduce the complex-
ity of ODP mapping tasks by automatically mapping situations, terminologies,
and CQs onto PODPs. With a library of predefined PODP-ODP mappings, we
will test ways in which the reuse of formal ontologies can be improved.

Fig. 3. Merging product and information scopes based on the Description and Situation
ODP and information-objects ODP

3.3 Implementation Phase

The ODP-based P-pattern and PP-pattern represented in OWL-DL has been
integrated into the Smart Product Description Object (SPDO) model that is
used in AmI environments [7, 22]. Instances of SPDO models are used as product-
centered knowledge bases for Natural Language Processing modules [28] and
product reasoning [7]. Currently, we are working on the integration of the other
patterns within the EU-project Interactive Knowledge Stack (IKS). The resulting
SPDO ontology covers all information concerning the product itself. It consists of
25 classes, 86 properties, and 104 restrictions. SPDO answers all the CQs of the
P-Pattern and the PP-Pattern. The linkage of two or more product scopes within
the PP-Pattern is realized via reasoning based on standardized Web-based rules
(SWRL4). Statements about alternative or matching products are generated by
processing certain concepts of SPDO instantiations while each SPDO describes
one particular product.
4 http://www.w3.org/Submission/SWRL/

10

A Pattern-based Ontology Building Method for Ambient Environments 11

3.4 Test Phase

The quality of the resulting ontology is tested with respect to four characteris-
tics: syntactic, semantic, pragmatic, and social quality [17]. First, the semantic
quality is evaluated by checking the consistency of the ontology using the Pellet
reasoner. Validation of pragmatic quality consists of verifying the coverage of an
ontology over a domain and answering CQs. For the cosmetic domain, initial se-
mantic checking of the SPDO showed promising results. Testing the pragmatic
quality by answering CQs associated with the P-pattern and PP-pattern was
straightforward because users can use the NLP component of SPDO instances
for direct communications. Nonetheless, more detailed user studies are required.
The syntactic quality is verified within the implementation workflow whereas
the social quality can be checked only after application of an ontology in real
environments, which is part of the EU-project IKS.

4 Discussion of POnA

When defining the terminology, we found a huge amount of terms with com-
pletely different origins, e.g., user or content-specific terms. We therefore decided
to structure terms concerning their particular content categories. This additional
step was very helpful for creating prototypical ontology design patterns based on
scopes. Furthermore, we were able to clearly separate product-centered knowl-
edge from other ontological parts, which is important for AmI environments.
Thus, each product could be labled by dedicated semantic product information.
Through modularization by scopes and PODPs, we were able to set up a clearly
defined ontology engineering process that fits very well with the requirements
of AmI environments. To ensure a better portability to other domains and a
general representation of the structure of ambient environments, we decided on
general scopes within patterns. Domain specifications can be realized by concep-
tualizations of scopes and PODPs. Additionally, we found that not all scopes can
be directly derived from analysis of situations, CQs, and terminologies. At the
moment, scope completion requires careful discussions with domain experts. In
general, we found that joint consideration of situations, CQs and terminologies
is an efficient approach for identifying requirements for ontologies because they
help to “pursue the path”.

5 Example

Within this section, the Product-User-Context-Pattern is exemplified in detail.
This PODP was chosen because product, user and context scopes are quite
advanced. Table 4 shows the representation of the pattern in the form of a
PODP.

The PUC-Pattern represents solutions to problems concerning the match-
ing of products to user-specific attributes and needs within a context, such as
whether a vanishing creme should be matched with a specific skin type in a

11

12 Wolfgang Maass and Sabine Janzen

Graphical vi-
sualization

cf. Fig. 1

Name Product-User-Pattern (PU)

Description of
Intention

Representation of solutions for problems concerning the matching of prod-
ucts to user-specific attributes and needs

Competency
Questions

Extract:

(a) Does the product /the application of the product solve my problem?
(b) Does the product fit to me?
(c) Which product can I use for protecting my lips?
(d) Will I be happy applying the product?

Characterizing
terms

product: price, ingredients, user: emotions, context: temperature, day of
week

Situations Anna is interested in a vanishing creme and wants to know whether it is
right for her skin in humid environments.

Consequences
/ Side Effects
/ References

PP-Pattern; PUC-Pattern

Components product scope; user scope: context scope

Table 4. Template of Product-User-Context-Pattern

humid environment. Furthermore, the PUC-Pattern disposes of cross references
to other patterns. For instance, when product bundles (more than one product)
have to be matched with user-specific aspects, the PUC-Pattern is extended by
the PP-pattern. A mapping of the PUC-PODP onto ODPs is illustrated in Fig.
4.

6 Conclusion and Future Work

Ambient Intelligence implies modularized environments of computing and spe-
cific interfaces. The characteristic of such an environment requires systems to
deal with large amounts of unstructured information from heterogeneous sources
and to support dynamic knowledge sharing and reasoning. These issues imply the
application of appropriate knowledge representations. We start from the outset
that ontologies are an efficient means for building ambient environments because
they enable efficient sharing, adding and changing of information, and inference
generation [2]. By leveraging capabilities of different ontology design method-
ologies, we investigated Pattern-based Ontology Building Method for Ambient
Environments (POnA) as a method with particular focus on ambient environ-
ments. We found that a combination of systematic methodologies and different
types of design patterns can be an efficient approach to designing ontologies
for ambient environments. The POnA process focuses on the main ontology de-
velopment processes and enables an explicit pattern-based modularization and
abstraction of scopes. In our future work, we will proceed with several tasks: (1)

12

A Pattern-based Ontology Building Method for Ambient Environments 13

Fig. 4. ODP-based PUC-pattern

evaluation of PODPs and their formalizations based on ODPs, (2) extension of
PODPs to more AmI-specific dimensions, i.e., representation of spatio-temporal
information, frames of reference, and sensoric perceptions, and (3) automatic
mapping of CQs, situations, and terms onto PODPs.

7 Acknowledgements

We would like to thank Andreas Filler and Tobias Kowatsch for their help on
this paper. This work is part of the project SmaProN that is being funded by
the Federal Ministry of Education and Research (BMBF), Germany, under the
number FKZ 17 53X 07.

References

1. Dey, A.K.: Providing architectural support for building context-aware applica-
tions. PhD thesis, Georgia Tech College of Computing, Atlanta, GA, USA (2000)
Director-Abowd, Gregory D.

2. Coen, M., Phillips, B., Warshawsky, N., Weisman, L., Peters, S., Finin, P.: Meeting
the computational needs of intelligent environments: The metaglue system. In:
Proceedings of MANSE99, Springer-Verlag (1999) 201–212

3. Schilit, W.N.: A system architecture for context-aware mobile computing (1995)
4. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system.

ACM Trans. Inf. Syst. 10(1) (1992) 91–102
5. Peters, S., Shrobe, H.E.: Using semantic networks for knowledge representation in

an intelligent environment. In: PERCOM ’03: Proceedings of the First IEEE Inter-
national Conference on Pervasive Computing and Communications, Washington,
DC, USA, IEEE Computer Society (2003) 323

6. Chen, H., Finin, T., Joshi, A.: The SOUPA ontology for pervasive computing. In
Tamma, V., Cranefield, S., eds.: Ontologies for Agents: Theory and Experiences.
Springer (2005) 233–258

7. Maass, W., Filler, A.: Towards an infrastructure for semantically annotated phys-
ical products. In Hochberger, C., Liskowsky, R., eds.: Informatik 2006. Volume
P-94 of Lecture Notes in Informatics., Berlin, Springer (2006) 544–549

13

14 Wolfgang Maass and Sabine Janzen

8. Minsky, M.: A framework for representing knowledge. In Winston, P.H., ed.: The
Psychology of Computer Vision. McGraw-Hill, New York (1975) incollection.

9. Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals and Understanding. Erlbaum,
Hillsdale, NJ (1977)

10. Gangemi, A.: Ontology design patterns for semantic web content. In: M. Musen
et al. (eds.): Proceedings of the Fourth International Semantic Web Conference,
Berlin, Springer (2005)

11. Maass, W., Varshney, U.: A framework for smart healthcare situations and smart
drugs. In: SIG-Health Pre-AMCIS Workshop at the 15th Americas Conference on
Information Systems (AMCIS 2009), San Francisco, USA (2009)

12. Svátek, V.: Design patterns for semantic web ontologies: Motivation and discussion.
In: Proceedings of the 7th Conference on Business Information Systems, Poznan
(2004)

13. Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Methodologies, tools and
languages for building ontologies: where is their meeting point? Data Knowl. Eng.
46(1) (2003) 41–64

14. Uschold, M., King, M.: Towards a methodology for building ontologies. In: In
Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction
with IJCAI-95. (1995)

15. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: METHONTOLOGY: from
ontological art towards ontological engineering. In: Proceedings of the AAAI97
Spring Symposium Series on Ontological Engineering, Stanford, USA (March 1997)
33–40

16. Suárez-Figueroa, M.C., Blomqvist, E., D´Aquin, M., Espinoza, M., et al., A.G.P.:
D5.4.2. revision and extension of the neon methodology for building contextual-
ized ontology networks. Technical report, NeOn: Lifecycle Support for Networked
Ontologies (2009)

17. De Nicola, A., Missikoff, M., Navigli, R.: A software engineering approach to
ontology building. Inf. Syst. 34(2) (2009) 258–275

18. Grueninger, M., Fox, M.S.: Methodology for the design and evaluation of ontolo-
gies. In: Proceedings of the Workshop on Basic Ontological Issues in Knowledge
Sharing held in conjunction with IJCAI-95. (1995)

19. Alexander, C.: The timeless way of building. Oxford University Press, New York
(1979)

20. Clark, P., Thompson, J., Porter, B.W.: Knowledge patterns. In Staab, S., Studer,
R., eds.: Handbook on Ontologies. International Handbooks on Information Sys-
tems. Springer (2004) 191–208

21. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Oltramari, R., Schneider,
L.: Sweetening ontologies with DOLCE. In: Proceedings of the 13th International
Conference on Knowledge Engineering and Knowledge Management. Ontologies
and the Semantic Web, Springer (2002) 166–181

22. Janzen, S., Maass, W.: Smart product description object (SPDO). In: Poster
Proceedings of the 5th International Conference on Formal Ontology in Information
Systems (FOIS2008). IOS Press, Saarbrücken, Germany (2008)

23. Grueninger, M., Fox, M.S.: The role of competency questions in enterprise engi-
neering. In: Proceedings of the IFIP WG5.7 Workshop on Benchmarking - Theory
and Practice. (1994)

24. Johnson-Laird, P.N.: Mental Models: Towards a Cognitive Science of Language,
Inference, and Consciousness. Cambridge University Press (1983) book.

25. Gangemi, A., Presutti, V.: Ontology design patterns.
http://ontologydesignpatterns.org (2008)

14

A Pattern-based Ontology Building Method for Ambient Environments 15

26. Presutti, V., Gangemi, A.: Content ontology design patterns as practical build-
ing blocks for web ontologies. In: ER ’08: Proceedings of the 27th International
Conference on Conceptual Modeling, Berlin, Heidelberg, Springer-Verlag (2008)
128–141

27. Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications.
Knowledge Engineering Review 11 (1996) 93–136

28. Maass, W., Janzen, S.: Dynamic product interfaces: A key element for ambient
shopping environments. In: Proc. of 20th Bled eConference, Bled, Slovenia (2007)

15

Using Semantic Relations for Content-based
Recommender Systems in Cultural Heritage

Yiwen Wang1, Natalia Stash1, Lora Aroyo12, Laura Hollink2, and
Guus Schreiber2

1 Eindhoven University of Technology, Computer Science
{y.wang,n.v.stash}@tue.nl

2 VU University Amsterdam, Computer Science
{l.m.aroyo@cs.vu.nl,hollink,schreiber}

Abstract. Metadata vocabularies provide various semantic relations
between concepts. For content-based recommender systems, these rela-
tions enable a wide range of concepts to be recommended. However, not
all semantically related concepts are interesting for end users. In this pa-
per, we identified a number of semantic relations, which are within one
vocabulary (e.g. a concept has a broader/narrower concept) and across
multiple vocabularies (e.g. an artist is associated to an art style). Our
goal is to investigate which semantic relations are useful for recommenda-
tions of art concepts and to look at the combined use of artwork features
and semantic relations in sequence. These sequences of ratings allow us
to derive some navigation patterns from users, which might enhance the
accuracy of recommendations and be reused for other recommender sys-
tems in similar domains. We tested the CHIP demonstrator, called the
Art Recommender with end users by recommending both semantically-
related concepts and artworks features (e.g.creator, material, subject).

1 Introduction and Problem Statement

The main objective of the CHIP (Cultural Heritage Information Personalization)
project is to demonstrate how Semantic Web and personalization technologies
can be deployed to enhance access to digital collections of museums. In col-
laboration with the Rijksmuseum Amsterdam3, we have developed the CHIP
Art Recommender: a content-based recommender system that recommend art-
related concepts based on user ratings of artworks. For example, if a user gives
the famous painting ”Night watch” a high rating, the user will get its creator
”Rembrandt” recommended.

The semantic enrichment of Rijksmuseum InterActief (ARIA)4 database [1]
enables the opportunity to recommend a wide range of concepts via different
semantic relations. These relations link concepts not only within one vocabu-
lary (e.g. teacher/studentOf, broader/narrower), but also across two different

3 http://www.rijksmuseum.nl
4 http://www.rijksmuseum.nl/collectie/ontdekdecollectie

16

vocabularies (e.g. hasStyle, birth/deathPlace). For example, if a user likes the
artist ”Rembrandt”, the system could recommend his teacher “Pieter Lastman”
and his art style ”Baroque”, or even its narrower concept “Renaissance-Baroque
styles and periods” and its broader concept “European styles and periods”.

However, for recommender systems, the use of semantic relations also poses a
problem. Not all related items are useful or interesting for end users. If the user
likes the artist “Rembrandt”, besides his teacher and art style, the system could
also recommend his death place “Amsterdam” or even the broader geographic
location “Noord-Holland”, which might not be of interest for users. Thus, our
main challenge is to find which semantic relations are generally useful for content-
based recommendations. Furthermore, we aim to derive the navigation patterns
in order to improve the accuracy of recommendations. Our hypothesis is that
by choosing specific semantic relations, the recommender system could retrieve
more related items without decreasing the accuracy and interestingness. In the
experiment, we tested the Art Recommender with end users by applying both
artwork features and semantic relations to recommend related concepts. Using
artwork features as a baseline, we compared the recommendations via different
semantic relations in terms of accuracy and interestingness.

The paper is organized as follows: Section 2 presents related work about the
use of semantic relations for recommender systems. Section 3 briefly introduces
the metadata vocabularies and identifies a number of semantic relations as well
as artwork features. In Section 4 we describe our demonstrator, a content-based
art recommender system and explains the design of the experiment. Section 5
discusses the results. We conclude and discuss the future work in Section 6.

2 Related Work

In recent years, many recommender systems have appeared that use Semantic
Web technologies, where information is well-defined in an open standard format
that can be read, shared and exchanged by machines across the Web [2]. Peis
et al [3] classified semantic recommender systems into three different types: (i)
vocabulary or ontology based systems; (ii) trust network based systems con-
structed with FOAF5; and (iii) context-adaptable systems that use additional
ontologies about e.g. the current time, place of the user. In this paper, we fo-
cus on the first type (vocabulary-based recommender systems) and discuss how
various semantic relations to enhance recommendations.

Metadata vocabularies or domain ontologies are so far mainly used for content-
based recommender systems. the CULTURESAMPO portal [4] recommends im-
ages based on semantic relations between selected images and other images in
the repository. In particular, they used the has-part/part-of relations with a
fixed weight to determine the ontological relevance of recommendations. A simi-
lar approach is adopted in the ConTag project [5], which extracts similar topics
using the broader/narrower relations for recommendations. By knowing user

5 Friend of A Friend: http://www.foaf-project.org/

17

preferences, Blanco-Fernández [6] inferred semantic associations between user
preferences and relevant instances from the domain ontology in order to provide
personalized recommendations of TV programs.

In CHIP we have developed a content-based recommender system, the Art
Recommender. Compared with the content-based recommender systems men-
tioned above, the Art Recommender works with four different semantic meta-
data vocabularies (see Section 3), which provide richer semantic relations: not
only hierarchical relations such as broader/narrower within one vocabulary, but
also more sophisticated relations across two different vocabularies, e.g. hasStyle
and birth/deathPlace. These semantic relations might be helpful to partially
solve the cold-start and over-specialization problems for content-based recom-
mender systems. For example, (i) when there are few ratings, the system could
use semantic relations to provide additional concepts; (ii) the use of semantic
relations within one vocabulary or across multiple vocabularies might retrieve
new concepts, which might be surprising or interesting for users.

3 Metadata vocabularies and Semantic Relations

The CHIP Art Recommender currently works with the Rijksmuseum ARIA
database, containing images and metadata descriptions of artworks. The map-
ping of metadata from ARIA to Iconclass6 and to the three Getty thesauri7 (the
Art and Architecture thesaurus (AAT), the Union List of Artists Names (ULAN)
and the thesaurus of geographic Names (TGN)) [1] brings rich semantic struc-
ture to the Rijksmuseum collection and creates the opportunity to recommend
a wide range of art concepts via various semantic relations. As shown in Fig. 1,
we listed 4 basic artwork features (Relations 1-4) which link an artwork and its
associated concepts, as well as 11 semantic relations (Relations 5-15), which link
concepts within one vocabulary and across two different vocabularies.

Relations 1-4 are artwork features, which have already been implemented in
the original Art Recommender for the inference of recommended concepts. As
an example, if a user likes the artwork “Night watch”, we could recommend the
creator “Rembrandt” from ULAN, the creation site “Amsterdam” from TGN,
the material “Oil painting” from AAT, the subjects “Cloth” from Iconclass and
“Wealth in the Republic” from ARIA.

Relations 5-15 are semantic relations linking concepts within one vocabulary
and across two different vocabularies. We applied these semantic relations in
the experiment in order to get insights in which relations are useful for content-
based recommendations. In more detail, Relation 5 (link:hasStyle) links an artist
to his/her art style(s), across the ULAN and AAT vocabularies, e.g. “Rem-
brandt” in ULAN has an art style “Baroque” in AAT. Relations 6 and 7 are the
ulan:teacher/studentOf relations linking two concepts within the ULAN vocab-
ulary. For example, “Rembrandt” is the teacher of “Gerrit Dou” and the student

6 http://www.iconclass.nl/libertas/ic?style=index.xsl
7 http://www.getty.edu/research/conductingresearch/

18

of “Pieter Lastman”. Relations 8 and 9 are the birth/deathPlace relations be-
tween artists and geographical locations where she was born or died, across the
ULAN and TGN vocabularies, e.g. “Rembrandt” in ULAN was born in “Lei-
den” in TGN, and died in “Amsterdam” in TGN. Relations 10-15 are the general
broader/narrower relations within the AAT, Iconclass and TGN vocabularies.
Although the relations are the same, the types of concepts mapped to the three
vocabularies are different: (i) concepts mapped to AAT are mainly art styles, e.g.
“Rococo revival” has a broader concept “Modern European revival styles”, (ii)
concepts mapped to Iconclass are general subjects, e.g. “Musical” has a narrower
concept “Music instruments” and, (iii) concepts mapped to TGN are geographic
locations, e.g. “Amsterdam” has a broader concept “Noord-Holland”.

Fig. 1. Overview of artwork features and semantic relations based on the metadata
vocabularies

19

4 Experiment

Our goal is (i) to investigate which semantic relations are useful for content-based
recommendations in comparison with standard artwork features, and (ii) to look
at the combined use of semantic relations and artwork features in sequence,
which might derive some navigation patterns from users in order to enhance the
accuracy of recommendations and to be reused for other recommender systems.

4.1 Target System: The Art Recommender

To address these goals, we applied both artwork features and semantic relations
for content-based recommendations of art concepts in the Art Recommender8.
Considering artworks are recommended based on related/recommended art con-
cepts, in order to get a clear insights, we only looked at how semantic rela-
tions and artwork features influence related/recommended art concepts in this
experiment. We leave the exploration of how they affect related artworks for
recommendations as a next step in future work.

Fig. 2. User interface of the Art Recommender in the experiment

The user interface of the Art Recommender (see Fig. 2) was split in two parts:
the upper part is the rating dialog with a slide show of artworks, which allows
the user to browse artworks from the collection and give ratings to them with 1-5
stars (i.e. I hate it, I dislike it, neutral, I like it, and I like it very much). In the
bottom part recommended concepts are shown, based on the ratings given by
users to the artworks in the upper part. Then the user rates (with 1-5 stars) the
recommended concepts shown in the bottom part to express how much she likes
each recommendation. The list of recommended concepts will be dynamically
updated based on the last rating given for an artwork or concept.
8 http://www.chip-project.org/demoUserStudy3/

20

In addition, in the “Why recommended” option (see Fig. 2), an explanation
is provided about which feature or relation was used for each recommendation.
The user is then asked to give 1-5 stars indicating how interesting she finds the
concept recommended via this feature or relation (interestingness). This dimen-
sion of interestingness puts the recommended concept back in context, which
helps user to understand the inference of recommendations by using particular
artwork feature(s) or semantic relation(s).

4.2 Method

At the beginning of each session, participants were asked to fill out a question-
naire about: (i) their age, (ii) whether they are familiar with the Rijksmuseum
collection, (iii) experience with recommender systems in general, (iv) expecta-
tion from art recommendations, and, (v) for what purpose they will use art
recommendations.

After completing the questionnaire, we briefly introduced the Art Recom-
mender and explained the recommendation process. Using the Art Recommender,
users were asked to follow two steps:

Step 1 (Pre-task): to find an artwork that she likes from the artwork slide
show (to start the process the user needs to give a rating of either 4 or 5 stars;
the recommender does not start-up with negative ratings). As a baseline, it will
recommend the first set of related art concepts by applying artwork features
based on the rated artwork.

Step 2 (Main task): to rate the first set of recommended concepts. Based
on the ratings of concepts, the system will produce a second/new set of rec-
ommended concepts by applying semantic relations, which also allows users to
rate. At any point for each recommendation the user can click on “Why rec-
ommended” and give her feedback on whether she finds this recommendation
via the particular artworks feature or semantic relation interesting or not on a
5-degree scale. Step 2 gave us an insight in the performance of the concepts rec-
ommended via semantic relations in comparison with the concepts recommended
directly via artwork features.

Users were asked to repeat this process for at least 5 times in order to rate
enough recommended concepts via either artwork features or semantic relations.
At any point, the user could stop rating recommended concepts and go to select
another artwork from the slide show. Then the same process is repeated for each
rated artwork.

4.3 Dimensions and Metrics

Using artwork features as a baseline, we tested the results of recommended con-
cepts via semantic relations in terms of two dimensions: accuracy and interest-
ingness.

– Accuracy : by directly asking the user whether she likes this recommended
concept, which is shown as “Ratings” in the Art Recommender in Fig. 2.

21

– Interestingness: by giving the explanations of “Why recommended”, it asks
the user whether she finds the concept recommended via the particular art-
work feature or semantic relation interesting.

Precision, Recall and Mean Absolute Error (MAE) are most popular metrics
to evaluate recommender systems [7, 8] and to measure the usefulness of semantic
relations in query expansion for information retrieval systems [9–11]. Precision
represents the probability that a recommended item is relevant, Recall represents
the probability that a relevant item will be recommended, and MAE measures
the average absolute deviation between a predicted rating and the users true
rating [8].

However, in our case, we could only apply precision, but not recall and MAE.
Because it is difficult to determine the total number of relevant items. As Burke
discussed in [7], relevance is subjective from an end user’s standpoint and it often
changes when the user gets explanations for recommendations. As Herlocker
discussed in [8], it is also not appropriate in our case to use MAE, where a list of
recommended concepts is returned but users often only view concepts that she
is interested and cares about errors in concepts that are recommended. Thus in
the experiment we only use precision to measure accuracy and interestingness
for recommended art concepts. To divide the concepts into relevant or irrelevant
concepts, we defined a threshold value on the used 5-star scale, which converts
4 and 5 stars to “relevant” and 1-3 stars to “not relevant”. In terms of accuracy,
relevant concepts refer to the recommended concepts that the user likes with
4 and 5 stars, and in terms of interestingness, relevant concepts refer to the
recommended concepts that the user finds interesting with 4 and 5 stars. Below
we explain how we calculate it:

Precision =
Correct Hits

Total Rec.Rated

Correct Hits is the total number of relevant concepts that are recommended
by the system and have been rated by the user with 4 and 5 stars in terms of
accuracy and interestingness respectively.

Total Rec.Rated is the total number of concepts that are recommended by
the system and have been rated by the user with 1 to 5 stars in terms of accuracy
and interestingness respectively. Total Rec. is the number of all recommended
concepts with or without user ratings. To avoid the data sparsity problem [7]
(i.e. the number of recommended items far exceeds what a user can rate), we
only use the number of “Total Rec.Rated” to compute the precision and we do
not include the number of “Total Rec.”, because we do not have user feedback
on concepts without ratings [8]. However, we will provide the number of “Total
Rec.” (in Table 1) to get an idea of how many concepts could be recommended
via an artwork feature or a semantic relation.

5 Results

In a period of three weeks, in total 48 users participated. The experiment took
about 20-35 minutes per person. Each user gave on average 53 ratings for art-

22

works and concepts. Below we describe the participants characteristics collected
with the questionnaire.

– Age: in the categories of 20-30 years old (65%) and 30-40 years old (21%)
– Familiar with the Rijksmuseum collection: not familar with the collection

(27%) and a bit familiar with the collection (46%)
– Experience with recommender systems in general : every few months using

recommender systems, such as Amazon.com (68%)
– Expectation from art recommendations: want to get accurate art recommen-

dations that match their art preferences (79%) and interests (83%)
– For what purpose will use art recommendations: want to keep up-to-date

with new information about artworks/concepts (93%), to reflect on what
has been seen in the museum (75%), and to understand her art interests
better (79%)

Table 1. Experiment results for artworks features and semantic relations

Nr. Artwork features/ Total Accuracy Interestingness
Semantic relations Rec. Total

Rec.Rated
Correct
Hits

Precision Total
Rec.Rated

Correct
Hits

Precision

Artwork features

1 vra:creator 332 111 74 0.67 97 80 0.82

2 vra:location.creation
Site

182 83 33 0.40 61 34 0.56

3 vra:material 159 92 39 0.43 47 21 0.45

4 vra:subject 3245 1054 528 0.50 768 453 0.59

1-4 all artwork features 3918 1340 674 0.50 973 588 0.60

Semantic relations

5 link:hasStyle 82 38 24 0.63 46 34 0.73

6 ulan:teacherOf 291 135 57 0.43 127 90 0.71

7 ulan:studentOf 92 55 24 0.44 67 46 0.68

8 ulan:birthPlace 184 44 14 0.32 48 21 0.43

9 ulan:deathPlace 130 42 11 0.26 55 14 0.25

10 aat:broader 69 23 12 0.53 19 11 0.60

11 aat:narrower 125 31 17 0.55 26 16 0.62

12 skos:broader 404 224 112 0.50 131 67 0.51

13 skos:narrower 1198 506 263 0.52 425 213 0.50

14 tgn:broader 82 22 5 0.22 15 2 0.15

15 tgn:narrower 1204 35 6 0.16 23 3 0.13

5-15 all semantic relations 3861 1155 524 0.45 1007 533 0.53

Table 1 gives an overview for artwork features and semantic relations. We
calculated: (i) Total number of recommended concepts, (ii) total number of rec-
ommended and rated concepts, (iii) correct Hits (recommended and rated with
4 or 5 stars); and, (iv) precision for accuracy and interestingness respectively.

23

As a baseline, artwork features provide in total 3918 recommended concepts
and reach an average precision of 0.50 for accuracy and 0.60 for interestingness.
In comparison, semantic relations bring 3861 new recommended concepts and
reach an average precision of 0.46 for accuracy and 0.53 for interestingness, which
are only slightly lower than artwork features. For the individual artwork features
and semantic relations, we found that:

(i) Artwork feature vra:creator and semantic relations link:hasStyle and
aat:broader/narrower produce the most accurate recommendations and they are
also the most interesting relations from the users’ point of view. This could be
explained by observing that artist and art style (concepts in ULAN and AAT)
are intrinsically related to the artworks and an important reason why people
might like an artwork or related artworks.

(ii) Semantic relations ulan:birth/deathPlace and tgn: broader/narrower that
recommend geographic locations perform very badly. In particular, the tgn:broader/
narrower relations have the least values for accuracy and interestingness. To
understand why tgn:broader/narrower and ulan:birth/deathPlace relations per-
form “so badly”, we looked at the experiment data in detail. For example, many
users like the artist “Rembrandt”, however, in most cases they found his birth
place “Leiden” and his death place “Amsterdam” not relevant. In comparison,
users like recommended concepts such as his art styles, his teacher(s) and stu-
dents(s). Another example, “Utrecht” is also a popular concept often rated with
high scores, but its narrower location “Vianen” is always rated as a not-relevant
concept, since it is unfamiliar to most users. This suggests that, for art recom-
mendations, semantic relations tng:broader/narrower and ulan:birth/deathPlace
might not be useful or interesting for users because they are not intrinsically
related to artworks but only to locations or artists. This might also explain why
users rarely rated locations recommended via these relations (with a low number
of Total Rec.Rated). In comparison, artwork feature vra:creationSite gives much
better results, probably it is more related to artworks.

(iii) Artwork feature vra:subject and semantic relations about subjects
skos:broader/narrower produce the largest number of recommended concepts
and correspondingly resulted in most user ratings. With respect to accuracy and
interestingness, they score on the average.

To explore potential correlations between accuracy and interestingness, in
Fig. 3, we plotted these two dimensions for artworks features and semantic rela-
tions. Interestingly, there is a strong positive correlation between accuracy and
interestingness (Peason’s R=0.89, p value<0.01). This means that for an artwork
feature or semantic relation, the more accurate recommendations it produces,
the more interesting users find the recommendations, and vice-versa. An excep-
tion here is the semantic relation ulan:teacher/studentOf. As shown in Table
1, although the accuracy precisions for these two relations are slightly lower
(0.43, 0.44) and the interesting precisions for them are very high (0.71, 0.68).
This explains why semantic relations could partially solve the over-specialization
problem (see Section 2) by recommending surprising or interesting items, even
though the recommendations are not always quite accurate.

24

Fig. 3. Correlation between accuracy and interestingness

The setup of the experiment gives us an opportunity to look at the com-
bined use of artwork features and semantic relations in sequence. As explained
in Section 5, every positively rated artwork/concept resulted in a new set of
recommended concepts that the user could rate. In theory this process can go
on until no new recommendations are found, but in practice most users stopped
after three or four steps [9]. These sequences of ratings allow us to examine
the quality of recommendations based on sequences of semantic relations and
artwork features.

We first removed all sequences for which we have less than 10 user ratings.
From our previous user studies [12], 10 ratings seems to be a minimum to get a
reliable estimate of the quality of recommendations. We then calculated the mean
of accuracy precision and interestingness precision (Pmean) for the remaining
features and relations. Fig. 4 shows the sequences of recommended concepts that
received more than 10 ratings, and their Pmean values at each step. From Table
1, we can calculate that the Pmean is 0.55 for all artwork features and 0.49 for all
semantic relations. Using these two values as references, in Fig. 4 we highlighted
artwork features (used in Step 2) that have a Pmean greater than 0.55 in black
and semantic relations (used in Step 3 and 4) that have a Pmean greater than
0.49 in grey. Interestingly, we found three potentially useful navigation patterns
of combined artwork feature and semantic relations:

– artwork -> creator -> style -> broader/narrower styles
– artwork -> creator -> teacher/student -> styles
– artwork -> subject -> broader/narrower subjects

We observe that all three patterns show a decrease of Pmean in each step,
which might be due to the fact that the concepts are gradually more remote
from the artwork. The only exception is Step 4 in Pattern 2 (from teachers and

25

Fig. 4. Combining artwork features and semantic relations in sequence

students to art styles). Still, at each step in the patterns, the Pmean value re-
mains relatively high above the average. The three patterns could potentially
be used to recommend remotely linked concepts without asking users’ explicit
feedback/ratings on each step. For example, if a user likes the artwork “Night
watch”, following the second pattern, it could recommend concepts “Rembrandt”
(creator), “Pieter Lastman” (teacher), “Renaissance” (the teacher’s art style),
“Gerrit Dou” (student), and “Baroque” (the student’s art style), without explic-
itly asking the user to rate “Rembrandt”, “Pieter Lastman” and “Gerrit Dou”.

6 Discussion and Future Work

Metadata vocabularies provide rich semantic relations that can be used for rec-
ommendation purposes. We examined the performance of both semantic rela-
tions and artwork features with the content-based CHIP Art Recommender in
terms of accuracy and interestingness. Our results demonstrated that artwork
features (vra:creator) and semantic relations (ulan:teacher/studentOf, link:hasStyle)
that recommend concepts in the ULAN and AAT vocabularies produce the most
accurate recommendations and also give the most interesting recommendations
from the users’ point of view. This might be due to the fact that these artwork
features and semantic relations which recommend concepts in domain-specific
vocabularies are closely related to the domain of art. In comparison, semantic
relations considering geographic locations in TGN (e.g. tgn:broader/narrower,
ulan:birth/ deathPlace) score very low on both accuracy and interestingness. A
similar observation applies to the TGN vocabulary, which is a relatively much
more general vocabulary and not related to the art domain in comparison with
the ULAN and AAT vocabularies.

Based on the performance of individual semantic relations and artwork fea-
tures, we derived optimal navigation patterns of combined features and relations

26

with multiple intermediate concepts. These patterns can potentially be used to
effectively recommend indirectly linked concepts without asking the user’s ex-
plicit feedback for the intermediate concepts.

Generalizing, we found that vocabularies which are relatively close to the
domain are usually more useful for content-based recommendations than vo-
cabularies, which are more general. In particular, for recommender systems in
the domain of art, ULAN and AAT vocabularies which contain concepts about
artists and art styles proved to be more useful for art recommendations than
the TGN vocabulary which contains concepts about geographic locations. In
summary, we may conclude that the use of specific semantic relations can en-
hance content-based recommendations by (i) retrieving more related concepts,
which partially solves the cold-start problem; (ii) providing more interesting or
surprising recommended concepts by using combinations of artwork feature and
semantic relations, which partially solves the over-specialization problem.

As the preliminary results, the three navigation patterns we derived from the
experiment might be very interesting for both users and recommender systems in
similar domain of art. For future work, we are primarily interested in association
rule mining and decision trees that may produce optimized results. For example,
some internal nodes of the presented patterns may be pruned.

In addition, we plan to investigate the weights for different semantic relations
based on the user ratings collected from the experiment. These weights can be
used in computing predicted values for recommended concepts. For example, if
a user likes “Rembrandt”, recommendations of his student “Gerrit Dou”, his
art style “Baroque” or his death place “Amsterdam” would receive different
predicted values based on the different weights of the semantic relations. The
predicted values of recommended concepts can then be used to determine the
predicted values for recommended artworks. In this way, we will gain insights
about how the various semantic relations influence both recommended concepts
and artworks. Inspired by the work from Mobasher [13], Ruotsalo and Hyvönen
[4], the weight for each relation should not be a fixed value but a dynamic value
which is calculated according to several factors, e.g. the relevance of a concept
with respect to an artwork TD-IDF [14], the times of user ratings of a particular
artwork or concept, the semantic distance or similarity between two concepts by
using latent semantic index (LSI) [15], etc.

Our findings about which semantic relations are most beneficial to recom-
mendations and our future work about applying weights for various relations
could also be used for collaborative filtering recommender systems. For exam-
ple, Mobasher’s work [13] shows that well-selected semantic relations can be used
to populate related items in order to compute the similarity between users for
collaborative filtering recommender systems. This might be helpful to partially
solve the cold-start and sparsity problems for recommender systems in general.
Following this direction, we could apply the method of calculating the weights for
various semantic relations in the recommender system and try different recom-
mendation strategies (e.g. content-based, collaborative filtering and the hybrid

27

approach) in order to compare the quality of recommendations in a large scale
quantitative experiment.

7 Acknowledgments

The CHIP project is funded by the Dutch Science Foundation funded program
CATCH9 (Continuous Access to Cultural Heritage). We would further like to
thank all the participants in the experiment.

References

1. Wang, Y., Stash, N., Aroyo, L., Gorgels, P., Rutledge, L., Schreiber, G.: Recom-
mendations based on semantically-enriched museum collections. Journal of Web
Semantics (2008)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. (2001)
3. Peis, E., del Castillo, J.M.M., Delgado-Lopez, J.A.: Semantic recommender sys-

tems. analysis of the state of the topic. In: Proc. of Hipertext. (2008)
4. Ruotsalo, T., Hyvönen, E.: A method for determining ontology-based semantic

relevance. In: DEXA. (2007)
5. Adrian, B., Sauermann, L., Roth-Berghofer, T.: Contag: A semantic tag recom-

mendation system. In: Proc. of the New Media Technology and Semantic Systems.
(2007)

6. Blanco-Fernández, Y., Arias, J.J.P., et al.: Semantic reasoning: A path to new
possibilities of personalization. In: Proc. of ESWC. (2008) 720–735

7. Burke, R.: Hybrid recommender systems: Survey and experiments. Journal of User
Model. User-Adapt. Interact. 12(4) (2002) 331–370

8. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: Evaluating collaborative filter-
ing recommender systems. Journal of ACM Transactions on Information Systems
(2004)

9. Hollink, L., Schreiber, G., Wielinga, B.J.: Patterns of semantic relations to improve
image content search. Journal of Web Semantics 5(3) (2007) 195–203

10. Navigli, R., Velardi, P.: An analysis of ontology-based query expansion strategies.
In: Proc. of Machine Learning Conference. (2003)

11. Tudhope, D., Binding, C., Blocks, D., Cunliffe, D.: Query expansion via conceptual
distance in thesaurus indexed collections. Journal of Documentation (2006)

12. Wang, Y., Aroyo, L., Stash, N., Rutledge, L.: Interactive user modeling for per-
sonalized access to museum collections: The rijksmuseum case study. In: Proc. of
User Modeling Conference. (2007)

13. Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on
the web. Journal of Web Mining: From Web to Semantic Web (2004)

14. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
ACM Press (1999)

15. M.W. Berry, S.D., Brien, G.O.: Using linear algebra for intelligent information
retrieval. Journal of SIAM Review (1995)

9 http://www.nwo.nl/catch

28

Refining Ontologies by Pattern-Based Completion

Nadejda Nikitina and Sebastian Rudolph and Sebastian Blohm

Institute AIFB, University of Karlsruhe
D-76128 Karlsruhe, Germany

{nikitina, rudolph, blohm}@aifb.uni-karlsruhe.de

Abstract. Constructing richly axiomatized ontologies for real-world
knowledge-intensive applications is a time-consuming and difficult task. For
this reason, the future relevance of ontologies in practice depends on the
availability of advanced semi-automatic methods for ontology learning and
refinement. In this paper we propose a method to enrich ontologies with
complex axiomatic information by completing partial instantiations of ontology
design patterns.

Keywords: Ontology design patterns, ontology refinement.

1 Introduction

Richly axiomatized ontologies are essential for powerful, knowledge-intensive
applications, since they allow the application of advanced reasoning. However,
ontology modeling and construction is a difficult and time-consuming task.
Considering the fact that real world applications require large-scale knowledge bases,
there is a need for automatic methods to support ontology construction.
Unfortunately, automatically constructed ontologies tend to lack expressivity, e.g.,
axiomatic information about transitivity or symmetry of relations.1 For example, the
relations “before” and “after” found in DBPedia2 are not specified to be transitive
while transitivity would clearly be an expected characteristic of these relations. This
kind of information is difficult to acquire from unstructured resources, since it often
does not explicitly occur in text, but can only be deduced using external information
sources. However, we think that exploiting additional information sources can help to
bring forward the ontology enrichment.

As pointed out in [1], typical conceptual patterns arise during the design of
ontologies for different domains and different tasks. Ontology design patterns [2] –
modeling solutions to solve a recurrent ontology design problem – were introduced to
support the reuse of formalized knowledge. We consider the ontology design patterns
as a potential source to be exploited for ontology refinement.

The usefulness of ontology design patterns in semi-automatic ontology
construction has already been demonstrated in [3], where they have been used to put
automatically constructed ontology elements in context by extending the ontology

1 Relations are also referred to as properties in related literature
2 http://dbpedia.org/page/Angela_Merkel

29

with abstract concepts and relations. In this paper, we aim at the refinement of
ontology’s axiomatization using highly axiomatized knowledge contained in ontology
design patterns. The key idea of the proposed approach is to search for components
within an ontology which partially instantiate a given ontology design pattern. In this
way, potential missing ontology elements can be identified.

If we consider the previously mentioned relations “before” and “after” contained in
DBPedia as well as the ontology design pattern “precedence” introduced in [4] and if
we assume the ontology part including these two relations to be a partial instantiation
of the given ontology design pattern, we see that there are three axioms missing in
DBPedia – the axioms expressing the inverseness of the relations “before” and “after”
and their transitivity.

The ability to automatically recognize partial instantiations of an ontology design
pattern would therefore allow for checking an ontology for potential missing elements
and based on the outcome to automatically generate a list of suggestions for a
refinement. In this way, using frequently occurring and richly axiomatized ontology
design patterns as input could help to add a considerable amount of axioms to a
sparsely axiomatized ontology.

In order to automatically recognize an ontology design pattern by the means of an
algorithm, a set of indicative features of this pattern is required. We identify the
instantiations of ontology design patterns by their structure and the meaning of their
elements expressed by axioms and lexical characteristics of each element. Our
matching algorithm is based on these types of features. In this paper, we presume an
extended kind of ontology design patterns which contain additional lexical
information. In the following, we are going to use the expression ontology pattern or
pattern instead of ontology design pattern.

Our method is mainly independent from the employed concrete ontology
representation language. However, we presume that the underlying ontology
representation language of concerned ontologies supports complex axiomatizations.

The remainder of this paper is organized as follows: The next Section describes
research work related to this paper. Our algorithm is introduced in Section 3. Section
4 summarizes and gives an outlook to further research.

2 Related Work

Semi-automatic ontology construction and refinement has been addressed by
several approaches relying on different types of data sources. However, only few of
them aim at the acquisition of complex axioms going beyond the modeling
capabilities of RDFS.

There is a range of methods exploiting the information contained within natural
language texts in order to acquire additional axioms (for an overview see [5]). [6]
proposes a method for an axiomatization of glossaries such as WordNet based on
parsing and converting of natural language descriptions into formal definitions. [7]
also aims at the acquisition of complex axioms by the means of deep syntactic
analysis of natural language definitions.

30

There is a range of approaches relying on multiple data sources such as [8] which
aims at the acquisition of a particular type of axioms, namely disjointness axioms, by
gathering syntactic and semantic evidence from different data sources. RELExO [9]
combines learning complex class descriptions from textual definitions with the FCA-
based technique of relational exploration in order to clarify the subclass relationship
of concepts of an ontology. It generates hypotheses about class extension
relationships which cannot be deduced or denied using the axioms already contained
in the ontology. Then, it looks for counterexamples in the set of instances contained in
the ontology and, if none could be found, it asks the expert to provide a
counterexample or to approve the suggested hypothesis. RoLExO [10] relies on the
same type of user interaction and hypothesis verification, but generates hypotheses
about complex domain-range restrictions. A method proposed in [11] is another
example of extracting hypothetical domain axioms based on a given set of entities.
These approaches are complementary to ours, since they rely on other sources of
information to acquire complex axioms.

Blomqvist [3] proposes a framework for pattern-based semi-automatic ontology
construction and refinement. This work focuses on the refinement of ’lightweight’
ontologies concerning the logical complexity and expressiveness, which are not
intended to obtain a rich axiomatization. For this reason, ontology patterns are not
used to enrich the ontology with complex axioms, but to put the automatically learnt
ontology elements into context by connecting them with the more general concepts
and relations of the pattern.

To the best of our knowledge we are the first to address the general use of ontology
design patterns for semi-automatic enrichment of ontologies with complex axioms.

3 Matching Ontologies and Ontology Patterns

The proposed method is based on ontology matching. Matching of ontologies has
been widely covered in literature. An overview of the existing approaches can be
found in [12]. We use a modified ontology matching technique due to the specific
requirements for matching ontology patterns with ontologies. The main particularity
of pattern matching is the high average level of abstractness characteristical for the
concepts of a pattern. The concepts contained in a pattern are usually abstract enough
to match many different concepts in an ontology. Therefore, relations are often the
major indicators for a pattern instantiation. Especially lexical information about
relations is essential for a better performance of the matching algorithm. Thus, we
consider it useful to invest additional effort to a-priori enrich patterns with lexical
information. Our algorithm is designed to exploit provided additional lexical
information.

Before presenting the algorithm, we state the underlying criteria for a high
likelihood of pattern realization by an ontology part. Thereby, we reduce the problem
of identifying partial instantiations of a pattern to the problem of identifying complete
pattern instantiations. We rely on the following set of criteria:

31

A part O of an onto
ontology pattern P, if
in a way that

1. Each concept C
O, which is equ

2. Each relation R
O, so that do
(according to 1

3. Each axiom AP
relations are re

Fig. 1. Matching of an on

Figure 1 shows how
part of an example ont
a specific “Object”, t
correspond as required
as well as “participate
and their domain and r
reason they imply each
If the pattern also co
relation of “hasPartici
deduce it from the set
to be inverse to “hasAt

The criteria stated
lexical properties of re
correspond to each o
matching of ontology e
before discussing the a

3 Equivalence, subconcep

ontology matching met

ology ONTOLOGY is a potential instantiation of the c
its structure can be matched completely with the stru

CP contained in P has exactly one corresponding conc
uivalent to CP or a subconcept of it;3

RP contained in P has exactly one corresponding rela
omain and range concepts of RO are the corre
) of the domain and range concepts of RP and RO impl

P of P can be deduced from ONTOLOGY when its con
eplaced by their correspondents according to 1 and 2.

ntology part and a pattern

w the content ontology pattern “Participation” is match
tology according to the stated criteria. The concept “S
the concept “Lecture” is a specific “Event”, and
d by condition 1. Relations “hasParticipant” and “hasA
esIn” and “attends” are expressed by synonymous ex
range concepts correspond to each other (condition 1
h other and correspond to each other as required by co
ontains an axiom declaring “participatesIn” to be th
ipant”, then according to condition 3 it must be p
of ontology axioms. In this case, an axiom declaring

ttendee” would suffice.
above provide the basis for our matching algorithm

elations and concepts to verify whether concepts and
other as required in 1 and 2. We will briefly des
elements based on lexical properties in the following s
algorithm in more detail.

pt and implication relationships are correspondences establis
thod introduced later on.

considered
cture of P

cept CO in

ation RO in
espondents
lies RP;
ncepts and

hed with a
Student” is

thus they
Attendee”
xpressions
). For this

ondition 2.
he inverse
ossible to
 “attends”

m. It uses
d relations
scribe the
subsection

shed by the

32

3.1 Matching Lexical Properties

The goal of the lexical matching is to determine whether a concept is equivalent to
or a subconcept of a particular concept and a relation is implied by a particular
relation. For this purpose, we use the lexical information contained in ontologies and
rely on the availability of particular lexical information in patterns. In the following,
we describe these kinds of information.

Lexical information contained in ontologies differs in its detailedness and purpose.
We distinguish between a label and a linguistic pattern (LP). A label of an element is
a string used as a name for a concept or a relation whereas a LP is used to recognize
the instances of a concept or a relation in text. LPs can range from simple regular
expressions to more complex structures enriched with different kinds of linguistic
information such as concept’s part-of-speech type. Even though LPs would be very
useful for matching due to their potential richness, the representation of LPs is not
standardized in widely used ontology representation languages such as OWL.
Therefore, we do not consider LPs in our approach and use only the labels of
elements.

For the verification of conditions 1 and 2 using labels, we rely on a list of
synonyms and hyponyms for each pattern concept and a list of synonyms and
troponyms4 for each pattern relation. We match each synonym and hyponym or
troponym with each label of the potentially corresponding pattern element in the
ontology based on string-similarity.

3.2 Matching Algorithm

The matching algorithm in its simplified form can be stated as shown in Fig. 2 and
Fig. 3. The algorithm receives an ontology and an ontology pattern as input and
generates a list of pattern instantiations as output. It first identifies pairs of lexically
matching ontology and pattern elements. Then, to avoid unnecessary computations, it
selects the pattern element, which has the fewest lexical matches in the ontology.
Since the pattern can only be matched as long as all of its elements have a
corresponding element in the ontology, considering only the occurrences of the
pattern element with the fewest number of correspondents assures that the least
number of ontology parts is analyzed. Each occurrence of the selected element is then
analyzed using the recursive procedure growAlignments starting with the given pair
of matched elements.

Due to possible hyponymy or troponymy between the elements of the pattern and
the ontology, several valid alignments are possible. For a particular initial partial
alignment the outcome can differ depending on the order in which elements are
matched. For this reason, the algorithm tries all possible ways to construct an
alignment and gathers all valid alignments.

4 Troponyms are expressions for more restrictive relations

33

Fig. 2. Alignment algorithm

Fig. 3. Recursive procedure growAlignments

It marks the already matched pattern and ontology elements green and the
remaining elements red. For each green pattern element A it calculates the remaining
red neighbors and matches each of them with the remaining red neighbors of the
ontology element corresponding to A. If the lexical matching was successful for a pair

34

of elements, they are included into the current alignment which forms the input for
another run of the described procedure. The resulting alignments are gathered in a set.

After collecting all valid alignments for the currently analyzed pattern occurrence,
axiomatic matching is applied to each alignment to verify that axioms of the ontology
pattern can be deduced from the axioms of the ontology, if concepts and relations in
the pattern axioms are replaced by the concepts and relations of the ontology. For this
task, a state-of-the-art reasoner such as Pellet5 or HermiT6 can be used.

4 Ontology Refinement Based on Partial Pattern Instantiations

The algorithm presented above can be used to find partial pattern instantiations by
separating pattern elements into obligatory and optional elements and applying the
algorithm to the set of obligatory pattern elements. Assuming the availability of a set
of richly axiomatized patterns containing additional sets of synonyms and hyponyms
for each concept and relation, the ontology engineer can compose a list of patterns for
the ontology refinement by choosing the whole set at once or selecting some patterns
manually if he or she only needs a particular type of patterns.

For each pattern in this list, the ontology engineer can select the obligatory
elements and the level of accuracy, which is the acceptable extent of pattern
incompleteness, expressed as the number of pattern elements relative to the total
number of pattern elements. The level of accuracy can be set for each pattern or for
the whole refinement process. It allows to limit the required user interaction and at the
same time to influence the matching performance towards a higher recall or a higher
precision. The ontology engineer can also use the default settings. Per default, the
level of accuracy is greater zero, which allows considering potential pattern matches
containing at least one pattern element. The default obligatory elements are the
concepts and relations of each pattern. Axioms are however optional.

After the setup, the algorithm is run for each of the selected patterns. Found
alignments are checked for axiomatic incompatibility with the optional pattern
elements in order to avoid refinement suggestions which result in an inconsistent
ontology. Finally, for each pattern, a list of refinement suggestions is generated and
presented to the ontology engineer, who can select some suggestions for the
integration into the ontology and start the automatic integration process.

During the integration, partial alignments are used to integrate the unmatched
pattern elements into the ontology. Thereby, matched elements themselves are not
integrated, but are replaced in axioms by their correspondents before integrating the
axioms and unmatched pattern elements into the ontology (Table 1). Concepts and
relations missing in the ontology can be optionally renamed by an expert in order to
obtain less general names and in this way to better suit the level of abstraction present
in the ontology.

5 http://clarkparsia.com/pellet/
6 www.hermit-reasoner.com/

35

Table 1. Integration of pattern elements into an ontology.

Type of unmatched
pattern element

Action before inserting the element into the ontology

Concept Optional renaming by an expert
Relation Replacement of all matched pattern concepts contained in domain

and range axioms by their correspondents, optional renaming by
an expert

Axiom Replacement of all matched concepts and relations by their
correspondents

5 Feasibility Study

We conducted an experiment on the ontologies contained in the Watson Ontology
repository7 in order to assess the potential of the proposed method. In the experiment,
we used the previously described example consisting of the transitive relations
“before” and “after” to examine how well the proposed method can perform for
axioms involving transitivity and inverseness of relations.

In the experiment, we used only the relation label itself for the lexical matching.
The relations were considered as obligatory pattern elements whereas the axioms
about their transitivity and inverseness were considered to be optional.

We used the Watson Search Engine [13] to identify the ontologies containing an
ObjectProperty definition for at least one of the relations. Thereby, 14 documents
were identified and matched against the pattern with results as displayed in Table 2.

Table 2. Experiment results: matching of the after-before-pattern with ontologies indexed by
the Watson Ontology Search Engine.

Ontology URL Result
morpheus.cs.umbc.edu/aks1/ontosem.owl Inverse only
lists.w3.org/Archives/Public/www-rdf-logic/2003Apr/att-
0009/SUMO.daml

“After” is missing

secse.atosorigin.es:10000/ontologies/SUMO.owl “After” is missing
daml.umbc.edu/ontologies/cobra/0.3/daml-time Inverse only
ai.sri.com/daml/ontologies/time/Time.daml
cs.umd.edu/~golbeck/daml/slaveOnt.daml

cs.vu.nl/~pmika/owl-s/time-entry-fixed.owl
isi.edu/~pan/damltime/time-entry.owl
pervasive.semanticweb.org/ont/2004/06/time
pervasive.semanticweb.org/ont/dev/time
isi.edu/~pan/damltime/time.owl
mogatu.umbc.edu/ont/2004/01/Time.owl
sweet.jpl.nasa.gov/sweet/time.owl
daml.umbc.edu/ontologies/cobra/0.4/time-basic

Inverse only
No transitivity and
no inverseness
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete

7 http://watson.kmi.open.ac.uk/WatsonWUI/

36

Eight of 14 documents resulted in a complete match of the pattern including all
axioms. Three of the ontologies did not include the inverseness axiom, but the
transitivity axioms. Two documents did not contain a definition for the relation
“after”, but a definition for the relation “before” which was defined as transitive. One
document did not contain any of the mentioned axioms. We manually examined the
refined ontologies and found that the performed completions were semantically
justified.

6 Summary and Outlook

In this paper, we presented an algorithm for the identification of ontology pattern
instantiations in ontologies along with a method to transfer complex axioms contained
in ontology design patterns into a target ontology. The results of our experiment
demonstrate the potential of the reuse of formalized knowledge. However, in order to
assess the impact of the method more precisely, we plan a large-scale evaluation
involving a large set of pattern with different characteristics.

The availability of appropriate and complete ontology patterns is essential for the
effectiveness of our approach. Hence, we are currently working on semi-automatic
methods to acquire useful patterns as well as the necessary lexical information for
each pattern. For the former, we are planning to exploit existing ontologies to identify
frequently co-occurring characteristics of ontology elements and in this way to
identify particularly useful ontology patterns for ontology refinement. For the latter,
we expect existing broad-coverage data sets such as WordNet, BillionTriple-
Challenge8 and DBPedia to be valuable resources. We also intend address the
acquisition of composed relation labels such as followed_by or authorOf, since they
are typical in the existing ontologies and difficult to obtain from the usual grossaries.
For this purpose, we intend to use the existing methods for the extraction of synonyms
and hyponyms based on Harris’ Distributional Hypothesis [14] such as [15].

Since the effectiveness of our approach is highly dependent on the quality of the
lexical matching, we are currently working on the incorporation of disambiguation
techniques as well as matching techniques based on LPs in our lexical matching
approach.

Acknowledgments. This work is supported by the EU FP6 NeOn project
http://www.neon-project.org.

References

1. Gangemi, A.: Ontology design patterns for semantic web content. In: International Semantic
Web Conference, 262–276 (2005)

8 http://vmlion25.deri.ie/

37

2. Presutti, V., Gangemi, A.: Content Ontology Design Patterns as Practical Building Blocks
for Web Ontologies, In: Proc. of the 27th Int. Conf. on Conceptual Modeling, (2008)

3. Blomqvist. Blomqvist, E.: Semi-automatic Ontology Construction based on Patterns. PhD-
Thesis. Linköping University, Department of Computer and Information Science (2009)

4. Presutti, et al.: A Library of Ontology Design Patterns: Reusable Solutions for Collaborative
Design of Networked Ontologies. NeOn D2.5.1 (2008)

5. Buitelaar, P., Cimiano, P.: Ontology Learning and Population: Bridging the Gap between
Text and Knowledge, volume 167 of Frontiers in Artificial Intelligence and Applications.
IOS Press (2008)

6. R. Navigli and P. Velardi.: Ontology enrichment through automatic semantic annotation of
on-line glossaries. In Proc. of the 15th Int. Conf. on Knowledge Engineering and
Knowledge Management (EKAW), LNCS, vol. 4248, pp. 126–140. Springer, Heidelberg
(2006)

7. Völker, J., Hitzler, P., Cimiano, P.: Acquisition of OWL DL axioms from lexical resources.
In: Proc. of the 4th European Semantic Web Conference (ESWC’07) (2007)

8. Haase, P., Völker, J.: Ontology learning and reasoning - dealing with uncertainty and
inconsistency. In da Costa, P.C.G., Laskey, K.B., Laskey, K.J., Pool, M., eds.: Proc. of the
Workshop on Uncertainty Reasoning for the Semantic Web (URSW). 45–55 (2005)

9. Völker, J., Rudolph, S.: Lexico-logical acquisition of OWL DL axioms – An integrated
approach to ontology refinement. In: Proc. of the 6th Int. Conf. on Formal Concept Analysis
(ICFCA'08) (2008)

10.Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic owl ontology
refinement. In Proceedings of the 7th International Conference on Web Intelligence (WI)
(2008)

11.Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge
bases using formal concept analysis. In Veloso, M.M., ed.: IJCAI. 230–235 (2007)

12. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data
Semantics, IV. 146–171 (2005)

13.d’Aquin, M., Baldassarre, C., Gridinoc, L., Sabou, M., Angeletou, S., Motta., E.: Watson:
Supporting next generation semantic web applications. In Proc. of the WWW/Internet
conference (2007)

14.Harris, Z.S.: Word. Distributional Structure 10. 146–162 (1954)
15.Suchanek, F. M., Sozio, M., Weikum, G.: SOFIE: a self-organizing framework for

information extraction. In Proc. of the 18th Int. Conf. on World Wide Web (WWW '09)
(2009)

38

Using Lexico-Syntactic Ontology Design
Patterns for ontology creation and population

Diana Maynard and Adam Funk and Wim Peters

Department of Computer Science
University of Sheffield

Regent Court, 211 Portobello
S1 4DP, Sheffield, UK

Abstract. In this paper we discuss the use of information extraction
techniques involving lexico-syntactic patterns to generate ontological in-
formation from unstructured text and either create a new ontology from
scratch or augment an existing ontology with new entities. We refine
the patterns using a term extraction tool and some semantic restrictions
derived from WordNet and VerbNet, in order to prevent the overgener-
ation that occurs with the use of the Ontology Design Patterns for this
purpose. We present two applications developed in GATE and available
as plugins for the NeOn Toolkit: one for general use on all kinds of text,
and one for specific use in the fisheries domain.

Key words: natural language processing, relation extraction, ontology
generation, information extraction, Ontology Design Patterns

1 Introduction

Ontology population is a crucial part of knowledge base construction and main-
tenance that enables us to relate text to ontologies, providing on the one hand
a customised ontology related to the data and domain with which we are con-
cerned, and on the other hand a richer ontology which can be used for a variety
of semantic web-related tasks such as knowledge management, information re-
trieval, question answering, semantic desktop applications, and so on.

Automatic ontology population is generally performed by means of some kind
of ontology-based information extraction (OBIE) [1, 2]. This consists of identi-
fying the key terms in the text (such as named entities and technical terms) and
then relating them to concepts in the ontology. Typically, the core information
extraction is carried out by linguistic pre-processing (tokenisation, POS tagging,
etc.), followed by a named entity recognition component, such as a gazetteer and
rule-based grammar or machine learning techniques.

In this paper we discuss the use of information extraction techniques involving
lexico-syntactic patterns to generate ontological information from unstructured
text and either create a new ontology from scratch or augment an existing on-
tology with new entities. This application represents a typical situation where
NLP (natural language processing) techniques can assist in the development of

39

2 Diana Maynard and Adam Funk and Wim Peters

Semantic Web technology. While the use of such patterns is not new in itself (for
example the Hearst patterns [3]), most previous work in this area has focused
on using and extending or refining the set of Hearst patterns with additional
information, or has focused on patterns within a very specific domain. In this
work, we investigate the addition of lexico-syntactic patterns corresponding to
ontology design patterns (ODPs) [4]which, in contrast to the Hearst patterns,
are very general and thus cover a wide range of sentences but are also very
ambiguous. While Hearst patterns produce high precision but low recall, the
ontology design patterns produce high recall but low precision. We also include
some additional lexico-syntactic patterns and investigate the addition of seman-
tic restrictions to reduce the overgeneration problem. A detailed description of
all the patterns and of the semantic restrictions is given in Section 2.

The system is implemented in GATE, an architecture for natural language
processing which contains a number of pre-existing language processing compo-
nents and applications, and enables the user to develop their own applications
and integrate new plugins [5]. Two applications are available as plugins for the
NeOn toolkit1: one for general use on all kinds of text, and one for specific use
in the fisheries domain. These are described in more detail in Section 3.

2 Lexico-syntactic patterns

Traditional rule-based NE recognition applications usually rely on a fairly small
set of patterns which aim to identify the relevant entities in text. These make
extensive use of gazetteer lists which provide all or part of the entity in question,
in combination with linguistic patterns (see for example [6] for a discussion of
the importance of gazetteers in pattern-based NE recognition). A typical rule to
identify a person’s name consists of matching the first name of the person with
an entry in the gazetteer (e.g. “John” is listed as a possible first name), followed
by an unknown proper noun (e.g. “Smith”, which is recognised as a proper name
by the POS tagger). Most patterns include some combination of proper noun or
word with an initial capital letter (for English) and either some gazetteer entry
or linguistic feature.

However, identifying ontological concepts and/or relations requires a slightly
different strategy. For open relation extraction [7], we have no such lists to use as
a starting point. Even where we do have a seed ontology or known lists of terms
and can make use of this information, it is often still insufficient because the
concept may not be in the ontology yet, may be in the ontology but ambiguous,
or may exist there in a different form (e.g. as a synonym or as a linguistic
variant).

An alternative approach to traditional recognition techniques is to make use
of linguistic patterns and contextual clues. Lexico-syntactic pattern-based on-
tology population has proven to be reasonably successful for a variety of tasks
[8]. The idea of acquiring semantic information from texts dates back to the

1 http://www.neon-toolkit.org/

40

Title Suppressed Due to Excessive Length 3

early 1960s with Harris’ distributional hypothesis [9] and Hirschman and Sager’s
work in the 1970s [10], which focused on determining sets of sublanguage-specific
word classes using syntactic patterns from domain-specific corpora. A detailed
description and comparison of lexical and syntactic pattern matching can be
found in [11], In particular, research in this area has been used in specific do-
mains such as medicine, where a relatively small number of syntactic structures
is often found, for example in patient records. Here the structures are also quite
simple, with short and relatively unambiguous sentences typically found: this
makes syntactic pattern matching much easier.

We have identified three sets of patterns which can help us identify concepts,
instances and properties to extend the ontology: the well-known Hearst patterns
(Section 2.1), the Lexico-Syntactic Patterns developed in NeOn corresponding
to Ontology Design Patterns (Section 2.2), and some new contextual patterns
defined by us which take into account contextual information (Section 2.3). As
a first step, we identified patterns which generated basic ontology elements such
as instances, classes, subclasses and properties.

2.1 Hearst patterns

The Hearst patterns are a set of lexico-syntactic patterns that indicate hy-
ponymic relations [3], and have been widely used by other researchers, e.g. [12].
Typically they achieve a very high level of precision, but quite low recall: in
other words, they are very accurate but only cover a small subset of the possible
patterns for finding hyponyms and hypernyms. The patterns can be described
by the following rules, where NP stands for a Noun Phrase and the regular
expression symbols have their usual meanings2:

– such NP as (NP,)* (or|and) NP
Example: . . . works by such authors as Herrick, Goldsmith, and Shakespeare.

– NP (,NP)* (,)? (or|and) (other|another) NP
Example: Bruises, wounds, or other injuries. . .

– NP (,)? (including|especially) (NP,)* (or|and) NP
Example: All common-law countries, including Canada and England . . .

Hearst actually defined five different patterns, but we have condensed some
of them into a single rule. Also, where Hearst defines the relations as hyponym-
hypernym, we need to be more specific when translating this to an ontology, as
they could represent either instance-class or subclass-superclass relations. To
make this distinction, we tested various methods. In principle, POS-tagging
should be sufficient, since proper nouns generally indicate instances, but our
tagger mistags capitalised common nouns (at the beginning of sentences) as
proper nouns frequently enough that we cannot rely on it for this purpose.
We also looked at the presence or absence of a determiner preceding the noun
(since proper nouns in English rarely have determiners) and whether the noun
is singular or plural, but this still left the problem of the sentence-initial nouns.
2 () for grouping; | for disjunction; *, +, and ? for iteration.

41

4 Diana Maynard and Adam Funk and Wim Peters

Finally, we decided to pre-process the text with the named entity recognition
application ANNIE, and only consider certain types of named entities (Person,
Location, Organization, and potentially some unknown entity types) as candi-
dates for instances; all other NPs are considered to be classes. This gave much
better results, occasionally missing an instance but rarely overgenerating.

2.2 ODP Lexico-Syntactic Patterns

The second type of patterns investigated was the set of Lexico-Syntactic Patterns
(LSPs) corresponding to Ontology Design Patterns. We implemented a number
of these patterns in our application. Some patterns could not be implemented
because the GATE ontology API and the NEBONE plugin (which enables the
ontology editing) do not contain the functionality for all restrictions.

In the following rules, <sub> and <super> are like variable names for the
subclasses and superclasses to be generated; CN means class of, group of, etc.;
CATV is a classification verb3; PUNCT is punctuation; NPlist is a conjoined list
of NPs (“X, Y and Z”).

1. Subclass rules
– NP<sub> be NP<super>
– NPlist<sub> be CN NP<super>
– NPlist<sub> (group (in|into|as) | (fall into) | (belong to))

[CN] NP<super>
– NP<super> CATV CV? CN? PUNCT? NPlist<sub>

Example: Frogs and toads are kinds of amphibian.
Thyroid medicines belong to the general group of hormone medicines.

2. Equivalence rules
– NP<class> be (the same as|equivalent to|equal to|like) NP<class>
– NP<class> (call | denominate | (designate by|as) | name) NP<class>

(where the verb is passive)
Example: Poison dart frogs are also called poison arrow frogs.

3. Properties
– NP<class> have NP<property>
– NP<instance> have NP <property>

Example: Birds have feathers.
Sharks have 32 teeth.

It is important to note that these particular LSPs were designed to be used
as support for ontology modelling, rather than directly for automatic discovery
of ontological relations. The effect of this is that while these patterns are quite
productive (for example X is a Y), most of them are potentially ambiguous
and susceptible to overgeneration when applied to the automatic discovery pro-
cess. In particular, general patterns such as “NP have NP” and “NP be NP”
3 E.g., classify in/into, comprise, contain, compose (of), group in/into, divide in/into,

fall in/into, belong (to).

42

Title Suppressed Due to Excessive Length 5

are very problematic. For example, the former pattern also matches sentences
like “Writers have penguins based at the North Pole” and extracts the relation
“writers have penguins” which is clearly wrong. Similarly, the pattern “NP be
NP” would match sentences like “Sheep are a separate species” and extract the
concept “sheep” as a subclass of “separate species” which makes no sense. There
is also much ambiguity with this pattern: for example, in the sentence “Helicul-
ture is the farming of snails”, “heliculture” should be recognised as a synonym
of “farming of snails” and not as a subclass. Clearly, such patterns are far too
general to be used off the shelf. In Section 2.4 we discuss some restrictions we
have implemented which aim to counteract these and other problems.

2.3 Contextual patterns

We also defined a set of rules designed to make use of contextual information
in the text about known entities already existing in the ontology (unlike the
lexico-syntactic patterns which assume no previous ontological information is
present). These rules are used in conjunction with the OntoRootGazetteer plugin
in GATE, which enables any morphological variant of any class, instance or label
in the ontology to be matched with (any morphological variant of) any word or
words in the text. Which elements from the ontology are to be considered (e.g.,
whether to include properties, and if so which ones) is determined in advance
by the user when setting up the application. Note that because the generation
process is incremental, involving a pipeline of sequential processsing resources,
and because we use NEBOnE which generates the ontology on-the-fly, we do not
necessarily need a seed ontology from which to start, because we can make use
of the ontology entities already generated by the previous two sets of patterns.
More information about the application and about NEBOnE is given in Sections
3 and 3.3 respectively.

Below we describe the contextual patterns we have identified:

1. Add a new subclass: (Adj|N) NP<class> → NP<subclass>.
This matches a class name aready in the ontology preceded by an adjective or
noun, such as adjective preceding a known type of fish, which we assume is a
more specific type. For example, when we encounter the phrase . . . Japanese
flounder. . . in a text and flounder is already in the ontology, we add Japanese
flounder as a subclass of flounder.

2. Add a new class (a more generic version of the Hearst patterns). Here we
postulate that an unknown entity amidst a list of known entities is likely to
be also an entity of the same type. For example, if we have a list of classes
of fish, and there is an unknown noun phrase in amongst the list, we can
presume that this is also a class of fish. To decide where to add this new
class in the ontology, we can look for the Most Specific Common Abstraction
(MSCA) of all the other items in the list (i.e. the lowest common superclass
of all the classes in the list) and add the new entity as a subclass of this
class.
Example: Hornsharks, leopard sharks and catsharks can survive in aquar-
ium conditions for up to a year or more.

43

6 Diana Maynard and Adam Funk and Wim Peters

where hornshark and leopard shark are classes in the ontology and catshark
is unknown, so we can recognise catshark as a subclass with the same parent
as that of hornshark and leopard shark, in this case shark.

3. Add an alternative name as a synonym: a name followed by an alter-
native name in brackets is a very common pattern in some kinds of text.
For example in texts about flora and fauna we often get the common name
followed by the Latin name in brackets, as in the following sentence:
Example: Mummichogs (Fundulus heteroclitus) were the most common sin-
gle prey item.
If we know that one of the two NPs is a class or instance in the ontology, we
can predict fairly accurately that the other NP is a synonym.

2.4 Adding semantic restrictions

Due to the overgeneralisation of some of the patterns described above, in partic-
ular the ODP LSPs, we have incorporated some restrictions on them. First, we
restrict possible subclasses and classes to terms rather than to all NPs. For this,
we use TermRaider, a term selection algorithm (currently unpublished) we have
developed based on linguistic filtering and tf-idf scoring. This increases the preci-
sion dramatically, but lowers the recall a little; however, adjusting TermRaider’s
parameters to be a little more flexible with patterns should improve the recall.

The second restriction we imposed was to include lexical resources containing
semantic classes from WordNet [13] and VerbNet [14], which enable the incor-
poration of deeper semantic information. This allows us (i) to look for verbal
patterns connecting terms in a sentence, using the ANNIC plugin in GATE [15],
and (ii) to restrict the kinds of relation extracted. For example, we can restrict
the kinds of entities that have body parts associated with them to animals and
humans. We aim not only to reduce the number of errors, but also to eliminate
the kind of general relations which while not incorrect, are not very useful. For
example, knowing that a turtle is a local creature is not of much interest unless
more contextual information is provided (i.e. in which region it is local).

Restrictions on Subclass Patterns One example of a restriction we placed
was on the subclass rule (Adj|N) NP<class> → NP<subclass> from the set
of contextual patterns, which we modified so that either the superclass must
already exist in the ontology as a recognised class, or such that certain semantic
restrictions apply. One such restriction states that both the proposed subclass
and superclass must have the semantic category “animal”. For example, this
enables us to recognise “carrot weevil” as a subclass of “weevil”. This rule in
particular has very high accuracy (98%) and only seems to cause errors as a
result of incorrect semantic categories from WordNet.

Restrictions on Properties One of the most error-prone rules was the Prop-
erty rule X has Y from the Lexico-Syntactic Patterns set, which was clearly far
too general. We restricted this to again use semantic categories of WordNet. For

44

Title Suppressed Due to Excessive Length 7

patterns involving animals we can state that X must be an animal and Y must
be a body part. This gave much better results (approximately 75% accuracy, al-
though low recall). Another restriction is the type of thing that can be considered
a property. We experimented with restricting the range of the property to the
following semantic categories from WordNet: plant, shape, food, substance, ob-
ject, body, animal, possession, phenomenon, artifact, and found much improved
results.

3 SPRAT and SARDINE

We have developed two applications in GATE which make use of the lexico-
syntactic pattern matching techniques to create and/or populate ontologies.
Both applications are available as part of the GATE webservices (SAFE) plugin
for the NeOn toolkit.

First, we have developed a generic application, SPRAT (Semantic Pattern
Recognition and Annotation Tool) which can be used on any kind of text. This
recognises new concepts, instances and properties, as described above, and adds
these to a new or existing ontology. We have tested the application on wikipedia
texts about animals (See Section 4) with good results so far, and plan to test on
other domains and text types.

Second, we have developed a specific application, SARDINE (Species An-
notation and Recognition and Indexing of Named Entities) which is aimed at
the fisheries domain. The idea behind SARDINE is to identify mentions of fish
species from text. The main difference between SARDINE and SPRAT is that,
in addition to being developed for a specific domain, SARDINE also relies on a
pre-existing domain-specific ontology which acts as a seed. We use the species
ontology developed by the FAO4 for this purpose. The application recognises:

– existing fish names listed in the seed ontology
– potential new fish names not listed in the seed ontology
– potential relations between fish names

For the new fish, it attempts to classify them in the ontology, based on linguistic
information such as synonyms and hyponyms of existing fish. The application
can either generate the new items directly into the seed ontology, or create a
new ontology in the same way as SPRAT does. The latter is generally preferable
because the original seed ontology is quite large and cumbersome, so it is easier
to create a new smaller ontology which can then be easily verified by a human
expert and then merged with the original seed ontology.

3.1 Processing Resources

Both applications are composed of a number of GATE components: some linguis-
tic pre-processing followed by a set of gazetteer lists and the JAPE grammars
described above. The components are as follows:
4 Food and Agriculture Organization of the United Nations – http://www.fao.org/

45

8 Diana Maynard and Adam Funk and Wim Peters

– Tokeniser: divides the text into tokens
– Sentence Splitter: divides the text into sentences
– POS-Tagger: adds part-of-speech information to tokens
– Morphological Analyser: adds morphological information (root, lemma etc.)

to tokens
– NP chunker: divides the text into noun phrase chunks
– Gazetteers: looks up various items in lists
– OntoRootGazetteer (optional): looks up items from the ontology and

matches them with the text, based on root forms
– JAPE transducers: annotates text and adds new items to the ontology

The application can either create an ontology from scratch, or modify an
existing ontology. SARDINE also requires the presence of a seed ontology, which
could be the ontology to be modified, or a different one. The ontology used is
the same one for the whole corpus: this means that if a number of documents
are to be processed, the same ontology will be modified. If this is not the desired
behaviour, then there are two options:

1. A separate corpus is created for each document or group of documents corre-
sponding to a single output ontology. The application must be run separately
for each corpus.

2. A processing resource can be added to the application that clears the ontol-
ogy before re-running on the next document. This requires that the ontology
is saved at the end of the application, after processing each document.

3.2 Implementation of patterns

The patterns themselves are implemented as JAPE rules [16]. On the left hand
side (LHS) of the rule is the pattern to be annotated. This consists of a number
of pre-existing annotations which have been created as a result of pre-processing
components (such as POS tagging, gazetteer lookup and so on) and (potentially)
earlier JAPE rules. The example below shows a pattern for matching a subclass
relation, such as “Frogs are a kind of amphibian” where “frog” is annotated as
a subclass of “amphibian”.

Rule:Subclass1
(
({NP}):sub
({Lookup.minorType == be}
{Token.category == DT}{Lookup.majorType == kind})
({NP}):super
) --> ...

This pattern matches a noun phrase (identified by our NP Chunker), followed
by some morphological variant of the verb “to be” (identified via the gazetteer
lookup), a determiner (identified via the POS tagger), some word(s) indicating a
“kind of” relation (identified via the gazetteer lookup) followed by another noun

46

Title Suppressed Due to Excessive Length 9

phrase (identified by the NP Chunker). The two noun phrases (corresponding
ultimately to the subclass and superclass) are given labels (“sub” and “super”)
which will used in the second part of the rule.

The right hand side (RHS) of the rule invokes NEBOnE and creates the
new items in the ontology, as well as adding annotations to the document itself.
NEBOnE is responsible also for ensuring that the resulting changes to the ontol-
ogy are wellformed: this is described in more detail in Section 3.3. The RHS of
the rule first gets the relevant information from the annotations (using the labels
assigned on the LHS of the rule), then adds a new class below the root class for
the superconcept (labelled “amphibian” in our example), a new subclass of this
(labelled “frog” in our example), and finally adds annotations to the entities in
the document. Figure 1 shows a screenshot from GATE of an ontology created.

Fig. 1. Generated ontology in GATE

3.3 NEBOnE

Both applications use the specially developed NEBOnE plugin for GATE in order
to generate the changes to the ontology. NEBOnE (Named Entity Based ON-
tology Editing) is an implementation for processing natural language text and

47

10 Diana Maynard and Adam Funk and Wim Peters

manipulating an ontology, and is derived from the CLOnE plugin [17] for GATE.
The major difference between CLONE and NEBOnE is that while CLONE re-
lies on a restricted input text (generated by the user in a controlled language),
NEBOnE can be used with unrestricted free text, so it is a lot more flexible.
When the NEBOnE plugin is installed, actions concerning the ontology are
implemented on the RHS (right-hand side) of JAPE rules, such as adding or
deleting new classes, instances, subclasses, properties and so on.

Once the text has been pre-processed, a JAPE transducer processes each
sentence in the input text and manipulates the ontology appropriately. This
Processing Resource refers to the contents of the ontology in order to analyse
the input sentences and check for errors; some syntactically identical sentences
may have different results if they refer to existing classes, existing instances, or
non-existent names, for example.

4 Evaluation

We evaluated the accuracy of the lexical patterns using a corpus of 25 randomly
selected wikipedia articles about animals, such as the entries for rabbit, sheep
etc. We ran SPRAT and examined the results in some detail5. In total, SPRAT
generated 1058 classes, of which 83.6% were correct; 659 subclasses, of which
76.6% were correct, 23 instances, of which 52.2% were correct, and 55 proper-
ties, of which 74.5% were correct. Note that, unlike in traditional named entity
recognition evaluation, we use a strict method of scoring where a partially cor-
rect response, i.e. one where the span of the extracted entity is too short or
too long, is considered as incorrect. This is because for ontology population,
having an incorrect span is generally a more serious error than in named entity
recognition.

We should point out that in these type of texts (articles about animals)
the number of instances is quite small. The wrongly extracted instances were
largely the result of erroneous named entity recognition. For example, Barbados
Blackbelly was wrongly recognised by the system as a named entity, and was
therefore extracted as an instance rather than as a subclass of Sheep Breed.

While we find the initial results from SPRAT very encouraging, we can see
that the patterns implemented are far from foolproof, since unlike with a con-
trolled language such as CLOnE, we cannot rely on a one-to-one correspondence
between a simple syntactic structure and its semantics. First we have the prob-
lem of overgeneration. Already, we have discarded some potential patterns (such
as some of the ODP LSPs) that we consider to generate too many errors. Fur-
ther refinement is still necessary here, either to remove other patterns or to
reimplement them in a different way.

One of the main causes of overgeneration is caused by the span of the noun
phrase describing the concept to be added to the ontology. We have experimented
with different possibilities. A larger span provides finer distinctions and thus
5 We have not currently evaluated SARDINE formally, but informal tests show similar

results

48

Title Suppressed Due to Excessive Length 11

better classes, but overgenerates considerably, while a smaller span produces
more general classes but better accuracy (does not overgenerate so much). By
restricting the noun phrases to terms recognised by TermRaider, we solve this
problem somewhat, but this means that the results are only as good as the terms
recognised. It is also apparent that sometimes the restriction to terms risks losing
some important information. For example, in the sentence:

Mygalomorph and Mesothelae spiders have two pairs of book lungs filled
with haemolymph

we can correctly recognise the relation “Mesothelae spiders have book lungs”, but
a better relation might be “Mesothelae spiders have two pairs of book lungs”.
We might also want to capture the fact that the book lungs are filled with
haemolymph.

Second, as we discussed earlier, and as mentioned in [4],lexico-syntactic pat-
terns tend to be quite ambiguous as to which relations they indicate. For ex-
ample, NP have NP could indicate an object property or a datatype property
relationship. Also, English word order can lead to inverse relations. For exam-
ple, in the sentence “A traditional Cornish pilchard dish is the stargazy pie”,
stargazy pie is a kind of Cornish pilchard dish, but the sentence can equally be
written “The stargazy pie is a traditional Cornish pilchard dish”. Here, the use of
the definite and indefinite determiner helps to identify the correct relationship,
but this is not always the case. Often, further context is also crucial. For exam-
ple, in the sentence “Both African males and females have external tusks”, it is
not very useful to extract the concept females with the property have external
tusks unless you know that females actually refers to female African elephants.
To extract this information would require also coreference matching, which is
planned for the future.

Finally, complex and negative sentences can cause errors. From the phrase
“DAT is a legitimate therapy”, we could easily deduce that DAT could be clas-
sified as an instance of therapy. However, further inspection of the wider context
reveals that the opposite is true, as the sentence actually reads “...there is no
compelling scientific evidence that DAT is a legitimate therapy.” This is a com-
mon problem with shallow NLP systems.

Integration of a full parser has also been investigated, but discarded on the
grounds of speed (full parsing is extremely computationally expensive in this
situation). In particular, we found that the sentences in Wikipedia articles, which
we have used for training and testing, are quite hard to parse well, because
they frequently exhibit a long and complex sentence structure which is highly
ambiguous to a parser. This causes not only speed but also accuracy problems.

5 Related work

As already mentioned, the use of lexico-syntactic patterns in itself is far from
new and has already proved to be successful for a variety of tasks [8]. Various
attempts have been made to extend the Hearst patterns in a semi-automatic

49

12 Diana Maynard and Adam Funk and Wim Peters

way, for example using the web as evidence [12]. Other methods focus mainly
on a specific kind of pattern, such as part-of relations [18], or use clustering
approaches [19]. The disadvantage of the latter is that they require large corpora
to work well and generally fail to produce good clusters from fewer than 100
million words.

The closest approach to ours is probably Text2Onto [20], which performs
relation extraction on the basis of patterns. It combines machine learning ap-
proaches with basic linguistic processing such as tokenisation, lemmatisation
and shallow parsing. Our approach differs in that it has a greater number of
lexico-syntactic patterns, including the ODP ones, and it currently uses only a
rule-based approach rather than machine learning, with no statistical clustering
or parsing. This leads to much increased precision over Text2Onto, though fewer
relations are produced. It also enables a more flexible approach and fine-tuning
of the system.

We also took inspiration from some currently unpublished research carried
out at DFKI in the Musing project6, which aims to derive T-Box Relations from
unstructured texts in German. In this work, attention is focused primarily on
deriving relations between parts of German compound nouns, but we can make
use of similar restrictions.

Within the range of activities required for ontology learning, our approach
covers a number of intermediate stages in the process of ontology acquisition,
namely term recognition and relation extraction. In the initial acquisition stage,
it will recognise terms from the corpus only if they participate in any of the
patterns. This guarantees termhood only up to a certain extent. For relation
extraction, we do not make use of a parser. There are many applications that
make use of syntactic dependencies, e.g. [21, 22]. Our approach differs from this in
that our patterns are defined at low levels of syntactic constituency, such as noun
phrases, and by means of finite state transducers. Identifying and engineering
on the basis of the linguistic building blocks that are relevant for each ontology
editing task eliminates the need for a parser. This bottom-up approach is much
faster and less error-prone than a parser, and is more in line with the ontology
bootstrapping approach advocated in [23].

6 Conclusions and Further Work

In summary, the idea behind this work is to investigate the extent to which
such patterns can be used either on their own or in conjunction with the user
to generate or populate a more detailed ontology from text. Both SPRAT and
SARDINE applications assist the user in the generation and/or population of
ontologies from text. They are available to download for use as GATE Web-
service plugins for the NeOn toolkit 7. The lexico-syntactic patterns we have
implemented provide a good basis, but there is some work still to go in improv-

6 http://www.musing.eu/
7 http://www.neon-toolkit.org

50

Title Suppressed Due to Excessive Length 13

ing the rules, and we have put forward a number of suggestions for ways in which
this might be done.

One further possibility for improvement is to incorporate combinations of
Hearst patterns and statistically derived collocational information, because its
combination with lexico-syntactic patterns has proven to improve precision and
recall [24]. Integration of a full parser has also been investigated, but discarded
on the grounds of speed (full parsing is extremely computationally expensive in
this situation). In particular, we found that the sentences in Wikipedia articles,
which we have used for training and testing, are quite hard to parse well, because
they frequently exhibit a long and complex sentence structure which is highly
ambiguous to a parser. This causes not only speed but also accuracy problems.

Acknowledgements. This research was partially supported by the EU Sixth
Framework Program project NeOn (IST-2005-027595).

References

1. Maynard, D., Cunningham, H., Kourakis, A., Kokossis, A.: Ontology-Based Infor-
mation Extraction in hTechSight. In: First European Semantic Web Symposium
(ESWS 2004), Heraklion, Crete (2004)

2. Saggion, H., Funk, A., Maynard, D., Bontcheva, K.: Ontology-based information
extraction for business applications. In: Proceedings of the 6th International Se-
mantic Web Conference (ISWC 2007), Busan, Korea (November 2007)

3. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Con-
ference on Computational Linguistics (COLING’92), Nantes, France, Association
for Computational Linguistics (1992)

4. de Cea, G.A., Gómez-Pérez, A., Ponsoda, E.M., Suárez-Figueroa, M.C.: Natu-
ral language-based approach for helping in the reuse of ontology design patterns.
In: Proceedings of the 16th International Conference on Knowledge Engineering
and Knowledge Management Knowledge Patterns (EKAW 2008), Acitrezza, Italy
(September 2008)

5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL’02). (2002)

6. Mikheev, A., Moens, M., Grover, C.: Named Entity recognition without gazetteers.
In: Proceedings of the Ninth Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL’99). (1999) 1–8

7. Banko, M., Etzioni, O.: The tradeoffs between open and traditional relation ex-
traction. In: Proceedings of ACL-08. (2008)

8. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked,
T., Soderland, S., Weld, D.S., Yates, A.: Web-scale Information
Extraction in KnowItAll. In: Proceedings of WWW-2004. (2004)
http://www.cs.washington.edu/research/knowitall/papers/www-paper.pdf.

9. Harris, Z.: Mathematical Structures of Language. Wiley (Interscience), New York
(1968)

10. Hirschman, L., Grishman, R., Sager, N.: Grammatically based automatic word
class formation. Information Processing and Retrieval 11 (1975) 39–57

51

14 Diana Maynard and Adam Funk and Wim Peters

11. Maynard, D.G.: Term Recognition Using Combined Knowledge Sources. PhD
thesis, Manchester Metropolitan University, UK (2000)

12. Pantel, P., Pennacchioni, M.: Espresso: Leveraging generic patterns for automat-
ically harvesting semantic relations. In: Proceedings of Conference on Computa-
tional Linguistics / Association for Computational Linguistics (COLING/ACL-06),
Sydney, Australia (2006) 113–120

13. Fellbaum, C., ed.: WordNet - An Electronic Lexical Database. MIT Press (1998)
14. Schuler, K.K.: VerbNet: A broad-coverage, comprehensive verb lexicon. PhD thesis,

University of Pennsylvania (2005)
15. Aswani, N., Tablan, V., Bontcheva, K., Cunningham, H.: Indexing and Querying

Linguistic Metadata and Document Content. In: Proceedings of Fifth International
Conference on Recent Advances in Natural Language Processing (RANLP2005),
Borovets, Bulgaria (2005)

16. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns
Engine (Second Edition). Research Memorandum CS–00–10, Department of Com-
puter Science, University of Sheffield (November 2000)

17. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:
CLOnE: Controlled Language for Ontology Editing. In: Proceedings of the 6th
International Semantic Web Conference (ISWC 2007), Busan, Korea (November
2007)

18. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proceedings
of ACL-99, College Park, MD (1999) 57–64

19. Pantel, P., Ravichandran, D.: Automatically labeling semantic classes. In: Pro-
ceedings of HLT/NAACL-04), Boston, MA (2004) 321–328

20. Cimiano, P., Voelker, J.: Text2Onto - A Framework for Ontology Learning and
Data-driven Change Discovery. In: Proceedings of the 10th International Con-
ference on Applications of Natural Language to Information Systems (NLDB),
Alicante, Spain (2005)

21. Cimiano, P., Hartung, M., Ratsch, E.: Learning the appropriate generalization
level for relations extracted from the Genia corpus. In: Proc. of the 5th Language
Resources and Evaluation Conference (LREC). (2006)

22. Gamallo, P., Gonzalez, M., Agustini, A., Lopes, G., de Lima, V.: Mapping syntactic
dependencies onto semantic relations. In: Proc. of the ECAI Workshop on Machine
Learning and Natural Language Processing for Ontology Engineering. (2006)

23. Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Pub-
lishers, Amsterdam (2002)

24. Cederberg, S., Widdows, D.: Using LSA and noun coordination information to im-
prove the precision and recall of automatic hyponymy extraction. In: Proceedings
of the 7th conference on Natural language learning at HLT-NAACL, Morristown,
NJ (2003) 111–118

52

Representing the Component Library into
Ontology Design Patterns

Aldo Gangemi1 and Vinay K. Chaudhri2

1 STLab, ISTC-CNR, Roma, Italy
aldo.gangemi@cnr.it

2 SRI International, Menlo Park, US
vinay.chaudhri@sri.com

Abstract. For Ontology Design Patterns (OP) to be widely adopted
by conceptual modelers, we need a critical amount of them, and that
amount should be larger for patterns that describe good practices for
modeling content (ie, Content Patterns or CP), e.g. about time, space,
events, biological entitites, medical cases, legal norms, etc. It is possi-
ble and desirable to reuse existing repositories that contain modeling
solutions, and to represent them as OPs. This paper analyzes some com-
ponents from the Component Library (CLIB), proposing some solutions
to represent them into OWL2 CPs. Some constructs from CLIB compo-
nents need the expressivity of rule languages in order to fully represent
them, but these extra-features can be separated from the basic ontolog-
ical content. Additionally, CLIB components are shown to be enrichable
with the pattern annotation schema defined for OPs, which also allows
a quick upload and publication on ontologydesignpatterns.org.

1 Introduction

Ontology Design Patterns (OP) [20] are reusable solutions for modeling ontolo-
gies, based on good practices. In order to be widely adopted by ontology model-
ers, we need a large amount of them, especially for patterns that describe good
practices for modeling content (Content Patterns, CP), either general (time,
space, events, etc.) or specific (biological entities, medical cases, legal norms,
etc.).

The ontologydesignpatterns.org initiative [19] aims to collect the OPs
collaboratively, and several of them are being uploaded on its semantic wiki-
based site. On the other hand, it is also possible to reuse existing repository of
resources, which contain modeling solutions that can be represented as CPs. One
of them is the Component Library (CLIB) [8, 10],3 which contains hundreds of
solutions, and explicitly builds on the idea of a system of concepts [8], as well as
to that of knowledge patterns [10]. The original idea of the authors of CLIB [8]
is indeed very close to that of CPs:

3 http://www.cs.utexas.edu/ mfkb/RKF/tree/

53

... our goal is to identify repeated patterns of axioms in a large the-
ory, and then abstract and reify those patterns as components in their
own right (analogous to the notion of ”design patterns” in object-oriented
programming ...

... in contrast to [a] DL algorithm which exhaustively constructs con-
cept representations without regard to task, our algorithm is goal-driven,
constructing only those parts of the concept representation required to an-
swer questions. Our trade-off is to sacrifice completeness for a language
sufficiently expressive for our purposes. An interesting consequence of
our approach is that the concept description which is built is question-
specific, containing just that information required to answer the ques-
tion(s) which were posed ...

In practice, the main requirements of CPs: small, task-based models that fit
one or more competency questions by following good practices [16, 20], are shared
by CLIB components. The main differences with current OWL CPs include the
encoding of CLIB is done in the KM language. The statements in KM have
straightforward and well-defined semantics in First-order logic [9]. KM compo-
nents also represent dynamic aspects of actions the representation for which has
not been studied in the context of OWL.

This paper analyzes some components from CLIB, showing how to represent
them into OWL CPs. OWL2 [21] is employed in order to take advantage of the
maximal expressivity currently available for the Semantic Web. Some constructs
from CLIB components need the expressivity of rule languages in order to be fully
represented. These extra-features can be separated from the basic ontological
content, leaving intact the value of CLIB as a resource for CPs.

Additionally, CLIB components are shown to be enrichable with the pat-
tern annotation schema defined for OPs, which also allows a quick upload and
publication on the ontologydesignpatterns.org wiki.

The paper is organized as follows: in Section 2 we introduce CLIB and its
main features; in Section 3 some uses of the CLIB are described; in Section 4 we
represent some CLIB components as CPs on the Semantic Web; in Section 5 we
present the publishing plans for CLIB components as CPs.

2 Component Library

The Component Library or CLIB was created with the goal of enabling users
with little experience in knowledge engineering to represent knowledge from their
domain of expertise by instantiating and composing generic components from a
small, hierarchical library. Components are coherent collections of axioms that
can be given an intuitive label, usually a common English word. The compo-
nents should be general enough that their axiomatization is relatively uncon-
troversial. Composition consists of specifying relationships between instantiated
components so that additional implications can be computed. The current CLIB
contains a few hundred components, and less than one hundred relations.

54

Each component of CLIB is formally expressed in KM [9], which in turn is
defined in first-order logic. KM includes a situation mechanism for representation
and reasoning with actions and the changes they cause.

The main division in CLIB is between entities (things that are) and events
(things that happen). Events are states and actions. States represent relatively
static situations brought about or changed by actions.

2.1 Actions and States

The actions are grouped into fifteen top-level clusters, each having several more
specific subclasses. These clusters are: Add, Remove, Communicate, Create,
Break, Repair, Move, Transfer, Make-Contact, Break-Contact, Make-Accessible,
Make-Inaccessible, Perceive, Shape, and Orient.

The list was developed by consulting linguistic resources such as WordNet
[15], the defining vocabulary of the Longman’s Dictionary of Contemporary En-
glish and the Roget’s theasaurus. We consider here a few examples of the formal
axioms that define the actions in the component library. (In the following, the
words shown in all caps are the concepts drawn from the CLIB, and the words
shown in italics are the relations drawn from the CLIB.)

Conditional rules: If the raw material of a PRODUCE is a SUBSTANCE,
then the product is composed of that SUBSTANCE. If the raw materials are
OBJECTs, then the product has those OBJECTs as parts.

Definitions: An instance of MOVE whose destination is inside a CON-
TAINER is automatically reclassified as an instance of ENTER.

Simulation: If the destination of a MOVE is a SPATIAL-ENTITY then
the location of the OBJECT of the MOVE after the MOVE is that SPATIAL-
ENTITY.

States are coherent collections of axioms that represent situations brought
about or changed by actions. Many of the CLIB actions are defined in terms
of the change in state they cause. This relationship between actions and states
is made explicit in the library: there are actions that put objects into states,
actions that take objects out of states and actions whose behavior is affected
by objects being in states. For example, the BREAK action puts an object into
a BE-BROKEN state. The REPAIR action takes an object in a BE-BROKEN
state out of that State.

2.2 Entity and Roles

The entity hierarchy in CLIB is less developed than the hierarchy of actions. An
important sub-division of entities contains role concepts. A role can be thought
of as a temporally unstable entity. It is what an entity is in the context of some
event. For example, PERSON is an entity while EMPLOYEE is a role. A PER-
SON remains a PERSON independent of the events in which she participates.
Conversely, someone is an EMPLOYEE only by virtue of participation in an EM-
PLOYMENT event. A more detailed discussion on the representation of roles
and the work related to them is available elsewhere [14].

55

2.3 Relations

The CLIB contains a small set of relations to connect Entities and Events. The
design of the relations between events and entities was inspired by the case
roles in linguistics [1], the design of relations between entities was based on the
semantics of English noun phrases, and the choice of relationships between events
followed from studies in discourse analysis, and process planning.

Examples of event-entity relations are: agent, object, instrument, etc. Exam-
ples of entity-to-entity relations are content, has-part, location, material, etc.
Examples of event-to-event relationships are causes, defeats, enables, prevents,
etc.

While the current CLIB contains domain and range constraints for all these
relations, it does not yet contain their complete axiomatization. For example,
the CLIB does not yet contain axioms for what it means for an action A to
prevent another action B.

2.4 Properties

The CLIB has a small number of properties. Properties link entities to values.
For example, the size of an entity is a property that takes a value. The value can
be a cardinal (25 kilograms), a scalar (big relative to housecats) or a categorical
(brown). The current CLIB has about 25 general categories. This final list of
properties includes such properties as age, area, capacity, color, length, shape,
size, smell and wetness.

3 Uses of the Component Library

The Component Library has been used in several projects, but most notably,
in Vulcan’s Project Halo (See http://www.projecthalo.com) , and DARPA’s
Project CALO (See http://caloproject.sri.com). More detailed description
of these uses are available elsewhere [3, 4], but for the present paper, we only
focus on its use in a system called AURA that has been developed under Vulcan’s
Project Halo [4].

The short-term goal of AURA is to enable domain experts to construct declar-
ative knowledge bases (KBs) from a science textbook in the domains of Physics,
Chemistry, and Biology in a way that it can answer questions similar to those
in a college level exam. The overall concept of operation for AURA is as follows:
a knowledge formulation engineer (KFE) with at least a graduate degree in the
discipline of interest undergoes 20 hours of training to enter knowledge into
AURA; a different person, called a question formulation engineer (QFE), with a
high school level education undergoes 4 hours of training and asks questions of
the system. Knowledge entry is inherently a skill-intensive task, and therefore,
requires more advanced training in the subject as well as in using the system.
A QFE is a potential user of the system, and the training requirement was kept
lower because we wanted the barrier to using the system to be as low as possible.

56

For this section, we primarily focus on the knowledge formulation component of
AURA because that highlights the use of CLIB more clearly.

The KFEs build their KBs by starting from CLIB. AURA implements a way
to convert the axioms in CLIB into a graphical form, to allow a KFE to search for
required components, and to graphically assemble them into a domain-specific
representation. As a concrete example, we show how a KFE would represent the
concept of Virus Infection in Figure 1.

Fig. 1. The Representation of Virus Infection using the CLIB

In this Figure, a KFE has connected three generic CLIB actions: PENE-
TRATE, MOVE-INTO and TAKE-CONTROL, together to first define a se-
quence amongst those events using the relation next-event, and first-event, and
then specialized those events using relations to VIRUS and CELL.

AURA has undergone substantial testing in its ability to allow KFEs to for-
mulate knowledge in Physics, Chemistry, and Biology showing the effectiveness
of this approach for knowledge representation and acquisition [7].

57

4 Representing CLIB for the Semantic Web

Given the prior success in exploiting CLIB for knowledge representation and
acquisition, the time is now ripe to broaden its usage especially in the semantic
web community. Doing so will require at least the following steps. First, we need
to represent the content of CLIB in a format that is widely used in the semantic
web community. OWL is an obvious starting point, but we expect that for fully
representing the content of CLIB a language more expressive than OWL will
be needed. Second, we need to subject CLIB to community review so that its
representations are generally agreed upon and accepted. Such an exercise is con-
sistent with the original goal of CLIB to ensure that the component definitions
are non-controversial and represent the consenus view on the definition of the
concepts they represent. Such a goal is also consistent with the goal of the on-
tology patterns portal ontologydesignpatterns.org. Finally, we need to start
constructing use cases that are of relevance to semantic web that demonstrate
how the CLIB representations can be useful for modeling problems other than
what it has been used for.

For the rest of the section, we focus on the problem of representing the
content of CLIB using semantic web languages. We will first take an example
concept from CLIB, and first explain its formal semantics as they are represented
in its native representation language KM. Then we show the representation of
the same knowledge using OWL, and a rule language SILK.

4.1 CLIB constructs and formal semantics

In order to exemplify what CLIB constructs can be translated into OWL, by
preserving as much semantics as possible, we show here the KM axioms for the
Attach component in CLIB. The Attach is an action that “causes two things
to be attached to each other”. We have included only inferentially significant
axioms, and omitted the ones that are aimed at natural language generation, or
for controlling how they are displayed to the user.

(Attach has
(superclasses (Action))
(required-slot (object base))
(primary-slot (agent))

)

(every Attach has
(object ((exactly 1 Tangible-Entity) (a Tangible-Entity)))
(base ((exactly 1 Tangible-Entity) (a Tangible-Entity)))

;; SOFT PCS:
(soft-pcs-list (

(:triple (the base of Self)
object-of (mustnt-be-a Be-Inaccessible))))

58

(resulting-state ((a Be-Attached-To)))
(add-list ((:set

(:triple (the resulting-state of Self)
object (the object of Self)
[Attach-add-1])

(:triple (the resulting-state of Self)
object (the base of Self)
[Attach-add-2])))))

(every Attach has
(preparatory-event ((:default

(a Make-Contact with
(object ((the object of Self)))
(base ((the base of Self))))

(a Detach with
(object ((the object of Self)))
(base ((the base of Self))))

))))

Informally, the KM code says that Attach:

– is subsumed by the more general component Action
– is always related to exactly one object and one base, both of type TangibleEntity
– can be related to an agent
– has a resulting-state of type Be-Attached-To, which has coreferential

links to the object and base of Attach, and (operationally) generates these
links when instantiated

– has two defeasible preparatoryEvents ((preparatory-event ((:default):
MakeContact and Detach, which have coreferential links to the object and
base of Attach

– has a “soft constraint” (soft-pcs-list): the base of Attach (coreferential
link) cannot be in a state of type: BeInaccessible

Although not explicit in the above code, Action inherits other properties from
its subsuming components (Action and Event):

– is always related to at least one instrument of type Entity
– is always related to at least one subevent of type Event (including itself: a

non-proper subevent relation)
– can be related to a nextEvent of type Event
– can be related to a timeDuring of type TimeInterval

Finally, it has properties that derive from hardcoded functionalities of KM. For
example, the following code collects the subevents of any Event (then including
Attach events) into a single list, which can then be simulated by KM (there are
several such operational statements that apply to temporal, spatial, agentive,
etc. aspects of events.4:
4 The (operational) semantics of the actions slot is built into KM

59

(actions ((:set (forall (the subevent of Self)
(the actions of It))

Self)))

The expressivity of KM largely exceeds OWL model-theoretical semantics.
For example, as explained in 4.2, in OWL (either 1 or 2), coreferential links
cannot be declared in general, but only in special cases (transitive properties,
property chains). Also, defeasible axioms and soft constraints are not expressible
in regular OWL.5

Table 1 shows some reengineering patterns, presented as correspondences
between constructs that are used in CLIB, and their equivalents in OWL1 or
OWL2.6 More correspondences are exemplified in Section 4.2.

KM vs SW Semantics

KM Construct SWL SWL Construct

superclasses OWL1, OWL2 SubClassOf

required-slot OWL1, OWL2 SubClassOf ObjectSomeValuesFrom

primary-slot OWL1, OWL2 SubClassOf ObjectMinCardinality 0

exactly n OWL1, OWL2 ObjectExactCardinality n
exactly n A OWL2 ObjectExactCardinality n A

superslots OWL1, OWL2 SubObjectPropertyOf

domain OWL1, OWL2 ObjectPropertyDomain

instance-of OWL2 ClassAssertion

Table 1. A list of some KM constructs used in CLIB, and their approximation as
constructs from Semantic Web languages.

4.2 Representing CLIB using OWL

A translator to convert portions of CLIB into OWL is already available [6]. This
translator has been used extensively as part of both the Halo and CALO projects.
In the CALO project, the OWL ontology generated by this translator was used
to integrate several diverse programming languages and reasoning modules [3].
In the AURA system, the OWL export of CLIB and the content authored by
the KFEs was used to define a mapping between the CLIB and an ontology
generated through Semantic Media Wiki [5]. But, as expected, this translation
is incomplete. As a concrete example, we show below an OWL representation of
the Attach component that we had shown earlier.

SubClassOf(Attach Action)

5 There exist proposals and prototype implementatioms for extending OWL towards
non-standard description logics.

6 We present all OWL formulas in OWL2 Functional Syntax [18].

60

SubClassOf(Attach ObjectSomeValuesFrom(base Tangible-Entity))
SubClassOf(Attach ObjectSomeValuesFrom(object Tangible-Entity))

In this OWL representation, there is no representation for the slots that
capture qualified cardinality restrictions, meta-level assertions, and the dynamic
aspects of Action: for example, its add-list and del-list as from the Attach
example above. OWL1 does not provide any support for those constructs. OWL2
has enough expressivity: for example, the following constructs can then be added,
by means of more reengineering patterns that help finding correspondences to
the semantics assumed in KM:

– qualified cardinality restrictions can be expressed natively in OWL2 (see ta-
ble 1), e.g.
SubClassOf(Attach ObjectExactCardinality (1 base TangibleEntity));

– meta-level assertions like those used in CLIB for classifying slots (e.g. (causes
(instance-of (CausalRelation))), can be represented by means of OWL2
“punning”, which provides different interpretations for the constants of an
ontology. For example, ClassAssertion axioms can be asserted of classes,
individuals, or properties without violating the formal semantics of OWL2,
e.g. ClassAssertion(causes CausalRelation);

– formal axioms for actions can be approximated by using OWL2 property
chains. Conditional rules like the one presented in Section 2.1 can be schema-
tized as follows:

(if [A R1 B] then (forall [A R2 C] (:triple [It R3 B] [A-add-1])))

and can be reengineered by firstly declaring some OWL object properties
with appropriate domains and ranges for the antecedent part of the condi-
tional rule:

ObjectPropertyDomain(R1 A)
ObjectPropertyDomain(R1 B)
ObjectPropertyDomain(R2 A)
ObjectPropertyDomain(R2 C)
ObjectPropertyDomain(R3 C)
ObjectPropertyDomain(R3 B)

and then declaring an object property chain axiom:

SubObjectPropertyOf(SubObjectPropertyChain(R2- R1) R3)

Similarly, definitional rules can be represented by means of property chains,
used in restrictions within equivalence axioms. The only rule type that seems
completely outside OWL2 is simulation. In that case, it’s the dynamics of
the process that needs to be simulated in the language, not just represented,
and this requires not only an add-list, but also a del-list, which could
only be added programmatically to OWL;

61

– axioms including coreference are also very difficult to represent in OWL2
(coreference is prevented for complexity reasons). They can be partly repre-
sented by property chains, but the actual semantics has a substantial gap.
For example, the add-list construct for the Attach component requires
that the resulting state of Attach has the same object as the object and
base of Attach, i.e. the tangible entities that result to be attached after the
process. In OWL2 we can assert e.g.:

SubClassOf(Attach ObjectExactCardinality(1 base
ObjectIntersectionOf(ObjectExactCardinality(1 baseOf

BeAttachedTo) TangibleEntity)))

but the semantics does not catch the coreference, so that the BeAttachedTo
states of Attach and of its base and object can be different. Therefore,
given the complexity of this OWL2 construct, and its inability to catch
the important part of the original axiom, it seems pretty inadequate to be
incorporated into an OWL CP proposal;

– soft constraints and defeasible axioms are not covered by OWL2, but ex-
tensions of OWL exist that deal with probabilistic, possibilistic, and other
varieties of soft reasoning. We have not yet decided if soft axioms should be
provided in knowledge patterns as a general guideline, but we are exploring
more evidence of its advantages, and community feedback. Defeasible ax-
ioms within universal axioms can be approximated by cutting the defeasible
constraint on type, for example:
SubClassOf(Attach ObjectSomeValuesFrom(preparatoryEvent Event))
(since Event is the range of the slot preparatoryEvent).

As a wrap-up, after running all reengineering procedures described above,
the Attach component gets represented in OWL2 as follows:

SubClassOf(Attach Action)
SubClassOf(Attach ObjectExactCardinality (1 base TangibleEntity))
SubClassOf(Attach ObjectExactCardinality (1 object TangibleEntity))
SubClassOf(Attach ObjectMinCardinality (0 agent Entity))
SubClassOf(Attach ObjectSomeValuesFrom(resultingState BeAttachedTo))
SubClassOf(Attach ObjectSomeValuesFrom(preparatoryEvent Event))

We do not include the inherited axioms from parent components (Action and
Event).

We hope to investigate the use of OWL2 profiles7 and OWL-based rule lan-
guages [17] to see how more of the information in CLIB could be represented.

4.3 Representing CLIB using Rule Languages

The taxonomic subset of CLIB can be captured to a great extent using the
OWL family of languages. Property chains seem to help somehow to harvest
7 http://www.w3.org/TR/owl2-profiles/

62

more. However, for a complete representation, a rule language is necessary. For
example, the Virus Infection example shown earlier is represented in KM as
follows:

(Virus-Infection has
(subclass-of (Move)))

(every Virus-Infection has
(agent ((a Virus)))
(object ((a Cell)))
(first-subevent ((the Penetrate sub-event of Self)))
(subevent ((a Penetrate with

(agent ((the agent of Self)))
(object ((the object of Self))))
(a Move-Into with
(agent ((the agent of Self)))
(object ((the object of Self))))

(Take-Control with
(agent ((the agent of Self)))
(object ((the object of Self)))))))

Fully representing this axiom will require a rule language. We already have
an effort underway to represent such rules using a new semantic web language
called SILK (See http://silk.semwebcentral.org). SILK is a successor of
SWSL and is more expressive than OWL. The above rule can be represented in
SILK as follows:

?x[agent -> _#1(?x):Virus],
?x[object -> _#2(?x):Cell],
?x[subevent -> _#3(?x):Penetrate [next-event -> _#4,

agent -> _#1,
object -> _#2]]

_#4(?x):Move-Into [next-event -> _#5,
agent -> _#1,
object -> _#2]]

_#6(?x):Take-Control [agent -> _#1,
object -> _#2]]

?x[first-subevent -> _#3(?x)]
:- ?x: Virus-Infection.

We believe that for fully representing the ontology design patterns in CLIB,
an expressive representation language such as SILK is indispensable.

For the editing, manipulation and storage of the knowledge created by the
KFEs, AURA uses a representation that is based on a network of individuals
- also known as prototypes [9]. A prototype captures a rule whose antecedent
is existentially quantified, and its consequent represents a network of existen-
tially quantified individuals. We show the representation of the above rule using
prototypes below:

63

(_Virus-Infection2117 has
(prototype-scope (Virus-Infection))
(prototype-participants (_Cell2168

_Virus2167
_Penetrate2166
_Move-Into2165
_Take-Control2164
_Virus-Infection2117))

(object (_Cell2168))
(agent (_Virus2167))
(subevent (_Penetrate2166

_Move-Into2165
_Take-Control2164))

(first-subevent (_Penetrate2166)))

(_Cell2168 has
(instance-of (Cell)))

(_Virus2167 has
(instance-of (Virus)))

(_Penetrate2166 has
(object (_Cell2168))
(agent (_Virus2167))
(instance-of (Penetrate))
(next-event (_Move-Into2165)))

(_Move-Into2165 has
(object (_Cell2168))
(agent (_Virus2167))
(instance-of (Move-Into))
(next-event (_Take-Control2164)))

(_Take-Control2164 has
(object (_Cell2168))
(agent (_Virus2167)))

(Virus-Infection has (superclasses (Move)))

It may be possible to represent prototype version of the above rule directly
into OWL, but it would require further research to determine if the inferences
that are expected of a prototype can also be supported in OWL directly. We
are including the prototype representation in this paper to illustrate a possible
approach of dealing with the expressiveness limitations of OWL.

64

It will also be interesting to explore the potential of integrating RIF8 [2],
also including its production rule dialect [13] in order to extend the ontology
patterns representation with full-fledged expressivity, while remaining within
the W3C standards.

5 Publishing CLIB-CP

We are planning to represent the generic fom CLIB and their most useful ax-
ioms into OWL2. We are also translating the metadata that annotate the com-
ponents. They consist mainly of natural language processing-related code for
generating friendly renderings of the components, and of some short comments
that summarize the intentional content of each component, for example: “A
conceal causes something to be concealed by something else.”. However, in the
ontologydesignpatterns.org initiative, we are interested in a rich annotation
of patterns, which provides information about intent, consequences, related pat-
terns, scenarios, competency questions, etc. In the automatic reengineering, we
are translating the short comments as strings for the Intent value in the pat-
tern annotation schema, and then we are adding the URIs of patterns mentioned
within others as related ones. All the other metadata will be possibly introduced
by engaging the open communities interested in reusing elements from our por-
tal, or in asking for clarifications.

Several systems to discuss and evaluate patterns have been developed for
the ODP portal [12]: they allow to automatically upload an OWL version of
a pattern, to ask for reviews and public comments, to provide feedback and
reviews, to discuss, to get consensus, and to recommend the patterns as best
practices eventually. For the CLIB-based CPs, a script is being implemented to
translate and import all at once, but adjusting some parameters.

Once we have a good fraction of CLIB published as ontology patterns on
our portal, we will use the review mechanism of the portal to evalute the ontol-
ogy patterns. For example, each component that is represented as an ontology
pattern will be reviewed from the point of view of completeness, accuracy, and
to what extent it represents the consensus meaning of that component. The re-
view process will be moderated by a scientific committee overseen by an ODP
editorial board.

6 Conclusions

The representation work on CLIB is related to the larger initiative of popu-
lating an online, collaboratively-maintained library of ontology design patterns.
Since reuse of content patterns requires a critical amount of them, the effort
concentrates on one hand on building the community that submits, discusses,
and validates pattern proposals, and on the other hand on representing existing
resources that have substantial affinity with content patterns. Representation
8 http://www.w3.org/TR/rif-rdf-owl/

65

practices have been devised until now on FrameNet [11] and the CLIB, which is
the contribution of this paper. CLIB is probably the most developed repository
of knowledge patterns, and has a scope that goes beyond that of content ontology
patterns in trying to represent also event dynamics, simulation, etc. However,
the part translatable to OWL and rule languages like RIF or SILK proves to be
very inline with the ODP initiative, and will constitute an important inventory
and a rock-solid resource for the community.

Acknowledgements

This work has been partly supported by the EU projects NeOn, funded within the
6th IST Framework Programme, and IKS, funded within the 7th IST Framework Pro-
gramme, and by Vulcan Inc. as part of their Project Halo.

References

1. K. Barker, T. Copeck, S.Delisle, and S. Szpakowicz. Systematic Construction of
a Versatile Case System. Journal of Natural Language Engineering, 3(4):279–315,
1997.

2. H. Boley, G. Hallmark, M. Kifer, A. Paschke, A. Polleres, and D. Reynolds. RIF
Core. W3C Working Draft 18 December 2008. http://www.w3.org/TR/2008/WD-
rif-core-20081218/, 2008.

3. V. K. Chaudhri, A. Cheyer, R. Guili, B. Jarrold, K. Myers, and J. Niekarasz. A
case study in engineering a knowledge base for an intelligent personal assistant. In
International Workshop on Semantic Desktops held during ISWC-2006, 2006.

4. V. K. Chaudhri, P. E. Clark, S. Mishra, J. Pacheco, A. Spaulding, and J. Tien.
AURA: Capturing Knowledge and Answering Questions on Science Textbooks.
Technical Report, SRI International, 2009.

5. V. K. Chaudhri, M. Greaves, D. Hansch, A. Jameson, and F. Pfisterer. Using
a semantic wiki as a knowledge source for question answering. In AAAI Spring
Symposium on Symbiosis of Semantic Web and Knowledge Engineering, Stanford,
CA, 2008.

6. V. K. Chaudhri, B. Jarrold, and J. Pacheco. Exporting knowledge bases into OWL.
In OWL: Experiences and Directions, Athens, Georgia, 2006.

7. V. K. Chaudhri, B. John, S. Mishra, J. Pacheco, B. Porter, and A. Spaulding.
Enabling experts to build knowledge bases from science textbooks. In Proceedings
of the International Conference on Knowledge Capture Systems, 2007.

8. P. Clark and B. Porter. Building concept representations from reusable compo-
nents. In Proceedings of AAAI’97, pages 369–376. AAAI press, 1997.

9. P. Clark and B. Porter. Km – the knowledge machine: Users manual. Technical
report, University of Texas at Austin, 1999.

10. P. Clark, J. Thompson, and B. Porter. Knowledge Patterns. In A. G. Cohn,
F. Giunchiglia, and B. Selman, editors, KR2000: Principles of Knowledge Repre-
sentation and Reasoning, pages 591–600, San Francisco, 2000. Morgan Kaufmann.

11. B. Coppola, A. Gangemi, A. Gliozzo, D. Picca, and V. Presutti. Frame Detec-
tion over the Semantic Web. In Proceedings of the Fifth European Semantic Web
Conference. Springer, 2009.

66

12. E. Daga, V. Presutti, and A. Salvati. http: //ontologydesignpatterns.org and eval-
uation wikiflow. In A. Gangemi, J. Keizer, V. Presutti, and H. Stoermer, editors,
SWAP, volume 426 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

13. C. de Sainte Marie, A. Paschke, and G. Hallmark. RIF Production Rule Dialect.
W3C Working Draft 18 December 2008. http://www.w3.org/TR/2008/WD-rif-
prd-20081218/, 2008.

14. J. Fan, K. Barker, B. Porter, and P. Clark. Representing roles and purpose. In
Proceedings of the International Conference on Knowledge Capture Systems, 2001.

15. C. Fellbaum, editor. WordNet. An Electronic Lexical Database. MIT Press, 1998.
16. A. Gangemi. Ontology design patterns for semantic web content. In Proceedings

of ISWC 2005, Galway, Ireland, Berlin, 2005. Springer.
17. I. Horrocks and P. F. Patel-Schneider. A proposal for an owl rules language. In

Proceedings of the 13th International Conference on World Wide Web, pages 723–
731, New York, NY, 2004. ACM Press.

18. B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. W3C Working Draft 08 Oc-
tober 2008. http://www.w3.org/TR/2008/WD-owl2-syntax-20081008/, 2008.

19. Ontology Design Patterns Web Portal. http://www.ontologydesignpatterns.org.
20. V. Presutti and A. Gangemi. Content ontology design patterns as practical building

blocks for web ontologies. In Proceedings of the 27th International Conference on
Conceptual Modeling - ER2008, pages 128–141, 2008.

21. W3C OWL Working Group. OWL 2 Web Ontology Language. W3C Working
Draft 11 June 2009, http://www.w3.org/TR/2009/WD-owl2-overview-20090611/,
2009.

67

����������	�
 ��
 �������� ���������

���
�����	

����� ������1	 ��
����
� �������23	 ���� ��
��� ������� ��������1	 �
�
���
 �����4

1 �������� ���	�

�	�� ���
�� �
������
��� �
 ���
�	�
��	� ���	��	��� ��	�
��	���

���	����	�� �
 ����	�� ���	�
2 ��	�
��	�� �
 ����� !"�� ��	�
��	�� ���� #� ��"�� ��"$%&$�

'	��

�(���
�)����

3
����
*� %+ ��, �
� �����	�� -� $&&.$� /0#1% �
(��
�)����

4 ����� ��*�2��
� ����	�� ���	�

��������� �
(
��	�� 	�����	��
�� �3� �������	
� 	� � �
�	�
� ���

�	�
4����
�	�� ���5 26
�
 � ���(���	�� �* ��������
��	�

�� ��� ��4

��	�
7�
��� 	� �*�
� �
8
	�
� ��
��
������ 26
�6
� �6
 �6���
� �� (

�
�*���
� ��
 ���
���� �
��	�� 2	�6 *�����	���	��
����� �� �6���	�� �6

	��
��
� �
��	�� �* �6
 ��	�	��� 5��2�
��
 ���
�, �
(
��	�� �
��	�
�

*���
7	��	�� ��������
��	�

�	�� ����� ��� �
(
��	�� �����
�	
� ���	�4

�(�
 	� �6
 �	�
���
�
 �	� 	� �6	� ���5, 9�2
�
�� 	� �����
7 ���
� �6
� ��

��	�� *�� *��� ����	�	�� ��
8
��
 �
����� �� �������� �
�
���
��� �

 ��

�6
	� ���5 �*
:�	
��� �� ��
�	�	�� 26
�
7���	�	�� �6
 ��	� ��
�
� *��

����	���(�
 �����
�� ���
�6
� 2	�6 �	���
 �
����� *�� ������	�� ���
�	���

*�� �6
�, 3
 ���	� �6�� 	� 	� ����	(�
 �� ����	�
 ���	�	���� �
����� ��

�������� �
�
���
��� (��
� �� �6
 	�
��	����	�� �* ������ ���	����
���

��� � �
(
��	�� �����
��� 26	�6 ��� (
 ���(�
� 2	�6 �6

�
 �*
7	��	��

����� 	� ���
� �� ��5
 �6	� ���5 ���

;
��	�
,

� �������	�
��

�

����� �
��
����
� ��
���������� ������ �
�� ��
� �! ��
���
���
� � �������
��
 !�� �

����� �����
�	
���
��� "�
� ��
���� �
�
���
�����
��
 ��
 �
�##����
�
���$ %��
�
���� ��
���
���	
���� �! �

����� !��������
��
 �
�
��#����

�
��
 �##��� �
 ���
 ��
����������	 ��
��
�� &
�� � '��
��� ��
� � (

��
 �
� �� ������� �

�������
��
 ������ �
�� �����
 �������
�
�
�� �

�����
���������

 �#���&��
��
� #������� �

�� ����� �
���� �! ������#��

$

)��������
��
 �
� ��#����

�
��
 ��
���
��� ���� ��*���

 ������� �! ��+(
���
�	 ��
������
�
�� ,
�"����� ��#����

�
��
 !�������� �
� �

����� ��
�����
�����
��	 �
�
�� �

����� ���������

�	 ���
� �
����$)�� �-��#��	 ��#����

(
�
� �
 �.)/01 �

����� �� ���� ��+���

��
 ��#����

�
� �
 �2� �

�����3
�
� ������#�
� � ����� �

����� "���� �
�� #����
��� ��
��#
� ���
����� ��
���� ���#���
��
 ������#�
� �
�
"��, �! �

������� "���� ��&
�� ��
��#
�
��� �-
�
������ ���� �
� ���#��- �
!���
��� ����
� � ���"
 �#�
$

68

� ��������	�
�� �
� �������� ��	������ ���������

���������� 	
��� ��� ��
����	 ������� �� ������	� �� ��	����� ���������� ����
����� 	
��� ��� ��	 ������ �
����	������ �� ����	��� ��	����� ����������� ��	
���
������� ��� ��	
��� ���	 ���� �� �
��	 ��	���	��� �������
�� ���� !" # $
%&'()� ��� ���� ����� ������ %&*() ������	� ����	��� ��	����� ��������� 	�����
�
����� 	
� ��+�� ������ �� 	
�� 	���, ����	��� ����������� ��� �����	���� ��
	
� ��������� 	��� �����	�

-� �� ����� �� ./ ���������	��� ��� 0/ ��������	�	���� ������� ������
���� 	���� ����	 � 0/.������� %1(%2(� �0 3 %*(� %4(� 5�����"�� %&6()� �
��

��� ������ 	
��� �
��	������� �� ��
����	 �������� �����	��� 	
� ������� ��	 ��
������ ���	������ � ���7��	 	
�	 ����� 	� 	
� ����	��8�����	� �� � ����� �$93�)�
"���� ���� 5�����"�� %&6(���� ������� ��	����	���� 	� ������� 	
� ����	�8�� ����
7��	�� �
����� 	
��� ��	������	� 	
�	 ����� �� ���	 �� 	
� �������� ����	��� ���
�������� !����	
����� ����	���� ��� ������ ����	�� 	� 	�� �
�����, �������� ���	
�� 	
� ����	��� ������ �� ��������� � ����� �� ��� �� �	� ������������� :�� ���
	������� ���� �� 	
� ���������	� ������ 	
� ��� ��� ���)
��� ���� ���		�� ��
./ �����	� ��	
 	
� ������� �� �
����� 	
��� ���7��	��

 �� ����� �� �� ���� ��	������� 	
�	
��� ���� ��������� �� ������ �����	��
�
� ��� ��	 ����������� 	�� �������� ��	
 ./� ���
���� ��� ������ ./ ����
�	���	��� ��� ���������	��� 	
� �����	��� �� ���� 0/ ������������ �������
	� �����	�� ����	��8���� �������� "� �����	��	� 	
��� �� ���� ��� 	
����
��	 	
�
����� �������� 	���� ���� � ���������;�� 0/ ��	����� �&<1 �������) ������
���� �� � ������ �����	 �� 	
� ���� ��
�������� %&=(� "
� 8��	 ������� �� 	
��
��	�����
�� � 	�	�� �� &&2 ����	��8���� �������� "
� �������	��� �������� ��
	
� ��������� ���	��� ���� �%1(� %*() �� ����) ����	��8���� ������� ��� ��	 ������
������	������� �� ������ �����	� 	� 8�� 	
� ������� ��� 	
��� ����	��8�����	��
:�� �� ������� ��������� ������ 	
� ��������� ������� 	
� ������	��� �� +��	��
8��	���� ��� ����	��8�����	� 	��� �������
����� �
�	 ���� 	
��� 	����
��� 	�
���� ���8����� 	
� �����	� ��������� �� %&*(� :� � �����	� �� ����� ��	 	
�	 ��
������� ��������� ������ �����	� ���� +��	 �
������ ������ ���� 	
� ��������
��	����� �� � ����
�� ������ ������� ���� �
������ 	
� ��	����� ������� ��
	
� ��8��	���� ���	��� �� ������	��� ������ �� 	
��� ���������	�����

9���� 	
�� ��� ������� �	
�� ���� ��	������� ��
��� ���� �� �
��	 	� �����
	��� ������ ����	��8�����	��������� ��		���� ���� �� ������ �����	� �
�� ���
������	��� 0/ ��	�������� 	���	
�� ��	
 ������ ��	����	���� ��� ���������
����	���� 	� 	
��� �� 	
�	 	
�� ��� �� ���� �� ������ �����	� 	� ����� 	
���
��	�������� "
�� �� ������� ����
��	� ����	
�� 	� �������� 	
� �	���	��� ���
	����� ��������� ������� ����� � �������	��� �� ��������� 	���� ��� ��		�����

� �������� ��	
�����������

-� ���	���� ������������ � ������ ��		��� ��� �� ��8��� �� � �������� ������
��� ����8���� ����	��� 	� � ������ ������������ ������� �� ���	���� ������ %'(�
>���	 ���� ������� ������������ ������ ��		���� ��������	 ���	 ����	���� ����	

�� 	� ����� ���	����� � 	
� ���	����� ��	���		���� ��� ��8��� �� ��		���� 	
�	

69

����������	�
 ��
 �������� ��������� ���
�����	 �

������ �����	
 �	� ��� ���
������ �� ��� ���� ������� �� ��������� �����
������
���
� �������� ���	� ��� ��
��	��	�� ��� �	���
������� ����

�� ��������� ���� ����
���������� �� �������� ����������� ��� �������
�� ��������� ��������� ��������� ��
��� ������� �
 	
�� �� ����� �� ���������

��	����
 ���� �����
������ ���	����� ��������� ��������� �� �������� ��
���
�������
 �!��!"��!#��!$�� %
������ ��������� �
 ����� ��� ��������� ��������� ���
�������� ��
��� �����������
�

&�
����� ����
 �� �������� ��
��� �������
 ��� ������ �!"�'

()������ *������� &�
��� +������
 �)+ � ,��� ��� ����������� ���� �
������
������ �� ������
�� �	� ��������� �� ��� �-���

����� �� ��� ������� �������
�
	
�� ��� �����
��������� .�� �-������ ��� �(��� �������� ������� ������
 ��
����� �(��� ��������
 �� */) &) ���������
�

(%��������	��� *������� &�
��� +������
 �%+ � ,��� ������� ����������(
����
 ���	� ���
��	��	�� �� �� ��������� ,��� ��� ������ �� ����
 ��)+

�� �����
�����
 �� ����� 0-�����
 ���' ��-����� �� ����������� ���������

(1������ *������� &�
��� +������
 �1+ � ,��� �����
� ������(���������
�������	�� �����
 ��
���� ������� ��
��� �������
 ��� ��� ������ ���

�

��� ���������
 ���� ���	���� �� ��������� ,��� 	
	���� �-�������)+
� ���
���� �����
��� ��
� �� ��� ���� ���� �� �������� ��
��� �������
�

�� ������
� �� �������� ��
��� �������
� ��� ���� �� �����������
 �
 ��

 ��������
��!!���!2���!3���#� � �#� ����� �
�� �� ���

 �������������
 ��� �

������� �������

�� ����� �� �����
	�
	������ ����
 ��� ������� ����� �!3� �����
�� ��	� ���(
����
 ��
�� �� ���

 ����
 �� ����� �� ������ ��

���� �����
 �� ��� ��-������

��	��	��� .�	� ������� �����������
 ��� ���
����� �� �!!�� ��� �� ���� ���	
�� ��
�������� ������
 ��� �����
� �!2� ��
�����
 ������ ��4�	����
 ��� ��������

�� &) �� 	����
������� ��� ������� ������� �� �-���

���
� 5������� ���� ��
���
� �������	����
 ���	�
 �����������
 �� � ������ ���

��������� ��� �������
� ���������
���
�� �� ����
 �� ���	� �����

��� � �����	
���	
�
� ���
�
�� ���	�� ���	��������

/� ���� ��������� �
�� �� �������
 ���� ��� �������� 	
�� �� ������ �-����

�� ����� &) �������
�����
 ��� */) ��������������
� ��� ���� �������� ��
	��
�� 	�
���
����� ���

�
 �� ��������� �����
� %
 �������������� ��� ���
� �������(
����
 ���� ���� � ��
	
� ��� ��
	����
������� �� &) �-���

���
 �� ��������
���������
� ,�	
 ���� ��� ���)������ %���+������
 �)%+ ' ���� ��� �����������
���� �
������ ������ �� ������
�� �	� ��������� �� ��� �-���

����� �� ��� ���(
���� �������
� 	
�� ��� ��� �����
��������� /� ���� ��������6�� ���� ���� �����
���	�
'

(&���������)������ %���+������
 �&)%+ � ,��� �����
��� �����
 ���� &)
���
����
 ��� ���	����� ����
 �������� �������

(1��������)������ %���+������
 �1)%+ � ,��� �����
��� ��

���� ���������
�����
 ���� ��� �� �	� �� � ��
	����
������� �� ��� ������� ���
�7	����
 ��
��� 	
�� �-���

����

70

� ��������	�
�� �
� �������� ��	������ ���������

� ���������	
���
��� �����	��� ������� �����		���	 �	�� �� �� ��������
��������� ��������� ���� ��� ������� ���� ��� ������� ��� ��������� �����	
�� ����� ��� ��� ����� ��� �������� ��������� ����� ���� �	�� ����� 	������
�����������	 �� ���� �������� ���	 ��� �������� ��� 	��� ����������

 � ��� ��	� �� ���	 	������ �� ��	����� ��� �����������	 ��������� �� ���� ������
��������� ����� ���� ��� �������� ����� �������� ������� �����		���	 ��� � �����
����������� �� ��� ���	 ����������� ��� ������ ��� ��� �� 	����� �� �������
�� ��� �������� ���������� � �	 ��������� �� ���� ���� !"#$	 �������� ��	���	�
����� ���		�	 ���� ��� �������� ��������� �� ���	���� �������� ��������� ����	�
�������� ��� ����������� ���� �	 �������� ���� �� ��� �	�� �	 ��� ��	������ ���
������� �� 	��� � �������� ���� ����	 �� ��%���� ��� �������� ���������	 �� ���
� ���� 	������� ��������� �� ����� ������ �������	������ &��� ��	���� �� '"#$
��� �� ���� ��� ��� �������� �� ���	� ����	 �	 	���� �������� �� 	��� ��	�	 �����
����������� ��� ���� �� ��	���	����� ���		�	 ���� ��� ��������
�������� ���
������������� ���������� �� ����	� #	 �� ������� �� ��� ������ ���� 	������� ��
����� ���� ���� 	������ ��� ���� ����� �� � ��(�� 	��� ������� �� ���	 ��	��

)������� ��� ���	� �����������	 	����� �� 	��� �	 ���������� ����	 ���� ���	�
�������� ������������
��� �	� ���� ��� �� �������� ���� ���� ������� ���	�
*������� ��������� � 	������� ��� ��� ���������� ���	 �	 ������� � ���� �������
�� ��� ������� 	���� �� ��� ���� ��� ��� ������ ���� ���� �� ��	� ������� �� ������
��� ��	� ������ �����������	 ��� ��������� ��������������	 ��� �����

��� ��������	�
��
��	 ���
�������� ��
���

#	 ��������������� ���	� �����������	 �����	��� �����	 ���� !" ���	����	 ���
�������
��� ��� �� ���		���� ���� ���� ���� �����	+ ���	� ������� �� ��� ��	�
�����	������� �� ��� ������� ���(�������� ���	� ������� �� ��� ��������� �	� ��
������	�� ��	��������	� ���	� ������� �� ��� ��������� �	� �� ��� ����������� ��
������	��,���	������� ��	��������	 ��� ���	� ������� �� ��� ��������� �����	�����
���� �� ��	(���� ��� �-�������� ���������� &� ��� ��	����� ���� �� ������� ����
�������	 ����� ���� ������� ���	���	 �� *���.������� /012 �� ��� ���� �����	��
	�������	 ��� ����� ����� 	����� �� �����	 ��������� ���� ��� ������ ������ ��
���� 	��� ���� ��� �������� ������� �� ��� �����	����� ��������� ����� ���	
��� �������

���
������� ������� ����� C1 � ∃R.(C2 � C3);Disj(C2, C3); �

� ��� �������� �������
 ���
����� �� ���
 ����� ��� �� �����
�� ��� �� ��
� ������� �����
����������� ����
������ �� ����
� !�� ��
� �! �����
������� "����� ���
��#�$#���
�! ��� ������� ��� ��� ����
 #�� 	� ����
����� ����#��� ���� ����
�%& '��
 ��������
���
������ ���
���
 �	������ ���������� ��� ��	������ ���#�

 ��� ������	�� ��
����())���&���&$&���&�
) �#��#��)�
���	������)

� '��
 ���
 ��� ���� ���� ��� �������� ��������� ��
 �����#���� �����

�� ���� C2 ���
C3 ��� ��
*����� 	�� ���� ���
� ��� #��#���
 ��� ���������� �
 ��
*���� !��� ��#�
����� 	� � ���
����&
� �
� ���
 �������� �
 �
�������� !�� C2 � C3 � ⊥&

71

����������	�
 ��
 �������� ��������� ���
�����	 �

���� �� � �����	 ��
����	
 ����� ���� �������
�� �� ��� ���� ���� �	 ����
��	 ��	
������ ���
�� ��	
� �	
 ����
� 	�� ��������	
 ��	�����	��� �� ��
����
��	��	����	 �	

����	����	 ������������ ����� ��� � ������ �! ��"� ��"� #��� ���
��	
 �	
 #��� ���������� �� ��$�
����� %��� ��� ��"� ��	���	&

� '��� ��������� ���� ���� ����	
& Cake � ∃contain.Chocolate �
∃contain.Almond;

� (���������)������
 ����	
& Cake � ∃contain.(Chocolate � Almond);
� '��� ��������� �� ���� ����	
& Cake � ∃contain.(Chocolate � Almond);

!	 ��� ���
�	�� ������	 �� *�
�+	����
� ���� �	��������	 �������
 �#���� ,�
�����	� �	� �	���	�� �� ���� �	��������	 #��� ��� ����� ����� ���	������	 �	��
-	
���� � �
����� ∃comunica.(Albufera � Mar � Marisma);
Pipe � ∃communicate.(Lagoon � Sea � Salt.Marsh);

!	 ��
�� �� ����� ���� �	��������	 #� ������� �������	
 ��� ��
���� ��	��	����	
$� ��� ��
����
����	����	� �� $� ��� ��	��	����	 �� �#� � ����	���� ����������	��

////////C1 � ∃R.(C2 � C3);Disj(C2, C3);⇒ C1 � ∃R.(C2 � C3); ��
C1 � ∃R.C2 and ∃R.C3;

����������� 	�
�����
�����
����� �	
�� C1 � ∀R.(C2);C1 � ∀R.(C3);
Disj(C2, C3); �

��� �	����
�
�������� ������
 � �	������� ����������	 �� ��� ���� C1 �	�
���	��� ��	 �	�� $� ��	"�
 #��� �������� R �� C2 �	���	���� 0� �� � 	�# �	�����
��� ����������	 �� �

�
 ����	
 ���� C1 �	���	��� ��	 �	�� $� ��	"�
 #��� R ��
C3 �	���	���� #��� C2 �	
 C3
�����	�� !	
�	����� ���� �� $������ ��� �	����
�

�������� ���
�� ��� �������� � ��� �	 ��� ���� ����� �� �	 �	� �� ��� ����	�
��������

��� �����#�	
 �� �	� �� ��� �#�
�1	����	� �� *�
�+	����
� ����� #���� ����
�	��������	 ��	 $� ���	
 2
�����	
�	�
�������� � ∀����	�
����� .Aguas.Marinas �
∀����	�
����� .Desembocadura� = 1����	�
����� .	;
Transitional.Water � ∀is.nearby.Sea.Water �
∀is.nearby.River.Mouth� = 1is.nearby.	;

!� �� ��"�� ��	��� #� ������� �� ���
����	 � ���� �� ���	����� ��� �#�
�	������� ����������	� �	�� �	�� �	� ���� ������ �� ��� ��
����
����	����	 �� C2

�	
 C3�
///////////C1 � ∀R.C2; C1 � ∀R.C3; Disj(C2, C3);⇒ C1 � ∀R.(C2 � C3);

������������ ��������
��������� ���� C1 � ∃R.C2; C1 � ∀R.C3;
Disj(C2, C3);

� ��� ������ ���
�������� ��
� ��� 	������ �� ���	� �������	 ���� ��� �	�
 ���		�	 ���

�	 ����!

� "� ��
���������� # �������� ��	� ��$� �� ���	� � $����� �������� 	����%�
 �	 �
&�������' ���
������� ��	�������� ��� ���� ���		� �� ���� ���	������� ��	��������	!

72

� ��������	�
�� �
� �������� ��	������ ���������

��� �������	
�������
 �

� �� �����������������
���
���
������ �� � �����
�������
������
��� ���� ���
� ��� ��
��
	 �� ������������	����
��� �����
�
���������������
���
������ �� ��� ���� ����� �
 �� � ��
��� ������
����������	�

��� ��������� �� ��� �� � �������� �� ���� ���������
� �� �	

�������	�
Gola � Canal Aguas Marinas; Gola � ∃comunica.Ria;
Canal Aguas Marinas � ∀comunica.Aguas Marinas;
Inlets � Sea Waters Canal; Inlets � ∃communicate.Rivers;
Sea Waters Canals � ∀communicate.Sea Waters;
����� ���������
�� �
�
�!���� ��
���� ������� �������	
�������
� �����

�����
� ���
���������� ����
�	 ������� ����������� ��
 �����
���
���
��������
��
 �
������ �� ����
 ��
�������� ��� �������"������	 �� � ������ ��� �� ����� ��
�����
 �� ����
�	 ����	��
 �	 ��� �������	
�������
�

C1 � ∃R.C2;#####�C1 � ∀R.C3; Disj(C2, C3) ⇒ C1 � ∀R.(C2 � C3);

����������� 	��
�����
��������������
������������ �	
����
C2 � ∃R−1.C1; C1 � ∀R.C3; Disj(C2, C3);
��� �������	
�������
 �

�

���
������� ����� C2 ��
 C1 ����� � �
���
�	

R ��� ��
�
�$�
������
 ���� �� ��
 ��
��
	 ���
 ��� ����
�� �
���
�	 R−1�
��� ��������� �� �� ������� �� ���� ���������
� �� �	

�������	�
Aguas Marinas � ∃es alimentada.Aguas Quietas Naturales;
Aguas Quietas Naturales � ∀alimentada.Aguas Corrientes Naturales;
Sea Water � ∃is fed by.NaturalStandingW ater;
Natural Standing Water � ∀feed.Natural Watercourse;
%� �
����� �� �

 ���
���
�� ����� �� ��� C2
�"������ C1 � ∃R.C2 ��
 ��

�� ��&�� ����� �� �

 � �����
��'������� �� ��� �����
���
���
�������

C2 � ∃R−1.C1;#####�C1 � ∀R.C3; Disj(C2, C3);⇒ C1 � ∀R.(C2 � C3);

�����������
���
����������������� �
��� C1 ≡ C2; Disj(C1, C2);
���� �����
�� ����� �� ���	 ������ ��
 �������	
�������
� ���� �� �
������

�
������ �� �%(��
������� ����� �
�� ��� ���� ���� ��� �������	
�������

����� �� ��	 ���� C1 �� � �������� �� C2� �
 ������
��� ��� �� ��� ���� ����
�� ��
�)�
��� �
�� C2 ����� �� ��� ��
� ����
������� *���
 � ���
� �
������
������� ���
�������
 ����

������
 ���� ��
����	 ����� �� ���
��� C1 � C2

��� ��������� �� �� ������� �� ���� ���������
� �� �	

�������	�
Cascada ≡ Catarata; Disj(Cascada, Catarata);
Cascade ≡ Waterfall; Disj(Cascade, Waterfall);
%� �
����� �� ��& ��� �������	
�������
 ������
 ��
����	 ����� ��
�"�� �

�	���	� �
 � �����������
�������� +����
��� �� ��� �������	
�������
, �����
�
��� �-�������� ����� �����
 �� �
�����
��
 ���� � ����������� ��� �
 ��� ����
���
 ������� �����
 �� ����
����
 ����

��� �� ��� .�/
�������
�������

###0C1 ≡ C2; Disj(C1, C2) ⇒ C1 � C2 �
 C2 �� � ����� �� C1;

73

����������	�
 ��
 �������� ��������� ���
�����	 �

��� �����	�
� ����
�� ��	���		���� ������

�� �������	
��	��

���� �	
���

��	� ��� 	�
 	���������� ������
 ��
 ��������
�����	
�����
��
��
 �	
����� ���������� ��� ����	������
���	�
� �������	

� ������	
 ����� �� �	��������

��	���		��� �������������
����
� ����� C1 ≡ C2;
��� �	
����� ��������� ��	
�
� �������
��

�� ������� C1 �	� C2 ��� ���	�

����� ���� �� 	�
 ���� ������ �	 � ��	��� �	
�����
��
 ���� 	�
 �����
 �
�����
�	����
 ���

�� �	
����� ��������� ��	������ ��	
�
� �������	
 �� �
����	��
������� ��	�	��� ����
��	�
�� ����� C1 ���
�� ������� C1 �	� C2� ������ �	�
��
�� ������� �� 	�
 ���� �	������ ���� �	
�� ������ ��!	�� �	
�� �	
������

��� �������	� �� �	 ������� ��
��� �	
���

��	 �	 "���#	
������
����������	
��������
≡ ����	
��������� ;
Subterranean$Watercourse ≡ Subterranean$River;

��� �������� ��� ������	�
��� �	
���

��	 ��
�� �������	� %�� C2 ��
�� ����
����
��� �	
�� �	
�����& ��� ���
�� �����	
� �	� ������ �� C2 �	
� C1 �	�
������ C2�

'''(C1 ≡ C2 ⇒ C1.[RDFS : label|comment] = C2.[RDFS : label|comment];

��� ����������

�	 ��	
���

�
�� �	
���

��	� ������� ���������
 �������	�� �������	
 �������
���������	� ���� �	 �	 �	
����� �����	�	
 ��!	�
��	
��
 ��� ������
 ���� �
������� ���	
 �� ����
 ��
 �	 �����
�� �	
����� ��������� ����� ���� ���� �
���
������� ��
��	�
���� ��� �	����	�
�� ���� �	�������� ��� �������	��
��	�
�������� ���)������	�� ���	�� ����� �	 ����	�
�� �	
����� ������
� �	����
�
�	� �� �	
����� ����������
 �	� �� 	�
 ���� �	� ���	�� ��
� ������

�
��
����	
��� �� �	
�	��� ���	�	� ��
�� �	
������ *� ���� ��
����	��
��

�� ����
����� ���	��� ����
�� �	
����� ������
� �	����
�	� �� ����	� � ���� ��	��
�� �	
����� ���������� ����

���� �������	��� ���	 �	�����	� �	
�������
��

���� 	�
 ��������� ��
����

��������� ��!���	�����"���#�����	 � ��� C1 ≡ not C2;
+���	�
�� ���������	
 ������� �� � 	�� �	
�����
 �
 �� ����
� �	��
��

C1 ��
�� ������� 	���
��	 �� C2� ,����
�� �	
����� ���������� ���� ��!	� ��
��
C3 �� � ���
�� ����� �� C1 �	� C2� ���� �� �������	�
� ���
��
 C1 �	� C2

��		�
 ����� �	�
�	��� !��

 �	� ���	��
�� ��!	�
��	 �� C1 �� � 	���
��	 �� C2

�� 	�������� �

�� �	� ��
�� ���������	
� ��� �������	� �� �	 ������� ��
���
�	
���

��	 �	 "���#	
������
Laguna$Salada ≡ not Aguas$Dulces;
Salt$Lagoon ≡ not Fresh$Water;

*� �������� '''''(C1 ≡ not C2 ⇒ Disj(C1, C2);

74

� ��������	�
�� �
� �������� ��	������ ���������

��������� �	
����
����������
	��������� ��

� C1 � ∃R.C2;
C1 � (≥ 2R.); ���� ����	
��

�������� �	
	���	�
 ���� �����	 ���������� �� ������ ����� ��� ������� ��
���	�
���� ���� ������ ��	
 ��� ����� �
��	� ���� !��
 ��������	�� �
 � ����"
�	����� �� ���� ���� #	
	���	�
 ��� ����	� ���� 	$�
�	����� �	
��������
 �������
� ����������� ���
������% C1 � ∃R.C2 � C1 � (≥ 1R.C2) !��
& ��	� ��	� ���"
���	 	$�
�	����� ��� ����������� �	
��������
& ��	� ��� �	 �������� �������� �����
���
	�
�� �	
��������
 ���� ���
	 ����������� ���
������

!�	 ��������� �
 �� 	$����	 �� ���
 ��������	�� �� '�����������%
�
������������������ ∃sometida(a(influencia.Aguas(Dulces �
∃sometida(a(influencia.Aguas(Saladas �
∀sometida(a(influencia.(Aguas(Dulces � Aguas(Saladas) �
= 1sometida(a(influencia.	;
Transitional(Water � ∃is(influenced(by.Fresh(Water �
∃is(influenced(by.Salt(Water �
∀is(influenced(by.(Fresh(Water � Salt(Water) �
= 1is(influenced(by.	;

)	 �����
	 �� ����
���� ��	 	$�
�	����� �	
�������� ���� � ���
	�
�� ��	 ��	�
� ����������� �	
�������� 	$�
�

*****C1 � ∃R.C2; C1 � (≥ 2R.);⇒ C1 � ∀R.C2;

��������� ��	�����	
� ���� C1 � ∀R.C2;C1 � (≥ 2R.); ���� ����	
��
+��
�
����
����� �����
	
& �	 �	����	�� �������� ��� ��	 �	
��������
 �� �

���

 ���� �
	 ��	
��	 ����	��� R �� �
����	 �	
�������� !��
 �	����	�������
�
 �� ���������	 ��	
�
����
����� �� �����	$ ���

 �	�������

************,C1 � ∀R.C2; C1 � (≥ 2R.);⇒ C1 � ∀R.C2 � (≥ 2R.);

��������� ��������	 ����� C1 � (≥ 0R.);⇒ ******,C1 � (≥ 0R.);
!�	 �������� �	
	���	� ����
 �� �	�	��	� ���� C1 �
 ��	 ������ �� ��	

R ����	��� !��
 �	
�������� ��
 �� ������ �� ��	 ������� ���	� �	��� �	��	�
��� ��� �	 �	��
	� �� ��	 	�� �� ��	 �	
	����	�� ����	

 !��
 ��������	��
���	��	� ���	 �� ��	 '����������� �	������� ����	

 Laguna(Salada � (≥
0es(alimentada.);
Salted(Lagoon � (≥ 0fedBy.);

� �������� 	
����
�� �����
��

-
 �	�����	� �� ��	 ������������& �). �������� �	������� �	����	
 ��
	 �		�
�����
	� �� ��	 ���	�����	 ���� ��/	�	�� �	��		
 �� ��������� 0�1�& �2�& �34�5 !�	�
����� ��	�������� ��	 ���� ���� ��� ��
���
����	 ���

	
 ���
��	�6���
 �$���

��� �	
��������
& ��� ��
��	 ��
	
 ��	� 	$����� ��	� ���� ��/	�	�� �	��		

�� �	����&
� ���� ��	 �	������� ����	

 ��� �	 ����	� �� ��	� ��� ��� �	
���	 ���	 	���	�� '��	
	�& �� �	�	��� ��	
	 �	����	
 ��	 ������ ����
	� ��
��	 	$���������
 �� ������� 	������	��
 ��� ��	 ���
� ����
	� �� ��	 ��������

75

����������	�
 ��
 �������� ��������� ���
�����	 �

����������� ����� 	��
� ���
�������� ��� ���

 ���
�
� �� ���������� ��� ����
���
����
������ ������������ ����� ��� ��

��� ���������� ����� ��� �� ����
���
����
���� ����
� ����� ��
������� ����
������ �� ����� �� ����� �� �� ��

����
�� ���� ���
���� ����������
�� �� ����� ���� ����� �� � ���� ��
���
�����
���� ����� �� ����������� �� ����� �� ���� ��� ����
��� ��������� ���
��� ����
��
�����

������ � ����� ������
�

� � ����
 ����
��� ���������
���
�

�� ���� ���
��
�� �� ����
���� �������� ��� ������ ������ ������ ��� !� �� ������� �� �����
���
��
���� "����� �������� ����
������#� ��� ��� ���� �� ��
�
��� ����� ��� ����$

��� ���� ����� � �������� ����
�
� �� �� ����
��� ��������� ���
� ���
� ��� �
��
�������� ���� ������� ��
�

������ ��� �� ���
�
�� ��
������ %�������� ��� ��
��� ������� ��
�

����� ���� ��� �� ��� ��� �� ���

��� ������
��
�� �� ��
�
����
&��� ������������ ���� �� �� ������ �� ��� ��� ��
�
���

���� '���� �� ��� ��$
��������� ������
������ ��� ����
���� �������� �������� ��
������������ ���

����
������ ��
� �� ��� ���� ��������� �� ��� ��
���� (�)�
������������
��$
��� �
���� �� ���������� ���
� ���� ���
����� ��� �������� ������� �� ���
����
���� ��� ����
� �� ��
�������� %�
� �
����� �� ����� ��� ������� ���
$
���
��
�� ����
� �� ���������� &��� �� �� ��������� ���
��� �� �� ��

���� ����

����� ��� �� ���� ������� ��
�

����� �� ��� ����
����

���� �� ������ 	������� ��� ��������
���������

*���������� ������������ �� ��
� ���� �� ��� ���
��� ��� �� � ���� ����� ����
��� ��������
�� ����
��� ����
������ &��� �� �
�� ������� � ���� �����
�� �����$
���� ����� �� ���
���
���� �� ������������ ���
����� �� ��
���� (� +� �������
�� ��

�� � ���
�
 ������ ����� �� ��� ��������
�� �� ���������� �� ������ (�

76

�� �������	
����
��
������� ��
������ ����������

������ �� ��	
����
 �
����� ������
�
��	�� ��
����� ������ 	��	���� ���
���
� ���������	� ��

���
��� 	
�����	�
�� ������� 	������ ��� � �!� ��

����"��� ��� ���
����� #$ ��
�
�� �
 ���� �
����
�%����
�� ������ �
 ��
��&
����
� ��
����� �� ��� ����
�%����
� ��� ��� �'�
��
������ ���� ��� ���� �
��(
)���� ��� ��� ������� ������������ �

���	� ��
 ���" ��� ������ �
 	����
����

��
�
�"
�%����
��(
)��� �� ��
�
�� 	��	���� ��� �

� �������%���� 	������ �� ���
��
�
�"� �����

��"
�������� �

�($� ���� �
��� �� 	�� 	��	� ��� ���
� 	
����	��
� �$���� ���
���
� ��������� ������	��
�� ���*�� ��
 	
�������
��
� ��������� ��
 �'���������
������	��
�� �+�� !!�(�
�������� �������%������" ������ ��
� � 	
�������
�

� ������� ������������� �
 ���� �� ��� ����
� ��" ����� ��� �

�� �� ��� %����(
$���� �
����� ��
����� �� �

� �������%���� 	������� ��� ����	�
� ��� 	����

������	�" ��
��
 �� 	��	��
 �������" ��
� ��� ���� �
 ��� �

� �

���	� �� ���
���� ����������� �� ������� �� ��" 	����
� ��� ����	�(
������"� �� ��	
����
 ���
���� �����,�
�� �'�
�� �-�.� �
 ����
�� ���

	�����"
� ���
��
�
�"(/
������ ���� 	
��
 �� �����"

�� �� ��" �
��� �� ����
���
���
�� ���
��
�
�"
�������� ��
	���(

���� �� �������� ��
������ ��������
���� �� �������������

� ��������	

��
�
�� �
 ��������
��
�������� �������"� �� 	
�
�	��
 � ���� ���
" ����
��
 ��
���
� �����	��� ����� 0�
�1�1 �2* �3 ��
 ��� ���
	����
 �'�������
�

77

����������	�
 ��
 �������� ��������� ���
�����	 ��

��������	
��
 �	� �������� ������ ��� �	� ���� ������� �� ������������� �	��	
	�� ���� ���� �� ������� ��� ���� �� �	� �������� ��������
 ����� ! �� ������
�� � �� ��� �	�������������

������ �� ������ �� ������ �� ������ �� ������ �� ������� ������

���		�	 ��	���	����� ������
������� ���		 �� � ���	

���		�	 ���������	 ���������	 � ���	 ��� ���		

�!" ��# #$!# !%" #

����� �� &'� �'��������	���	 �� (�
���������

��� ���� �	
��

"������� ��������� ���#����� �	� �	��� ������������ �������� �� �	� $� ���%
��� &������ '����� ��� �� �	� (����������)����*����� �� +������ ���� �	����
��� �	� ����������
 +��� �� �	��� ���#���� 	�� �	� �� � ������, �	�� ���� ��%
��������� �� �������� ���������� �	�� 	�� ����� ��������� �� ����������� ������
��� �-.� ��� �	�� 	�� �� ��������� ����� �	� ��������� ����

��� ������� 	����	����� �	��	 �� ������ �� ���� ���	 �	�� ������ ����,
��������	�
� ��� �
������
�	�� �
� ���
��	�� �������� ��� �
� ��� �� ���

�	�������� �	�� ���� ���� �	�� �� ���
� ��� ���������

��������	� �� ��� �
������
�	�� �
� ��� �� ���	�������� �	�� ���� ���� �	�� ��

��� ��� ���������	� ����� �� ��	����

��������	� � ��� �
������
�	�� �
� ��� �� ���	�������� ��� ���	� �����	���

�����������	��� �	�� ���!	�� � ������ ���
�	�� ������	�� �� ��� ����	� ������

���� �
�� ����!� ��� ���������	� ���� �� ��� ��	����

�	� ����� ��� ��������� �� �������
 /��	 ���#��� ��� ����� � �������� ��
�	� ��������� �� '. ���� � ��� ����	�� �������� �� �����)���*�* �0 ���	 �	�
����������� ��������	
0�
 1��� �� �	� ���#���� 	�� ���� �	� �������� ������

�	�� ���� ������� ���� ��� �� ���� ������� ���	 �� ���� ������� ��� �� ���� ��2�

3���� 4 ��� ����� �� ���������� �	��� �������� ����� ��� �	� ������������� ���	
������� ��� ����� ��� ����� ��� �������� ��������� ��������

�	� ���#���� �� �	� ��� ������ ���� ����� �� ������ ��� ������� � �	���

�	�� ���� �������� ���	 � ��� �� ���� 5�������� �� ������ 6������� ���	 �������
�������7� ��� �� ��� ����� �	�� 	�� �� ������� �	� �� � ������ �� ������ ���	
5����

�	� ���� ������ ��� ����� �	� ��������� 5������ �� �	� ��������
 "�� �	��

������ ���	 ������ ����� ���� ���)���*�* �� ������ �	� ��������� ���	��� �	�
��� �� ��� �������� �� �	�)���*�* ����������� ��������	
 8������� ���#���� ��
3���� 4 ����� ���� ��� �	� ���� �������� �� ������������ �	�� �� 	�� ��������
�	�
 �	� 5�������� ���� ����� �	��	 ����� �� �	� ���� � �� ������� �������
����� ��� �� ����� �� ������� �� � �������� �	�� �	������ �������������� �����
�������� ������������� ������� �	� ��� �� ��� �	� ������� �������� ����������
�� �������� ����� 	�� �� ������� ���� � �� ��� �	� ��� ��������������� ���

78

�� �������	
����
��
������� ��
������ ����������

����� ��� ��	
����� �
 ����	���� ���

�
� ���
�����
����� ��

���
�� �� ���

���� ����� �� ���� ��
���� ��	
�	�� ��
��	
����� ���

�
 	� ��� ��	�	��� ���������

���� ���� �
��� �� ��� ��� ���������	� ��	��
 ���� ���� �� ��
��	
���	�	�� 	�

���	�� ���

�
 ��� ����	��
���
����	��
� ���� ����� �
� ���
����
 ������ ��

��������� ��� ��� ���� � ��������	�� ���������! ���
 ���
�� �
 ���	�������
 	�

��� ��
� �
 "���� #�

��� �����	
	 ��
�� ��	��
	

������ ���	�� ���	��
� ���	��
� ��	
���� ������� ���� ���
��
� ������� ���
���� ��
 �
������� �������� �
 �
������

������� �� ��� ������ ��� ������ ��� ������

�� !" #�$ " #�$ �"% �&!��
#'$ (#'$ �!"

�' �(') #�$ #�$ �(%
#'$ (#'$ '') �&!(�

����� �� ������ ������� ��� ���������������

��������	�
� ���������� 	
� ���	

��	
���� ����	 	���� ��� ���������
�	��	��
 ������	 ���� 	� ������ 	
� 	��� ������ ��� ���������� �� �
��� ��
����� � 	
� ������	� ����� ��� �	��	��
 ������ � ������	�� 	
� ���	 ���!�
 ��
���� 	��� 	
�� ����� "� ��	 ������ ���� 	��� 	� ������	� ���!�
 �� #� ��
 �����
	
� ��$������� �� 	��� ���� ��	 !��
 ����!��	�

%���!��� �	 �� �����	��	 	� ��	��� 	
�	 ���	 �� 	
� ������	� ����������
����	 	
� ���	 	
�	 	
� �������� ����
�� ��������
 �
��� ���������� ���������
��	�!�	���� ��� �� 	
��� ����� 	
�
 ����� ��	 	
�	 	
� �!��������	
 �� � ��	������
�� ��	���		���� ��� ������ 	� �� �� ���&��� �� 	
� ����	����

��������	� �� ���������� 	
�

��	
���� ����	�� 	� ������ ���� '���&�
 	
�
������� 	
� �����	� ��� ��(��� #	 ����� 	
�	 �	 ������� �� 	
� ������(�	
 �� 	
�
��	���		����� �
� ������	� ����� ��� ��	 �� ��	���		���� ����� ���� '���&�
 	
�
������ ����	�� 	� 	
�)*+� +#,� ,*� ��� -#. ��	���		����� �
� �(�����	���
�� 	
�	 	
��� ��	���		���� ��� ������ 	� ��� �� �� ��	����
 ��!�������	 	���
���� ��	������� %���!��� �
�� �� ����	������� ����� ���	���� �� ����� �
��
 ��
	
� �����	���	��� �� ��!���� ��	���		����� ������	� �� ����� � ���� ��	 ����
	� ������� ��		�� 	
�� 	
��� �� ����� "� /�����
� �
�� �� ����	������� �����
���	����� 	�� ���
 �(���� �����	 ���� �� 	
� ������	� ������� 	� ��� 	
�
������ /�� �(����� 	
� ����� 01� ���	���� "2 �(���� ��� ���
 ��� ������	 ���
����� ����� 	
� ������

��������	�
� ���������� 	
� ����	��� �� ������� ��� ����������	����
�����
�� 	
� ��������� �������� �
� '����	
 �� � ����	��� �� �!����	�� �
 ��������� 	
�
�����	 �(��� ��	
 	
� ��� ��������� 	� 	
� ���� %
����	����
 !������ ��������
�
 � &�������� �������� ��� 	
� ������ �(���	� 3
�� 	
�
 ������ 	� ����	��

�� ��	���		���� 	
� ������	� �� ����� � ���!���� � ���� ������	� ��� �������

79

����������	�
 ��
 �������� ��������� ���
�����	 ��

�������� ��	� ����
 �� ����
 �� ��� �
�
 �	���� �
������ 	����� �	������ ��
���
� �� �	�
 ��
 ��	�� �	����	��
� ��	� ��� ������� ��� �
����
��	����� ��

�	�� �
�������� ���	�
�� �� ����� �� �
���
 ���
�
�
�� ��

����
�	��� 	������

� �������	���
�� ��
��� ����

�� ����
	

� �
 �	�
 �
�����
� 	 ���	�
�� ��� �� �������� �
������� ��	� �	�
�
 ��
� �� ������	���� ����
������� �� �������� �
������� �
����
� �� ���
�
�� ��
���
 ��

!��
��� �� ��
 �
�������
���
�� �� �	���� 	
�
�
��
� �
�
�� ����
��
� 	������ �� �

�����
� �� �������� �
�
��

��� �
 �	�
 ���	��
�
���� ���	�
�� �	���� ���� 	������ ���
�

��
��
 �� ��
 �
�
��
�
�� �� " #�	�
�
��������
� 	�� 	 �	�
��� 	�	����� 	���� ��� �������� �
�
��

�� 	�� ��������

����

�� �
��� ��
�� ��������
� ���	�	���

$�
	�� �� ��
 ���� ��	� �
 �	� �� �� �� ���
� �� ���
 �
 ���� ���� ���	�
���
�
 �	�
 ����
��
� 	 ���� �� ������ 	���
	��
��� ��	� �	� �
 ����� �� ���	��#

�

��#�
�
��

� ��������
� 	�� ��	� �	��
 	 �	��

��
��	�
 �� ��
 ���	����	#
������ �� ��	��
�� %
���
�� �
 �	�
 ����
� ���
 	���
	��
��� ��	� �� ��� �	�
 	�
��
	�� �� ��
 �����	� ����
&�
��
� �� ��
 �������� �
��� �
�
��

�� ��� ��	� 	�

�� ��
���	��
 �� ���
� �� �
���
 ��
 ����
� ��
����� �� ��
 ���
��
� �
	����
�� ��������
� �� �� ��
���
 ��
�� ���
���	��	�������

'�� ��
 ���
 �
���� ��� ���	�
�� �� �	���� �	��	�� ��
�
 �
������� �����
	�
 ��
� �� �
�
�� ���
 ���	����	��
 ��	��
� ��
��
��
 �
�� �� 	����� ����	��#
��� 	���
	��
���� 	������� �� �
�	��� �� ��
 ��
� �� ��� ���
�	���� ��
�
 ��

	���
	��
�� �� 	�� ����� 	���
	��
�� �� 	

��
��

�
 �	�

�	��	�
� ��� ���	�
�� 	�� ���
	�
� �� ���� ����
��
�	����
 ��
�������� �
������� �� ����� ��� ����
� �� ������

�� ��	� �	�
 ����
� ���� 	�
�����
�
�� �������� �� ��
 �
���	
���	� ���	��� $� 	 �
����� �
 �	� ������ ��	�
��� ���	�
�� ��
� ��� �
���
 ��
 �
������� ���
 ��� �� ��
���
� ��
 &�	���� ��
�
�������� ��	� ��� ���
��
��
� �
����
��	����� �
�
 ������ 	 ���
 	

��#

��	�
 �������� �� 	�
����� ��
 ���
� ���������� �� ���
�	��	���� �� ��	� ��
��
�	�
 ���
 ��!����� �� ��� ��
 	���
	��
��� 	���� 	�� ��
 	����� �
����� 	�
���	����	��
 ��	���

(
��
 	�
	�� �� ��� �����
 ���� �
 	�
 	����� 	� ��
�
�
����� 	�������	�
����� ��	� �	� �
 ��
� �� ������	���� ����
������� �
������� �����)
���� ��

*���+�+
�
�	�	���� �����
���, �� �
�
 �� ��
 ��
�����	���� �� 	���
	��
���� '��
��
 ���
 �
��� �
 �	�
 ��	��
� 	

����� ��
 �** �	���	�
 -./ ��� ���� �	���
����
�������� �
������

$����
�
	�� �� �����
 ���� ���� �
 �
�	�
� �� 	

����� ���� ���	�
�� ��� ��

�
������� �� �
��#����� ���������
�� ��������
�)
���� �$0%�1,� �� ���� �	�

�
 ����� �

��
����� ��� ���� �� ��	� ��
�

��� �
������� ��������
� ��	�
�	�
 ��� �

� �����
� �� ��
�� $�� �
 ���� 	��� ����� �� ��� 	���#
	��
��� 	�

���	��� ������
� ���
��
� 	�� ��� ���
 ���
�
� ��
� �	� �
 ����� ��	� �	�
�

� �

�
� ���
 ��
 �
�������
���
���

'��	���� ���
 �� ��

�
�	�	����� ��	� �
 �	�

�����
� ��� ��
 	

	�	��
 ��
	���
	��
��� 	�
 �
�	�
� �� ��
 ���
� �� ����� ���
 �� ��
 �
���������� 	�� 	�����

80

�� �������	
����
��
������� ��
������ ����������

���� ���� ����� �	 ��� 	��	
	��
 ����� ������� � ���	�� 	� ��� ������� ���� ����

���� ���� �	 ��� 	��	
	�� �	

	���� ��

���	�� 	��	
	�� ������ ����������

������� �	�
� �� �����
 �� 	���� �	 ���	��	���� ���� ���	 ��� ����������� �������	�

������ ��� ��	������ �	����
� ������ �	
���	�� �	 ����

��������	
�����
 ���� �	�� �� � ����
� 	� �	

��	����	� ������� ����

� ! "
�� ��� #$�% "	������
 � ��� ���� �	�� ����� ��� �	���&� 	� ���

��	'��� ��	(������� ������ �� ��� "������ #������� 	� "������ ��� �����	
	��

��� �� ��� �
�	 ������

� ������ �� ���)�"� %���	�)*+ ��	��	��� �� ���

���	����)	������	� ����� ��� ����� ������ "�"#�)*+�,-*-+
 ��� �	�� 	�

 #$�% "	������ 	� ���� ����� ��� ���� ������

� ������ �� ��� "������ #���

����� 	� �������� �	����� ��� ����� ����� ��� ����� . ��/-,0,/�*,,1�*� �� ����

	� ��� #	���	 �23�� ��������� �����
�� ��	'���

����������

�� ����� �� �������� � ������ !�" #��$����� ��������� %� ���&������� �' (�� %����	
�������� ���'����&� ����&����� �' #��$�����)������������� ���)�������� *#)+�
!��&��������� ��������� ,-." /0�	122� *3222+

3� ����� 4� 5���)� ������)� 6�������� �" ������ ��������" 4������� �')����
��

7�&�	
������� -�'�$���� .������	������� %-!8 2	32�	1991�	3� *�00/+

9� ������� 8 ��� ����� �" 4:��������
�������&�� ��&������ $���
��������� ���	
����&������ �' ��� .�;� �/*3+"1�	1/� 8�$ <���".�; ������ *3223+�

�� 5������� ;�" ,������������ ���)�������� %�'����&��� �������� �� ��� ���� %����
����=�= ���'����&� 	 ��� 39	31� 3220 	 .��������� 8�����������

/� 5������� ;� ������ !� -������ ,�" ��&���& ��� ���&��� ����>&������ ��
��� %�
���&������� �' ��� (�� %������������ -������& ��
 ���'����&� *%-��+� #���������
�������? �8�- /9�@" 939	99@� *322@+�

1� %������ ��)�&��� .� -��:���)�" 4�
������ #��$����� �������� ����
��� %�
���&������� �' ��� 1�� 4������� -������& ��
 ���'����&� *4-��3220+� ������
����&�� ��� -������& ��
")�����&� ��� .����&������ *3220+� ��� 3�@	393

(� #�������� .� ������ !� ����&�	���� !�" !����� .������� .A����" B���	�����
 ����>&������ '��
��	�� 4����������� ���&������� ����&� 3221

@� #�������� .� ������ !� -���� 4� ����&�	���� !�")�������� ,������>�
�� �������
��
��
���������� %� ���&������� �' ��� 9�� 4������� -������& ��
 ���'����&�
*4-��+� !��:�� ;���������? �8�- �2��" �(2	�@� *3221+

0� #����� .�" �������� ��� .������������ ������ �'

7�&�	
������� �����������
@*�+"�1	�@� *�00/+

�2� ��� � ��� C� -������ �� 6��&��&���� �� . B���	������� .�����&� ��)����:���
,������>�
��
���������� ������ �' ���� -������&� * ��-+ �2"13	0/� 322@

��� ��
������� �' .������
�������" �����&���� �' ������������ '��� ����"DD$�������	
&�����D����A����D�������";�A���������

�3� ������� 4� -������ !� ����: %
� !E���� ��"
8�
�
;)�:������" ��$����
.&&����� ���� �����&����� '��
������� ��:�������� ���7�&��� %� ���&�� �' ��� 1��
4������� -������& ��
 ���'����&�� 4-�� 3220� 5��������� ����&�� ��� 3220�
�8�- ///�" 3�@	313 *3220+

81

����������	�
 ��
 �������� ��������� ���
�����	 ��

��� ���	���� ��� ������� ��� ������� �������� ��	��� �������	 �	 ��!��!�� ����
���
���!"	 #�� $�� ���������	� %� ���!��
���	 �# �&� '(�& %������������ ���#����!� ��
���!� ����)�
����� *+,-� .��!������ / ����
0�/ �'��� �'1��2�*'331-�

�2� ���	���� �� ������� �� ��4�
 /� ����
� �� /����5�6�������)��)������ +�
��4�
�)�� 0��� ����4������ �'����� �
������ �# �������� ��	��� �������	 �4����
���� �� 7&�� �88$$$������ ��9�!�����:

��� ,�!& ;� 6��
���� ,
� ,�	 +�� <��$��
�� �������	� %�)� +� ;����= *+
�-� +��
!�!�� �
�� �# <��$��
��)��������� *'�
 +
�����-� %�% ������� >/�� *'33?-�

�@� ,�!��� �
� �������
 0� A����
��)� ,����	
� <������!& A� /��4��	 ,� ����
A� ���� ��� ��
 ��55�	� ���!��!�� += �����!� �# B��!&��� ��
��
� ������
+����	 C ������ �������	� %� ���!��
���	 �# �&� �2�& %������������ ���#����!�
<��$��
�� �!D��	������)�
����� ��
)��������� *+<��-� �&��������� A����
><�
0�/ �'�(� @��1� *'332-

�(� /4E��F���5�� �� /4E��" �� �����	��� ��������!�� /���!����	 �&����& 0��� ����
���� B��!"���� %� ���!��
���	 �# �&� �@�& %������������ ���#����!�� +<�� '331�
�!����55�� %����� /� ������ '? � �!����� '� '331�
�!���� 0���	 �� ��� ���� /!���!�
�'@1 / ������ '331� %/.0 ?(1����23�1(@?���� '���''1 *'331-

�1� /��!"��	!&��
� A�� ��������� ��
 ���������	 � � ,������ �&�!"� %� ���!��
���	
�# �&� @�& %������������ ���"	&� �� +4�������� �# �����������	�
 B���	 ��
 �&�
/������! ��� /��4�!� �&������� *+�0�/�/��'331-� B�����#�� / ���� *'331-�

�?� ���!&�	�.�E5D��5
)� .�����G���4�
�)�� /�E��5�6�������)�� �H��5��G��5 ��
,�
�I���5���	!��� �6� B�$������� C &�
���������� ,�������	&� ���$��� >����
��
 A�
����� &�! 6������	 �� �&� ������ &�! %�#�������� ������� %� ���������	
#�� >���� ��4��� ����� /��
��	 �� ��� ��������� %���������!�� 4��� @�� / �������
(��12� *'33(-

'3� ����� A�� A����
��)� ,�!��� �� �������
 0� /��
������ ;�� ��������� ��
�
�
 ���������	� � &����	��! � ���!&� %� ���!��
���	 �# �&� 2�& %������������ /��
�����! ��� ���#����!� *%/��-� ���$��� %�����
J
0�/ �('?� (2��(�(*'33�-

82

eXtreme Design with Content Ontology Design
Patterns

Valentina Presutti and Enrico Daga and Aldo Gangemi and Eva Blomqvist

Semantic Technology Laboratory, ISTC-CNR

Abstract. In this paper, we present eXtreme Design with Content On-
tology Design Patterns (XD): a collaborative, incremental, iterative method
for pattern-based ontology design. We also describe the first version of a
supporting tool that has been implemented and is available as a plugin
for the NeOn Toolkit. XD is defined in the context of a general approach
to ontology design based on patterns, which is also briefly introduce in
this work.

1 Introduction

Ontology design patterns (ODPs) [7] are an emerging technology that favors the
reuse of encoded experiences and good practices. ODPs are modeling solutions
to solve recurrent ontology design problems. They can be of different types1

including: logical, which typically provide solutions for solving problems of ex-
pressivity e.g., expressing n-ary relations in OWL; architectural, which describe
the overall shape of the ontology (either internal or external) that is convenient
with respect to a specific ontology-based task or application e.g. a certain DL
family; content, which are small ontologies that address a specific modeling issue,
and can be directly reused by importing them in the ontology under develop-
ment e.g., representing roles that people can play during certain time periods;
presentation, which provide good practices for e.g. naming conventions; etc.
With the name eXtreme Design (XD) we identify an approach, a family of
methods and associated tools, based on the application, exploitation, and defini-
tion of ontology design patterns (ODPs) for solving ontology development issues.
In this paper, we describe XD and go into details of its guidelines for ontology
development with Content ODPs (CPs). Also we briefly describe the prototype
of a supporting tool i.e. the XD plugin for the NeOn Toolkit.
XD adopts the notion of ontology project, a development project characterized
by two main sets: (i) the problem space, which is composed of the actual modeling
issues, here referred to as the local problems, that have to be addressed during
the project e.g., to transform a set of microformats to an RDF dataset, to model
roles that can be played by people during certain time periods; (ii) the solu-
tion space, which is made up of reusable modeling solutions e.g. a reengineering
practice for associating microformats’ attributes to a certain RDF vocabulary’s

1 http://ontologydesignpatterns.org/wiki/OPTypes

83

2

Fig. 1. The eXtreme Design approach. ODPs are associated with Generic Use Cases
and compose the ontology project’s solution space, which is used as the main knowledge
source for addressing ontology design issues e.g. reengineering, evaluation, construction,
etc., the ontology project’s problem space provides descriptions of the actual issues
called “Local Use Cases”.

relations, a piece of an ontology that models time-indexed roles i.e. a CP.
The general approach is schematized in Figure 1. Each element in the solution
space is an ODP associated with a Generic Use Case (GUC), the latter repre-
senting the problem that the ODP provides a solution for, as introduced by [6].
The elements of the problem space are called “Local Use Case” (LUC), they
define the actual modeling issues that need to be addressed in order to work out
the ontology project, they represent the ontology project’s requirements. Under
the assumption that GUCs and LUCs are represented in a compatible way e.g.,
both in the form of competency questions or sentences, it is possible to compare
LUCs to GUCs, and if they match, the ODPs associated with the matching
GUCs are selected and reused for building the final solution. Informally, a GUC
matches a LUC, if the latter can be completely or partly described exactly in
terms of the GUC, or as a more specific case of it; or if the LUC can be described
in terms of part of the GUC.
All matching ODPs are selected and used according to specific guidelines and
possibly with some tool support.
In this paper, we focus on XD guidelines for CPs, where GUCs and LUCs are
expressed in the form of natural language competency questions, and ODPs are
CPs. In the rest of the paper XD is used for referring to XD with CPs.
XD is partly inspired by software engineering eXtreme Programming (XP) [11],
and experience factory[12, 1]. The former is an agile software development method-
ology the aim of which is to minimize the impact of changes at any stage of the
development, and producing incremental releases based on customer require-
ments and their prioritization. The latter is an organizational and process ap-
proach for improving life cycles and products based on the exploitation of past
experience know-how.
Although XD has similarities with the two approaches, its focus is different:

84

3

where XP diminishes the value of careful design, this is exactly where XD has
its main focus. XD is test-driven, and applies the divide-and-conquer approach
as well as XP does. Also, XD adopts pair design, as opposed to pair program-
ming. The intensive use of CPs, modular design, and collaboration are the main
principles of the method. While a rigorous evaluation of the whole methodology
is still in our future plans, the effectiveness of CPs in ontology design has been
rigorously evaluated in [5], where XD has been used as reference development
guidelines. Furthermore, initial questionnaires and informal discussions made
emerge that the perception of the trainees with respect to the method is posi-
tive. The contribution of this paper is twofold: (i) a collaborative, incremental,
and iterative method for pattern-based ontology design, called eXtreme Design
(XD); (ii) a first version of the XD tool, a NeOn Toolkit plugin that currently
supports CP repository browsing and selection, a good practice assistant, and a
wizard for CPs’ specialization.
The paper is structured as follows: in Section 1.1 we briefly discuss the state
of art on ontology design methodologies and ontology design patterns. Section
2 discusses the principles of the method and details the XD workflow with the
help of a simplified scenario taken from a real case study. Section 3 describes
XD tool, a NeOn Toolkit2 plugin for pattern-based design support.

1.1 State of the art and related work

The notion of “pattern” has proved useful in the context of design within
many areas, such as architecture, software engineering, etc. So far, very few
purely pattern-based methodologies have been proposed. In ontology engineer-
ing, pattern-based methods are present primarily on the logical level, where
patterns support methods for ontology learning, enrichment and similar tasks
like in [2]. In these methods patterns are used more or less automatically, e.g.
lexico-syntactic patterns to identify ontological elements in a natural language
text or to extract relations between ontology concepts. In [3], a method for con-
structing ontologies based on patterns is proposed, the difference between this
method and XD is that the former do not consider collaboration, and that the
patterns were assumed to be a non-evolving set mostly defined with a top-down
approach. Another related approach is that described in [8], where competency
questions have been introduced. XD takes inspiration from this work, specially
for the use of competency questions as reference source for the requirement
analysis. However, the methodology described in [8] do not consider modular
nor pattern-based design approach, and do not address collaborative develop-
ment. Many other ontology development methodologies have been proposed, an
example is the DILIGENT methodology [9], which takes into account collabo-
rative aspects, but do not consider the use of patterns and is not test-oriented.
From the software engineering field we can mention the eXtreme Programming
methodology, which XD is inspired by. However, the focus of XD is completely
different from that of XP, although they share some base principles such as pair

2 http://www.neon-toolkit.org

85

4

design as opposed to pair programming, test-driven development, and customer
involvement.

2 Guidelines for XD with Content Ontology Design
Patterns

In this section, we describe the methodological guidelines for applying XD with
Content ODPs (CPs), through the definition of an iterative workflow and a case
example showing an actual iteration.
The XD method with CPs is the result of the observation and consequent de-
scription of the way we (in our lab) use to develop ontologies with CPs. Since
2005, we have been developing CPs, teaching pattern-based ontology design in
conference tutorials and PhD courses, and for much longer we have been using
and refining this approach for our professional work.
In order to teach pattern-based design to PhD students and practitioners, we
needed to provide trainees with guidelines to follow. This requirement provided
us with a good occasion for defining the XD method with CPs, and also with a
context for running the method with different teams, and applying possible re-
finement/adjustment. So far, we have identified the main principles and setting
of the method, defined the iterative workflow, identified a set of requirements for
tool support, started supporting tools development, and identified and started
investigation of open issues.

XD principles. XD principles are inspired by those of the agile software method-
ology called eXtreme Programming (XP) [11]. The main idea of agile software
development is to be able to incorporate changes easily, in any stage of the de-
velopment. Instead of using a waterfall-like method, where you first do all the
analysis, then the design, the implementation and finally the testing, the idea is
to cut this process into small pieces, each containing all those elements but only
for a very small subset of the problem. The solution will grow almost organically
and there is no “grand plan” that can be ruined by a big change request from
the customer.
The XD method is inspired by XP in many ways but its focus is different: where
XP diminishes the value of careful design, this is exactly where XD has its main
focus. Of course, designing software and designing ontologies is inherently dif-
ferent, but still there are many lessons to be learnt from programming. XD is
test-driven, and applies the divide-and-conquer approach as well as XP does.
Also, XD adopts pair design, as opposed to pair programming. Although we
did not perform yet a formal evaluation of pair design’s effectiveness, we have
collected trainees feedback through informal discussions and questionnaires af-
ter the executions of XD with different trainees teams. Most of them feel to
take benefit from on-the-fly brainstorming, and perceive to improve the effect of
learning-by-doing with this setting. We have planned to conduct more rigorous
evaluation of the method which also involves the analysis of this aspect.
The intensive use of CPs, modular design, and collaboration are the main prin-

86

5

ciples of the method. The effectiveness of CPs in ontology design has been rigor-
ously evaluated in [5], where XD has been used as reference development guide-
lines.
The main principles of the XD method can be summarized as follows:

– Customer involvement and feedback. The development of an ontol-
ogy is part of a bigger picture, where typically a software project is under
development. Ideally, the customer should be involved in the ontology devel-
opment and its representative should be a team, whose members are aware
of all parts and needs of the project. For example, the roles that should be
represented include: domain experts i.e. persons with deep knowledge of the
domain to be described by the ontology; those who are in charge of main-
taining the knowledge/data bases i.e. persons who know the views over the
data that are usually required by users; those who control/coordinate orga-
nization processes i.e. persons who have an overall view on the entire flow of
data; etc. Depending on the project characteristics, and on the complexity of
the organization, the customer representative can be one person or a team.
It is important that the team of designers is able to easily interact with the
customer representative in order to minimize the possible number of assump-
tions that they have to make on the incomplete requirement descriprions i.e.
assumptions on the implicit knowledge, without discussing/validating them
first. Interaction with the customer representative is key for favoring the
explicit expression of knowledge that is usually implicit in requirement doc-
uments, including competency questions. Furthermore, the customer repre-
sentative should be able to describe what tasks the application involving the
ontology is expected to solve.

– Customer stories, Competency Questions (CQs), and contextual
statements. The ontology requirements and its tasks are described in terms
of small stories by the customer representative. Designers work on those
small stories and, together with the customer, transform them in the form
of CQs and contextual statements. Contextual statements are accompanying
assertions that explicit knowledge that is typically implicit in CQs. CQs
and contextual statements will be used through the whole development, and
their definition is a key phase as the designers have the challenge to help the
customer in making explicit as much implicit knowledge as possible.

– CP reuse and modular design. If there is a CP’s GUC that matches a
LUC it has to be reused, otherwise a new module i.e. a CP with its GUC,
is defined based on the LUC under development and shared with the team
(and ideally on the Web3).

– Collaboration and Integration. Integration is a key aspect of XD as the
ontology is developed in a modular way. Collaboration and constant sharing
of knowledge is needed in a XD setting, in fact similar or even the same CQs
and sentences can be defined for different stories. When this happens, it is
important e.g. that the same CP is reused.

3 For example on http://ontologydesignpatterns.org

87

6

– Task-oriented design The focus of the design is on that part of the do-
main of knowledge under investigation that is needed in order to address the
user stories, and more generally, the tasks that the ontology is expected to
address. This is opposed to the more philosophical approach of formal ontol-
ogy design where the aim is to be comprehensive with respect to a certain
domain.

– Test-driven design. Stories, CQs, and contextual statements are used in
order to develop unit tests. A new story can be treated only when all unit
tests associated with it have been passed. This aspect enforces the task-
oriented approach of the method. It has to be noticed that in this context,
“unit tests” have a completely different meaning with respect to software
engineering unit tests. An ontology module developed for addressing a cer-
tain user story associated to a certain competency question, is tested e.g.
(i) by encoding in the ontology4 a sample set of facts based on the user
story, (ii) defining one or a set of SPARQL queries that formally encode
the competency question, (iii) associating each SPARQL query with the ex-
pected result, and (i) running the SPARQL queries against the ontology and
compare actual with expected results. Unit tests for ontologies have been an-
alyzed already in [13], where the focus is more on purely logical structures.
We leave the investigation of unit test types, and their employment in XD,
at future developments.

– Pair design. The team of designers is organized in pairs. At least one pair
is in charge of integrating ontology modules.

The next section shows details of the XD iterative workflow.

2.1 XD iterative workflow

Figure 2 shows the workflow of XD with CPs. In this section we will describe the
single tasks with the help of a simplified scenario coming from a real case study
in the Fishery domain. XD is an incremental, iterative method for pattern-based
ontology development. Before entering the details of each single task, it is worth
to make few premises. The team of designers is organized in pairs that work in
parallel. At least one pair is in charge of integrating the modules produced by
the other pairs, in order to obtain incremental releases of the ontology. A wiki
for the project is set up with a basic structure able to collect customer stories
and their associated modeling choices, testing documentation, and contextual
statements. The wiki will be used in order to build incrementally the project
documentation. During the development, and in particular for testing purposes,
an ontology module containing instances according to the customer stories is
created and shared. This module is used in order to run unit tests against the
ontology.

4 According to the common way of using the term “ontology”, in this context we do
not distinguish between TBox and ABox, or ontology and knowledge base. Here, an
ontology includes also facts.

88

7

Fig. 2. The XD iterative workflow.

Task 1. Get into the project context. The development starts with a group
of designers and a group of domain experts i.e. the customer representative. In
principle they do not know much about each other, do not have a precise idea
of what will be the result of the project, are used at different terminology, and
have a different background. This task has a twofold objective: (i) make the cus-
tomer representative aware of the method and tools that will be applied during
the project, (ii) provide the designer team with an overview of the problem, its
scope, and initial terminology.
The result of this task is the setting up of a collaborative environment where
customer and designers will share documentation and argument about modeling
issues, including terminology i.e. a wiki for the project.

Task 2. Collect requirement stories. The customer representative is in-
vited to write stories, possibly from real, documented scenarios, that samples
the typical facts that should be stored in the resulting ontology5. All stories
are organized in terms of priority, and possible dependencies between them are
identified and made explicit6. Each story is described by means of a small card,

5 We do not distinguish between TBox and ABox, ontology and knowledge base. With
the term ontology we encompass both according with the current trend in the Se-
mantic Web community.

6 E.g., a story can be modeled only if another story already has been successfully
addressed

89

8

like the one depicted in Table 1, which includes the story’s title, a list of other
stories which it depends on, a description in natural language, and a priority
value7. It is important to notice that this task is not intended to be performed
only once during the project. Stories can be added by the customer during the
whole project life cycle. For example, if a new requirement emerges new stories
can be written.

Task 3. Select a story that has not been treated yet. Each pair of de-
signers selects a story that will be the focus of their work for the next iteration.
A new wiki page for the story is created: the name of the page is the title of the
story, and its content is set up based on the information that are in the card. By
performing this task a pair enter a development iteration. For example, consider
that a pair has selected the story described by the card in Table 1.

Table 1. A requirement story card. It includes the story’s title, a list of other stories
which the story depends on, a natural language description, and a priority value.

Title Tuna observation
Depends on Exploitation values, Tuna areas
Description In 2004 the resource of species “Tuna” in water area 24 was observed

to be fully exploited in the tropical zone at pelagic depth.
Priority High

Task 4. Transform the story into CQs. The pair process the story and from
it derive a set of CQs. In order to do that, designers could involve the customer
for having feedback/clarifications. First the story is split into simple sentences,
meaning that complex example sentences may be broken up into shorter sen-
tences to increase clarity. The sentences are abstracted so that they describe a
class of facts instead of a specific one. The sentences are then transformed into
CQs. For example, the story “Tuna observation” is transformed to the following
CQs8, which are added in the story wiki page:

– CQ1: What are the exploitation state and vertical distance observed in a
given climatic zone for a certain resource?

– CQ2: What resources have been observed during a certain period in a certain
water area?

Additionally, the following contextual statement is derived from the discussion
with the customer representative9:

– A resource contains one or more species.
7 Priority values are assigned by designers based on interaction with the customer

representative. The values can vary and depends on project’s conventions.
8 The elaboration of the story is a complex cognitive procedure which is not explained

here. It would deserve a dedicated discussion which is out of scope of this paper.
9 There would be additional ones, we have simplified for the sake of brevity.

90

9

– Species are associated to vertical distances. As a consequence, the vertical
distance of a resource is inferred through the vertical distance of the species.

Contextual statements are listed in a dedicated wiki page, and are handled by
the pair in charge of the integration task.

Task 5. Select a CQ that has not been treated yet. The iteration contin-
ues by selecting one of the CQs. For example, CQ1.

Task 6. Match the CQ to GUCs. This task has the aim of identifying candi-
date CPs based on the CQ, which express part of the LUC. The matching proce-
dure can be done either with some tool support e.g., keyword based searching, or
manually e.g., if the designers have a good knowledge of available CPs. We here
assume that designer manually perform the matching against the ontologydesign-
patterns.org repository [4] of CPs. In our example, candidate CPs are: situation,
and time intervalAll of them are available on http://ontologydesignpatterns.org.
The competency question of situation “What entities are in the setting of a certain

situation?” can be said to match the observation, the resource, and the param-
eters that are in the setting of that observation. Additionally, the time interval
CP may be seen as partially matching the question of what period a certain ob-
servation was made, although this could also be solve with just a simple datatype
property. The CP contains CQs such as: “What is the end time of this interval?,

What is the starting time of this interval?, What is the date of this time interval?”.
The result of this task is then two matching CPs.

Task 7. Select the CPs to reuse. The goal of this task is to select which
of those patterns should be used for solving the modeling problem. We may de-
cide that time interval adds too much extra effort, besides the needed year of
observation, in which case we will only select situation.

Task 8. Reuse and integrate selected CPs. The term “reuse” here refers
to the application of typical operation that can be applied to CPs i.e. im-
port, specialization, and composition [7]. In our example, we specialize situa-
tion in order to address CQ1. The particular situation is in our case the ob-
servation, and the thing observed is the resource. Additionally, the exploita-
tion state, climatic zone, and vertical distance of the observation, are also in-
volved in the setting. Thereby, we add a subclass of situation:Situation10

named AquaticResourceObservation, and add the other entities as subclasses
of owl:Thing. In addition, we construct subproperties of the situation:isSettingFor
and its inverse situation:hasSetting, for connecting the observations to the
resources and the different parameters. The result is shown with a UML diagram
in Figure 3. In this case we have shown a simplified example where only one CP
has been reused and specialized. In other cases, we might reuse more CPs. Each
of them would be first specialized then integrated with the others. The process
10 The prefix “situation:” is for http://ontologydesignpatterns.org/cp/owl/situation.owl,

while “Situation” is a class defined in the situation CP.

91

10

Fig. 3. The acquatic resource observation ontology module that specializes the situation
CP.

that is typically performed during this task is sketched in Figure 4.

Fig. 4. The process performed in order to execute Task 8 “Reuse and integrate selected
CPs”.

Task 9. Test and fix. The goal of this task is to validate the resulting module
with respect to the CQ just modeled. To this aim, the task is executed through
the following steps: (i) the CQ is elaborated in order to derive a unit test e.g.,
SPARQL query; (ii) the instance module is fed with sample facts based on the
story; (iii) the unit test is ran against the ontology module. If the result is not
the expected one i.e. the test is not passed, the module is revised in order to fix
it, and the unit test ran again until the test is passed; (iv) run all other unit
tests associated with the story so far until they all pass. Notice that all unit tests
are described in dedicated wiki pages that are properly linked to the associated
story. If all CQs associated to the story have been addressed, the pair can pass
to Task 10, otherwise they “go back” to Task 5. In our example, the unit test
associated to CQ1 is the following:

92

11

SELECT ?exp ?dist ?resource ?zone
WHERE {
?obs a :AquaticResourceObservation .
?obs observedResource ?resource .
?obs inClimaticZone ?zone
?obs inState ?exp .
?obs atVerticalDistance ?dist
}

Task 10. Release module. This task identifies the end of an iteration for a
pair and its result is an ontology module. Once a whole story has been addressed,
and the resulting module has been successfully tested, the new module can be
released. The module is assigned with a URI and published in order to be shared
by the whole team. If the module can be publicly shared, it can be published in
open Web repositories such as ontologydesignpatterns.org. The module is then
passed to the pair in charge of the integration. The pair of designer selects a new
story if there are still some unaddressed.

Task 11. Integrate, test and fix. Once a new module is released, it has
to be integrated with all the others that constitute the current version of the
ontology. At least one pair is in charge of performing integration and related
tests: new unit tests are defined for the integration, and all existing ones are
again executed as regression tests before moving to next task. In this task, all
contextual statements are taken into account and all necessary alignment axioms
are defined. The module is now under the complete control and editing of the
pair in charge of the integration. The products of this tasks are new unit tests
and alignment axioms, all properly documented in the wiki.

Task 12. Release new version of the ontology. Once all unit tests have
been passed, a new version of the ontology can be released.

3 XD tools for the NeOn toolkit

The eXtreme Design plugin for NeOn Toolkit11 (XD tool) supports pattern-
based ontology design. Its current version12, focusses on XD with CPs, and sup-
ports some of the tasks described in Section 2. The main goal of XD tool is to
improve the user experience with ontology design editors by providing them with
a new interaction approach to ontology design. Instead of performing language-
oriented operations e.g. instantiate a class, define a subclass, etc., the designer
handles “pieces” of ontologies i.e. CPs, and is helped in performing modular
design and applying design good practices.
The tool provide an Eclipse perspective, named “eXtreme Design”, that includes

11 http://www.neon-toolkit.org
12 Available at http://stlab.istc.cnr.it/stlab/Download

93

12

the following components: CP browser and CP details view, XD annotation di-
alog, XD selector, XD assistant, XD wizards. In the following sections, these
components are described in detail.

3.1 The CP browser and CP details view

The CP browser relies on a remote connection to registries of CPs. By default,
XD tool allows to browse all CPs available at ontologydesignpatterns.org. The
repository of CPs is visualized according to a semantic description based on the
codolight13 ontology. This approach makes the XD tool able to easily add new
repositories to the browser, once it is provided with a codolight-based OWL
description of them. This view allows the user to browse and select CPs as
shown in Figure 5(a). The CP details view shows all available annotations of the
selected CP. From the CP browser, a CP can be specialized and imported in the
ontology under development.

(a) CP browser. (b) XD annotation dialog.

Fig. 5. XD browser and annotation dialog.

3.2 XD annotation dialog

The XD annotation dialog, shown in Figure 5, supports multilingual annotation
of ontology modules or CPs. This dialog supports a number of default vocab-
ularies, and custom ones can be added. One of the vocabularies available by
13 http://ontologydesignpatterns.org/cpont/codo/codolight.owl

94

13

default is the CP annotation schema14, an OWL ontology particularly suited for
annotating CPs.

3.3 XD selector: pattern selection support

The XD selector provides the infrastructure for plugging into XD a component
implementing a matching/searching algorithm that starting from a CQ gives
as output a selection of candidate CPs. Currently only the APIs have been
implemented, we are working at two proofs of concept components: an instance
of Watson [10] specific for CPs, and a new version of OntoCase [2].

3.4 The XD assistant: support for design good practices

This component is able to provide the user with feedback related to possible
mistakes and suggestions on good practices in a certain modeling situation. The
XD assistant has a plugin-based architecture that make it easy to extend the
help elements based on new emerging good/bad practices.
The XD assistant communicates two types of messages to the user: (i) Warn-
ings: these messages are visualized when there is a strong suspect of wrong
design. E.g. there is an anti-pattern in the module; (ii) Suggestions: these mes-
sages are visualized in order to suggest axioms currently missing in the module,
that could improve the design.

3.5 XD wizards

XD also features a set of wizards. At the moment it includes a wizard for sup-
porting CP specialization. The wizard can be accessed in the CP browser view,

(a) Step 3: create special-
ized entities.

(b) Step 4: check state-
ments that are true.

Fig. 6. Some steps of XD specialization wizard

by the command “specialized” included in the contextual menu that can be acti-
vated by right.clicking on the CP to be specialized (selected from the repository).
14 http://ontologydesignpatterns.org/schemas/cpannotationschema.owl

95

14

The wizard guides the user through the following steps:

Step 1. The user selects the project and the target ontology (if any). Addi-
tionally, the user has to check one of three possible results that can be produced
by the wizard:(i) Create a new module/CP and import it in the target ontology ;
(ii) Create a new module/CP and store it in the indicated project ; (iii) Merge the
resulting entities in the target ontology.

Step 2. All entity leaves are displayed to the user that is invited to select
the entities to be specialized.

Step 3. For each selected entity the user creates the new specific one as shown
in Figure 6(a).

Step 4. The wizard suggests possible axioms that can be added to the on-
tology by means of natural language statements. The users can automatically
produce these additional axioms by selecting the assertions that they consider
“true” in their context. This step of the wizard is depicted in Figure 6(b).

Step 5. Finally, an overview of natural language assertions corresponding to
the formal axioms stated in the developed module is shown. This step has the
aim of giving the users the possibility to review the result before to produce
the module. They can always go back to a certain step in order to fix possible
mistakes.

4 Conclusion and future work

In this paper, we have discussed eXtreme Design (XD), an approach to on-
tology design based on the application, exploitation, and definition of ontology
design patterns (ODPs). In more detail, we have presented two main contri-
butions: a collaborative, incremental, and iterative method for pattern-based
ontology design; and a first version of the XD tool, a NeOn Toolkit plugin that
currently supports CP repository browsing and selection, a good practice assis-
tant, and a wizard for CPs’ specialization.
XD main principles are collaboration, integration, testing, and the extensive
use of CPs. XD has been inspired by good practices typically adopted by the
eXtreme Programming (XP) [11] software development methodology, such as
pair programming, and customer involvement. While a rigorous evaluation of
the whole methodology is still in our future plans, the effectiveness of CPs in
ontology design has been rigorously evaluated in [5] where, however, XD has
been used as reference development guidelines. Furthermore, initial question-
naires and informal discussions made emerge that the perception of the trainees
with respect to the method is positive.
In order to ease the execution of the method some automatic support is needed.
For example, matching CQs with GUCs is a complex task and automatic support

96

15

for filtering candidate CPs is necessary in order to exploit at best the evolv-
ing repositories of CPs. For addressing this type of needs, we have developed
a NeOn Toolkit plugin, named “XD tool”, that currently support CP brows-
ing, annotation, and specialization. Furthermore, it provides APIs for pluggin-in
components that implement matching algorithms. A lot of work is still ongoing,
including the development of two components supporting matching/selection
of CPs. As future work, we have planned to continue with XD tool develop-
ment, and to conduct frequent user studies in order to evaluate and improve the
methodology as well as to collect feedback and suggestions on the XD tool.

References

1. V. R. Basili, G. Caldiera, and D. Rombach. Experience Factory, pages 469–476.
Wiley & Sons, 1994.

2. E. Blomqvist. Ontocase - automatic ontology enrichment based on ontology design
patterns. In A. Bernstein and D. Karger, editors, To appear in Proceedings of the
8th International Semantic Web Conference (ISWC 2009), 2009.

3. P. Clark and B. Porter. Building concept representations from reusable compo-
nents. In Proceedings of AAAI’97, pages 369–376. AAAI press, 1997.

4. E. Daga, V. Presutti, and A. Salvati. http: //ontologydesignpatterns.org and eval-
uation wikiflow. In A. Gangemi, J. Keizer, V. Presutti, and H. Stoermer, editors,
SWAP, volume 426 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

5. Eva Blomqvist and Aldo Gangemi and Valentina Presutti. Experiments on Pattern-
based Ontology Design. In The Fifth International Conference on Knowledge Cap-
ture, 2009.

6. A. Gangemi. Ontology Design Patterns for Semantic Web Content. In Proceedings
of the 4th International Semantic Web Conference, pages 262–276. Springer, 2005.

7. V. P. A. Gangemi. Ontology design patterns. In R. S. S. Staab, editor, Handbook
of Ontologies, International Handbooks on Information Systems. Springer, 2nd
edition, 2009.

8. M. Gruninger and M. Fox. The role of competency questions in enterprise engi-
neering, 1994.

9. S. Pinto, S. Staab, and C. Tempich. DILIGENT: Towards a fine-grained method-
ology for Distributed Loosely-controllled and evolvInG Engineering of oNTologies.
In Proceedings of ECAI-2004, 2004.

10. M. Sabou, C. Baldassarre, L. Gridinoc, S. Angeletou, E. Motta, M. d’Aquin, and
M. Dzbor. Watson: A gateway for the semantic web. In ESWC 2007 poster session,
June 2007-06.

11. J. Shore and S. Warden. The Art of Agile Development. O’Reilly, Sebastopol, CA,
USA, 2007.

12. C. G. von Wangenheim, K.-D. Althoff, and R. M. Barcia. Goal-oriented and
similarity-based retrieval of software engineering experienceware. In G. Ruhe and
F. Bomarius, editors, SEKE, volume 1756 of Lecture Notes in Computer Science,
pages 118–141. Springer, 1999.

13. D. Vrandečić and A. Gangemi. Unit tests for ontologies. In M. Jarrar, C. Os-
tyn, W. Ceusters, and A. Persidis, editors, Proceedings of the 1st International
Workshop on Ontology content and evaluation in Enterprise, LNCS, Montpellier,
France, October 2006. Springer.

97

Part 2: Patterns

Foreword

These proceedings contain descriptions of patterns accepted at the first Workshop
on Ontology Patterns held during the 11th International Semantic Web Conference
near Washington DC in October 2009. Besides regular papers we proposed authors to
submit ontology patterns. The ontology design patterns portal provides a natural way
to describe and share ontology design patterns. The portal reviewing facility provides
evaluation means ensuring quality control over the ontology design patterns described
on the portal. The patterns accepted at the workshop and presented in these
proceedings can thus also be found on the portal.

We distinguish two types of patterns accepted for publication: patterns accepted for
discussion during the workshop, and patterns accepted for a poster presentation
session also to be held during the workshop. It would for sure have been interesting to
discuss all the patterns published in this proceedings as they all deserve attention and
questioning. However time constraints made us select the three patterns we
considered likely to raise the most lively discussions. We tried to consider for
discussion patterns which, by their type (following the ODP typology:
http://ontologydesignpatterns.org/wiki/OPTypes), and by the kind of problem they try
to solve, are representative of the patterns accepted for publication at the workshop.

The submissions can be split in three clearly distinct categories. The first category
of patterns is constituted of re-engineering patters. These patterns propose methods, or
algorithms, to transform a structured or semi-structured data model into an ontology.
A second categorize is constituted of evolution and inconsistency resolution patterns.
These patterns are particularly useful when a revision of an ontology introduce
inconsistency, either in the ontology, or in the knowledge base. Evolution patterns
ensure a consistent revision of the ontology, while inconsistency resolution patterns
repair an introduced inconsistency. A third category of pattern is constituted of anti-
patterns. These patterns actually model bad modeling in ontologies. Anti-patterns are
particularly useful for improving the quality of existing ontologies. They can arise
because of no usage of a proper design methodology during the ontology construction
process. These three categories of patterns are reflected both in poster presentations
and in the patterns selected for discussion during the workshop.

Patterns accepted for poster presentation:
� ConceptTerms - Pierre-Yves Vandenbussche and Jean Charlet
� Negative Property Assertion Pattern (NPAs) - Olaf Noppens
� Concept Partition Pattern - Olaf Noppens
� Pattern for Re-engineering a Classification Scheme, Which Follows the Path

Enumeration Data Model, to a Taxonomy - Boris Villazon-Terrazas, Mari
Carmen Suarez-Figueroa, and Asuncion Gomez-Perez

� Pattern for Re-engineering a Classification Scheme, Which Follows the
Adjacency List Data Model, to a Taxonomy - Boris Villazon-Terrazas, Mari
Carmen Suarez-Figueroa, and Asuncion Gomez-Perez

98

Patterns accepted for discussion during the workshop:
� Define Hybrid Class Resolving Disjointness Due to Subsumption - Rim

Djedidi and Marie-Aude Aufaure
� OnlynessIsLoneliness (OIL) - Oscar Corcho and Catherine Roussey
� Pattern for Re-engineering a Term-based Thesaurus, Which Follows the

Record-based Model, to a Lightweight Ontology - Boris Villazon-Terrazas,
Mari Carmen Suarez-Figueroa, and Asuncion Gomez-Perez

We would like to thank the authors who both submitted the patterns descriptions
and entered patterns on the ODP portal.

We would also like to thank reviewers who take time to understand and discuss the
submitted patterns. Judging the quality of a pattern is not an easy task. We therefore
tried to focus the evaluation on the clarity of description of the patterns, rather than on
their potential usefulness, which will probably be proven together with time and
experience of usage.

The patterns chairs,

Eva Blomqvist and François Scharffe
October 2009

99

Define Hybrid Class Resolving Disjointness Due to
Subsumption

http://ontologydesignpatterns.org/wiki/Submissions:Define_Hybrid_Class_Re
solving_Disjointness_due_to_Subsumption

Rim Djedidi1 and Marie-Aude Aufaure2

1 Computer Science Department, Supélec Campus de Gif
Plateau du Moulon – 3, rue Joliot Curie – 91192 Gif sur Yvette Cedex, France

rim.djedidi@supelec.fr
2 MAS Laboratory, SAP Business Object Chair –Centrale Paris

Grande Voie des Vignes, F-92295 Châtenay-Malabry Cedex, France
marie-aude.aufaure@ecp.fr

1 Introduction

The pattern “Define Hybrid Class Resolving Disjointness due to Subsumption” is
proposed as a Logical Ontology Design Pattern (Logical OP) solving a problem of
disjointness inconsistency caused by a subsumption relation. Further away from
solving design problems where the primitives of the representation language do not
directly support certain logical constructs, this pattern helps resolving a logical
inconsistency triggered by a situation of disjoint classes subsuming a common sub-
class. The solution presented by the pattern resolves the inconsistency while
preserving existing knowledge, i.e. a resolution alternative avoiding axiom deletion.

2 Pattern

In this section, we specify the problem that the pattern deals with and the
requirements covered by it; we detail the description of the solution given by this
pattern and the consequences of its application; and we illustrate the pattern by an
example problem and its corresponding solution.

2.1 Problem

The pattern “Define Hybrid Class Resolving Disjointness due to Subsumption” is
proposed to solve a problem of disjointness inconsistency caused by a subsumption
relation. When we need to define – for some modeling issues related to domain of
interest – a class as a sub-class of two disjoint classes, a disjointness inconsistency is
caused.

The problem can be illustrated by the following scenario: let’s consider a class
Sub_Class defined as a sub-class of a class Disjoint_Class 2; and a class

100

2

Disjoint_Class 1 disjoint with the Disjoint_Class 2 (Fig. 1). If we need to add a sub-
class relation between the Sub_Class and the Disjoint_Class 1, this generates a
disjointness inconsistency:
− If the extension of the Sub_Class contains individuals instantiating this sub-class,

the logical inconsistency will be extended to the knowledge base;
− If the Sub_Class is not instantiated to individuals, it will be diagnosed as an

unsatisfiable class.

Fig. 1. Graphical illustration of the problem the pattern deals with.

To solve this inconsistency, one can think about deleting the disjointness axiom.
However, this can alter the semantics expressed in the ontology, and negatively affect
consistency checking and automatic evaluation of existing individuals as explained in
[1].

This pattern tackles the questions of how to resolve the inconsistency caused by
such kind of subsumption while preserving existing knowledge.

Intent The purpose of this pattern is to support the semantics of a subsumption
defined under two disjoint classes and resolve the resulting inconsistency.

Covered Requirements The pattern solves a problem of disjointness inconsistency
caused by a subsumption relation without deleting the disjointness axiom so that
existing knowledge can be preserved.

2.2 Solution

The pattern resolves a disjointness inconsistency –due to a subsumption–by defining a
Hybrid Class based on the definition of disjoint classes implicated in the
inconsistency; and redistributing correctly sub-class relations between the sub-class,
the hybrid class, and the most specific common super-class of the disjoint classes
implicated. The definition of the Hybrid Class is the union (OR) of the definitions of
the disjoint classes.

The application of the solution can be described by the following process (Fig. 2):
1. The pattern defines a Hybrid Class as a union of the definitions of the disjoint

classes implicated in the inconsistency to be resolved;
2. The pattern defines a subsumption between the most specific common super-class

of the disjoint classes implicated in the inconsistency, and the Hybrid Class
created;

Disjoint_Class 2Disjoint_Class 1

Sub_Class

{Disjoint}

101

3

3. The pattern defines a subsumption between the Hybrid Class and the sub-class
involved in the inconsistency.

Fig. 2. Graphical representation of the proposed pattern.

Consequences The application of the pattern resolves the disjointness inconsistency
(even if the involved sub-class is instantiated by individuals) and preserves existing
knowledge. As a Logical OP, this pattern is independent from a specific domain of
interest. However, it depends on the expressivity of the logical formalism used for the
representation of the ontology. Therefore, the language of the targeted ontology
should allow expressing class union.

2.3 Example

To explain pattern application, we present in this section, an example problem and its
corresponding solution according to the pattern.

Example Problem Let’s consider the OWL ontology O defined by the following
axioms:

{Animal � Fauna-Flora, Plant � Fauna-Flora, Carnivorous-Plant
� Plant, Plant � �Animal}

If we apply a change to the ontology defining Carnivorous-Plant class as a sub-
class of the class Animal, we cause a disjointness inconsistency. The proposed pattern
resolves this kind of inconsistency.

Example Solution The application of the pattern to resolve the example above is
performed as follow:
1. The pattern defines a class Animal_Plant as a union of the definitions of the

disjoint classes Animal and Plant;
2. The pattern defines a subsumption between the most specific common super-class

of the disjoint classes Fauna-Flora and the hybrid class created Animal_Plant;

Common_Super_Class

Disjoint_Class 1

Sub_Class

Disjoint_Class 2

{Disjoint}

HybridClass

102

4

3. The pattern defines a subsumption between the defined hybrid class Animal_Plant
and the sub-class Carnivorous-Plant involved in the inconsistency.

Fig. 3. Illustration of an example of problem and its corresponding solution.

3 Pattern Usage

The proposed – Logical OP – pattern “Define Hybrid Class Resolving Disjointness
due to Subsumption” is applied as an Alternative Resolution Pattern in an ontology
evolution approach OONNTTOO--EEVVOOAALL, guided by Change Management Patterns (CMP)
[2]. CMP patterns drive and control the change management process at three key
phases: change specification, change analysis, and change resolution, by modeling
three categories of patterns: Change Patterns classifying types of changes,
Inconsistency Patterns classifying types of logical inconsistencies, and Alternative
Patterns classifying types of inconsistency resolution alternatives.

4 Summary and Future Work

The purpose of this pattern is to support the semantics of a subsumption defined under
two disjoint classes and resolve the resulting inconsistency without removing existing
knowledge. This pattern can be extended and adapted to resolve disjointness
inconsistency due to instantiation.

References

1. Völker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning Disjointness. In F., Enrico, K.,
Michael, May. Wolfgang (Eds.). Proceedings of the 4th European Semantic Web
Conference, ESWC 2007. LNCS: Vol. 4519 pp: 175-189. (2007)

2. Djedidi, R., Aufaure, M-A.: Ontology Change Management. In: A. Paschke, H. Weigand,
W. Behrendt, K. Tochtermann, T. Pellegrini (Eds.), I-Semantics 2009, Proceedings of I-
KNOW ’09 and I-SEMANTICS ’09, ISBN 978-3-85125-060-2, pp. 611--621, Verlag der
Technischen Universitt Graz. (2009).

Fauna-Flora

Animal

Carnivorous-Plant

Plant

{Disjoint}

Fauna-Flora

Animal

Carnivorous_Plant

Plant

{Disjoint}

Animal_Plant

103

OnlynessIsLoneliness (OIL)
http://ontologydesignpatterns.org/wiki/Submissions:

OnlynessIsLoneliness_(OIL)

Oscar Corcho1 and Catherine Roussey23

1 Ontology Engineering Group, Departamento de Inteligencia Artificial, Universidad
Politécnica de Madrid, Spain

ocorcho@fi.upm.es,
WWW home page:

http://www.dia.fi.upm.es/index.php?page=oscar-corcho&hl=en_US
2 Cemagref, 24 Av. des Landais, BP 50085, 63172 Aubiére, France

catherine.roussey@cemagref.fr,
WWW home page: http://www.cemagref.fr/

3 Université de Lyon, CNRS, Université Lyon 1, LIRIS UMR5205,
Villeurbanne, France

catherine.roussey@liris.cnrs.fr,
WWW home page: http://liris.cnrs.fr/membres?idn=croussey

1 Introduction

Our work is based on the debugging process of real ontologies that have been
developed by domain experts, who are not necessarily too familiar with DL, and
hence can misuse DL constructors and misunderstand the semantics of some
OWL expressions, leading to unwanted unsatisfiable classes. Our patterns were
first found during the debugging process of a medium-sized OWL ontology (165
classes) developed by a domain expert in the area of hydrology [9]. The first
version of this ontology had a total of 114 unsatisfiable classes. The information
provided by the debugging systems used ([3], [5]) on (root) unsatisfiable classes
was not easily understandable by domain experts to find the reasons for their
unsatisfiability. And in several occasions during the debugging process the gen-
eration of justifications for unsatisfiability took several hours, what made these
tools hard to use, confirming the results described in [8]. Using this debugging
process and several other real ontologies debugging one, we found out that in
several occasions domain experts were just changing axioms from the original
ontology in a somehow random manner, even changing the intended meaning of
the definitions instead of correcting errors in their formalisations.

We have identified a set of patterns that are commonly used by domain
experts in their DL formalisations and OWL implementations, and that nor-
mally result in unsatisfiable classes or modelling errors ([1], [7]). Thus they are
antipatterns. [6] define antipatterns as patterns that appear obvious but are in-
effective or far from optimal in practice, representing worst practice about how
to structure and build software. We also have made an effort to identify common
alternatives for providing solutions to them, so that they can be used by domain
experts to debug their ontologies.

104

All these antipatterns come from a misuse and misunderstanding of DL ex-
pressions by ontology developers. Thus they are all Logical AntiPatterns (LAP):
they are independent from a specific domain of interest, but dependent on the
expressivity of the logical formalism used for the representation.

2 Pattern

2.1 Problem

The ontology developer created a universal restriction to say that C1 instances
can only be linked with property R to C2 instances. Next, a new universal
restriction is added saying that C1 instances can only be linked with R to C3

instances, with C2 and C3 disjoint. Figure 1 illustrates this problem: grey squares
represent instances of C2 � C3 that cannot exist. In general, this is because the
ontology developer forgot the previous axiom in the same class or in any of the
parent classes.

Fig. 1. A graphical representation of OIL antipattern.

C1 � ∀R.(C2);C1 � ∀R.(C3);Disj(C2, C3); 4

Notice that to be detectable, R property must have at least a value, normally
specified as a (minimum) cardinality restriction for that class, or with existential
restrictions.

Covers Requirements When this antipattern appears during the debugging
process, you have to first explain to the domain expert the meaning of this
formalisation using a schema like the one of the Figure 1. Then you could ask

4 This does not mean that the ontology developer has explicitly expressed that C2 and
C3 are disjoint, but that these two concepts are determined as disjoint from each
other by a reasoner. We use this notation as a shorthand for C2 � C3 � ⊥.

105

him some questions to find out where is the problem. For example, you could
ask:

- Should C1 be linked with the R property to C2?
- Should C1 be linked with the R property to C3?
- Does C1 have to be linked only to C2 with the R property?
- Does C1 have to be linked only to C3 with the R property?
- Are you sure that C2 and C3 are disjoint?

2.2 Solution

If it makes sense, we propose the domain expert to transform the two universal
restrictions into only one that refers to the logical disjunction of C2 and C3.
Another alternative solution, which is used by most part of automatic debugging
tool is to remove one of the axioms.

———————————C1 � ∀R.C2;C1 � ∀R.C3;Disj(C2, C3);⇒ C1 � ∀R.(C2 � C3);

2.3 Example

The following section describes two definitions from HydrOntology where this
antipattern can be found and their English translations. Notice that in each
example, the antipattern corresponds to a part of the class definition.

Example Problem about Transitional Water
Aguas de Transición � ∀está próxima.Aguas Marinas �
∀está próxima.Desembocadura� = 1está próxima.�;

Transitional Water � ∀is nearby.Sea Water�∀is nearby.River Mouth�
= 1is nearby.�;

Example Solution about Transitional Water
Aguas de Transición � ∀está próxima.(Aguas Marinas �Desembocadura) �

= 1está próxima.�;
Transitional Water � ∀is nearby.(Sea Water �River Mouth) �

= 1is nearby.�

Example Problem about Wet Zone
Zona Humeda � ∀Humedal � ∀es inundada.Aguas Marinas �
∀es inundada.Aguas Superficiales� ≥ 1es inundada.�;

Wet Zone � ∀Wetlands � ∀are inundated.Sea Water �
∀are inundated.Surface Water� ≥ 1are inundated.�;

Example Solution about Wet Zone
Zona Humeda � ∀Humedal �
∀es inundada.(Aguas Marinas �Aguas Superficiales)� ≥ 1es inundada.�;

Wet Zone � ∀Wetlands�∀are inundated.(Sea Water�Surface Water)�
≥ 1are inundated.�;

106

2.4 Related Resources and Pattern Usage

All the information related to the debugging of the Hydrontology ontology can
be found in urlhttp://www.dia.fi.upm.es/ ocorcho/OWLDebugging/. The de-
bugging strategy using this antipattern is described in [2]. Other antipatterns
found during the debugging task are defined in [1] and [7]

3 Summary and Future Work

This antipattern can be found in ontologies and may cause inconsistency prob-
lems. We provide a solution to it, so that it can be used by domain experts to
debug their ontologies. In the future, we aim at implementing additional tools
to help in the identification of antipatterns in well-known inconsistent ontolo-
gies (e.g., TAMBIS). For the time being we have started applying the OPPL
language [4] for this task, with promising results.

References

1. Corcho O., Roussey C., Vilches Blazquez L.M.: Catalogue of Anti-Patterns for for-
mal Ontology debugging. In Proceedings of Construction d’ontologies : vers un guide
des bonnes pratiques, AFIA 2009, Hammamet, Tunisie. (2009).

2. Corcho O., Roussey C., Vilches Blazquez L.M.: Pattern-based OWL Ontology
Debugging Guidelines. In Proceedings of 1st Workshop on Ontology Patterns
(WOP2009), Washington DC, USA. (2009).

3. Horridge M, Parsia B, Sattler U.: Laconic and Precise Justifications in OWL. In
Proceedings of the 7th International Semantic Web Conference (ISWC), Karlsruhe,
Germany; LNCS 5318: 323-338. (2008).

4. Iannone L, Rector A, Stevens R.: Embedding Knowledge Patterns into OWL. In
proceedings of the 6th European Semantic Web Conference (ESWC2009), Crete,
Greece. The Semantic Web: Research and Applications (2009), pp. 218-232

5. Kalyanpur A, Parsia B, Sirin E, Cuenca-Grau B.: Repairing Unsatisfiable Classes
in OWL Ontologies. In Proceedings of the 3rd European Semantic Web Conference
(ESWC), Budva, Montenegro; LNCS 4011: 170-184 (2006)

6. Koenig A.: Patterns and Antipatterns. Journal of Object-Oriented Programming
8(1):46-48. (1995)

7. Roussey C., Corcho O., Vilches Blazquez L.M.: A Catalogue of OWL Ontology
AntiPatterns. In Proceedings of the Fifth International Conference on Knowledge
Capture KCAP 2009, Yolanda Gil, Natasha Noy ed. Redondo Beach, California,
USA. ISBN 978-1-60558-658-8. pp. 205-206 (2009)

8. Stuckenschmidt H.: Debugging OWL Ontologies - a Reality Check. In Proceedings
of the 6th International Workshop on Evaluation of Ontology-based Tools and the
Semantic Web Service Challenge (EON-SWSC-2008), Tenerife, Spain. (2008).

9. Vilches-Blázquez LM, Bernabé-Poveda MA, Suárez-Figueroa MC, Gómez-Pérez A,
Rodrguez-Pascual AF: Towntology & hydrOntology: Relationship between Urban
and Hydrographic Features in the Geographic Information Domain. In Ontologies
for Urban Development. Studies in Computational Intelligence, vol. 61, Springer:
73-84. (2007)

107

Pattern for Re-engineering a Term-based
Thesaurus, Which Follows the Record-based

Model, to a Lightweight Ontology
http://ontologydesignpatterns.org/wiki/Submissions:Term-based - record-

based model - thesaurus to lightweight ontology

Boris Villazón-Terrazas1, Mari Carmen Suárez-Figueroa1, and Asunción
Gómez-Pérez1

Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de
Informática, Universidad Politécnica de Madrid, Spain

{bvillazon,mcsuarez,asun}@fi.upm.es,
WWW home page: http://www.oeg-upm.net/

1 Introduction

This pattern for re-engineering non-ontological resources (PR-NOR) fits in the
Schema Re-engineering Category proposed by [3]. The pattern defines a proce-
dure that transforms the term-based thesaurus components into ontology rep-
resentational primitives. This pattern comes from the experience of ontology
engineers in developing ontologies using thesauri in several projects (SEEMP1,
NeOn2, and Knowledge Web3). The pattern is included in a pool of patterns,
which is a key element of our method for re-engineering non-ontological resources
into ontologies [2]. The patterns generate the ontologies at a conceptualization
level, independent of the ontology implementation language.

2 Pattern

Problem

Re-engineering a term-based thesaurus, which follows the record-based model, to design a
lightweight ontology.

Non-Ontological Resource

A non-ontological resource holds a term-based the-
saurus which follows the record-based model. A
thesaurus represents the knowledge of a domain
with a collection of terms and a limited set of re-
lations between them.
The record-based data model [4] is a denormal-
ized structure, uses a record for every term with
the information about the term, such as synonyms,
broader, narrower and related terms.

Applicability

The semantics of the relation between narrower and broader terms are subClassOf.

1
http://www.seemp.org

2
http://www.neon-project.org

3
http://knowledgeweb.semanticweb.org

108

Ontology Generated

The ontology generated will be based on the
lightweight ontology architectural pattern (AP-
LW-01) [5].
Each thesaurus term is mapped to a class. A
subClassOf relation is defined between the new
classes for the BT/NT relation. A relatedClass re-
lation is defined between the new classes for the
RT relation. For the UF/USE relations the Syn-
onymOrEquivalence (SOE) pattern [1] is applied.

Process - Solution

1. Identify the records that contain thesaurus
terms without a broader term.

2. For each one of the above identified thesaurus
terms ti:
2.1. Create the corresponding ontology class,

Ci class, if it is not created yet.
2.2. Identify the thesaurus term, tj , which

are narrower terms of ti. They are refer-
enced in the same record that contains
ti.

2.3. For each one of the above identified the-
saurus term tj :

2.3.1. Create the corresponding ontology
class, Cj class, if it is not created
yet.

2.3.2. Set up the subClassOf relation be-
tween Cj and Ci

2.3.3. Repeat from step 2.2 for cj as a new
ti

2.4. Identify the thesaurus term, tr, which
are related terms of ti. They are refer-
enced in the same record that contains
ti.

2.5. For each one of the above identified the-
saurus term tr:

2.5.1. Create the corresponding ontology
class, Cr class, if it is not created
yet.

2.5.2. Set up the relatedClass relation be-
tween Cr and Ci

2.5.3. Repeat from step 2.4 for tr as a new
ti

2.6. Identify the thesaurus term, tq , which
are equivalent terms of ti. They are ref-
erenced in the same record that contains
ti.

2.7. For each one of the above identified the-
saurus term tq :

2.7.1. Apply the SynonymOrEquivalence
(SOE) pattern.

Example

Suppose that someone wants to build a lightweight ontology based on the European Training
Thesaurus (ETT), which is a term-based thesaurus and it follows the record-based model.

109

Non-Ontological Resource

The European Training Thesaurus (ETT) consti-
tutes the controlled vocabulary of reference in the
field of vocational education and training (VET)
in Europe. The relation semantics between the
sub-ordinate and the super-ordinate concepts is
subClassOf. This classification scheme is available
at http://libserver.cedefop.europa.eu/ett/en/

Ontology Generated

The ontology generated will be based on the
lightweight ontology architectural pattern (AP-
LW-01) [5].
Each thesaurus term is mapped to a class. A
subClassOf relation is defined between the new
classes for the BT/NT relation. A relatedClass re-
lation is defined between the new classes for the
RT relation. For the UF/USE relations the Syn-
onymOrEquivalence (SOE) pattern [1] is applied.

Process - Solution

1. Create the learning class and the personal
development class.

2. Create the competence class and assert that
competence is subClassOf learning.

3. Create the performance class and assert that
performance is subClassOf development.

4. Assert that achievement is label of the
performance class.

5. Assert that competence is relatedClass of
performance.

6. Create the skill class and assert that skill
is subClassOf competence.
6.1. Create the efficiency class and as-

sert that efficiency is subClassOf
performance.

6.2. Create the failure class and assert that
failure is subClassOf performance.

6.3. Create the success class and assert that
success is subClassOf performance.

Related Resources

This pattern is related to the architectural pattern AP-LW-01 [5] for modelling a lightweight
ontology.

110

3 Pattern Usage

This pattern is being applied to re-engineer the European Training Thesaurus
(ETT)4 into a Education Ontology5, within the context of the SEEMP project.
It contains over 2500 terms (1550 are descriptors, and 950 non descriptors). This
term-based thesaurus is modelled following the record-based data model.

4 Summary and Future Work

We have presented a pattern for transforming a term-based thesaurus, which is
modelled following a record-based data model, into a lightweight ontology. The
pattern is included in a pool of patterns, which is a key element of our method
for re-engineering non-ontological resources into ontologies [2].

We plan to develop software libraries within a framework that implement the
transformation process suggested by the pattern. Moreover, we will include exter-
nal resources to improve the quality of the resultant ontologies. Finally, we need
to calculate how much effort do we save re-engineering classification schemes us-
ing patterns compared with re-engineering classification schemes without them.

Acknowledgments. This work has been partially supported by the European
Comission projects NeOn(FP6-027595) and SEEMP(FP6-027347), as well as by
an R+D grant from the UPM.

References

1. C. Roussey and O. Corcho. SynonymOrEquivalence (SOE) Pattern.
http://ontologydesignpatterns.org, 2009.

2. A. Garćıa, A. Gómez-Pérez, M. C. Suárez-Figueroa, and B. Villazón-Terrazas. A
Pattern Based Approach for Re-engineering Non-Ontological Resources into On-
tologies. In Proceedings of the 3rd Asian Semantic Web Conference (ASWC2008).
Springer-Verlag, 2008.

3. V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M. C. Surez-Figueroa,
E. Montiel-Ponsoda, and M. Poveda. NeOn Deliverable D2.5.1. A Library of On-
tology Design Patterns: reusable solutions for collaborative design of networked
ontologies. In NeOn Project. http://www.neon-project.org, 2008.

4. D. Soergel. Data models for an integrated thesaurus database. Comatibility and
Integration of Order Systems, 24(3):47–57, 1995.

5. M. C. Suárez-Figueroa, S. Brockmans, A. Gangemi, A. Gómez-Pérez, J. Lehmann,
H. Lewen, V. Presutti, and M. Sabou. Neon modelling components. Technical
report, NeOn project deliverable D5.1.1, 2007.

4 http://libserver.cedefop.europa.eu/ett/en/
5 The ontology will be available at http://droz.dia.fi.upm.es/hrmontology/

111

Pattern for Re-engineering a Classification
Scheme, Which Follows the Path Enumeration

Data Model, to a Taxonomy
http://ontologydesignpatterns.org/wiki/Submissions:Classification scheme -

path enumeration model - to Taxonomy

Boris Villazón-Terrazas1, Mari Carmen Suárez-Figueroa1, and Asunción
Gómez-Pérez1

Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de
Informática, Universidad Politécnica de Madrid, Spain

{bvillazon,mcsuarez,asun}@fi.upm.es,
WWW home page: http://www.oeg-upm.net/

1 Introduction

This pattern for re-engineering non-ontological resources (PR-NOR) fits in the
Schema Re-engineering Category proposed by [3]. The pattern defines a proce-
dure that transforms the classification scheme components into ontology repre-
sentational primitives. This pattern comes from the experience of ontology en-
gineers in developing ontologies using classification schemes in several projects
(SEEMP1, NeOn2, and Knowledge Web3). The pattern is included in a pool of
patterns, which is a key element of our method for re-engineering non-ontological
resources into ontologies [2]. The patterns generate the ontologies at a concep-
tualization level, independent of the ontology implementation language.

2 Pattern

Problem

Re-engineering a classification scheme, which follows the path enumeration model, to design a
taxonomy.

Non-Ontological Resource

A non-ontological resource holds a classification
scheme which follows the path enumeration model.
A classification scheme is a rooted tree of concepts,
in which each concept groups entities by some par-
ticular degree of similarity.
The semantics of the hierarchical relation between
parents and children concepts may vary depend-
ing of the context. The path enumeration data
model [1] for classification schemes take advantage
of that there is one and only one path from the
root to every item in the classification. The path
enumeration model stores that path as string by
concatenating either the edges or the keys of the
classification scheme items in the path.

1
http://www.seemp.org

2
http://www.neon-project.org

3
http://knowledgeweb.semanticweb.org

112

Applicability

The semantics of the relation between parent and children items are subClassOf.
There is not multi-inheritance nor cyclic relations.

Ontology Generated

The ontology generated will be based on the tax-
onomy architectural pattern (AP-TX-01) [4].
Each category in the classification scheme is
mapped to a class, and the semantics of the re-
lationship between children and parent categories
are mapped to subClassOf relations.

Process - Solution

1. Identify the classification scheme items whose
their path enumeration values have the short-
est length, i.e. classification scheme items
without parents.

2. For each one of the above identified classifi-
cation scheme items cei:
2.1. Create the corresponding ontology class,

Ci class.
2.2. Identify the classification scheme items,

cej , which are children of cei, by using
the path enumeration values.

2.3. For each one of the above identified clas-
sification scheme items cej :

2.3.1. Create the corresponding ontology
class, Cj class.

2.3.2. Set up the subClassOf relation be-
tween Cj and Ci.

2.3.3. Repeat from step 2.2 for cej as a
new cei.

3. If there are more than one classification
scheme items without parent cei

3.1. Create an ad-hoc class as the root class
of the ontology.

3.2. Set up the subClassOf relation between
Ci class and the root class.

Example

Suppose that someone wants to build an ontology based on the International Standard
Classification of Occupations (for European Union purposes) ISCO-88 (COM). This classification
scheme follows the path enumeration data model.

Non-Ontological Resource

The International Standard Classification of Oc-
cupations (for European Union purposes), 1988
version: ISCO-88 (COM) published by Eurostat
is modelled with the path enumeration data
model. This classification scheme is available at
http://ec.europa.eu/eurostat/ramon/

113

Ontology Generated

The ontology generated will be based on the tax-
onomy architectural pattern (AP-TX-01) [4].
Each category in the classification scheme is
mapped to a class, and the semantics of the re-
lationship between children and parent categories
are mapped to subClassOf relations.

Process - Solution

1. Create the LEGISLATORS, SENIOR OFFICIALS
AND MANAGERS class.
1.1. Create the Legislators and senior

officials class, and set up the subClas-
sOf relation between the Legislators
and senior officials class and the
LEGISLATORS, SENIOR OFFICIALS AND
MANAGERS class.

1.2. Create the Corporate managers class,
and set up the subClassOf relation be-
tween the Corporate managers class and
the LEGISLATORS, SENIOR OFFICIALS AND
MANAGERS class.

2. Create the PROFESSIONALS class.
3. Create the Occupation class.
4. Set up the subClassOf relation between the

LEGISLATORS, SENIOR OFFICIALS AND MANAGERS
class and the Occupation class.

5. Set up the subClassOf relation between the
PROFESSIONALS class and the Occupation class.

Related Resources

This pattern is related to the architectural pattern TX-AP-01 [4] for modelling a taxonomy.

3 Pattern Usage

This pattern was applied to re-engineer the ISCO-88(COM)4, International Stan-
dard Classification of Occupations (for European Union purposes), into a Oc-
cupation Ontology5, within the context of the SEEMP project. This standard
is a classification scheme which consists of 520 occupations. ISCO-88(COM) is
modelled following the path enumeration data model. Because of the number of
occupations of the ISCO-88(COM) standard, it was not practical to create the
4 Available at http://ec.europa.eu/eurostat/ramon/
5 The ontology is available at http://droz.dia.fi.upm.es/hrmontology/

114

ontology manually. Therefore, we created an ad-hoc wrapper, implemented in
Java, that reads the data from the resource implementation and automatically
creates the corresponding elements of the new ontology following the suggestion
given by the pattern.

4 Summary and Future Work

We have presented a pattern for transforming a classification scheme, which
is modelled following the path enumeration data model, into a taxonomy. The
pattern is included in a pool of patterns, which is a key element of our method
for re-engineering non-ontological resources into ontologies [2].

We plan to develop software libraries within a framework that implement the
transformation process suggested by the pattern. Moreover, we will include exter-
nal resources to improve the quality of the resultant ontologies. Finally, we need
to calculate how much effort do we save re-engineering classification schemes us-
ing patterns compared with re-engineering classification schemes without them.

Acknowledgments. This work has been partially supported by the European
Comission projects NeOn(FP6-027595) and SEEMP(FP6-027347), as well as by
an R+D grant from the UPM.

References

1. D. Brandon. Recursive database structures. Journal of Computing Sciences in
Colleges, 2005.

2. A. Garćıa, A. Gómez-Pérez, M. C. Suárez-Figueroa, and B. Villazón-Terrazas. A
Pattern Based Approach for Re-engineering Non-Ontological Resources into On-
tologies. In Proceedings of the 3rd Asian Semantic Web Conference (ASWC2008).
Springer-Verlag, 2008.

3. V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M. C. Surez-Figueroa,
E. Montiel-Ponsoda, and M. Poveda. NeOn Deliverable D2.5.1. A Library of On-
tology Design Patterns: reusable solutions for collaborative design of networked
ontologies. In NeOn Project. http://www.neon-project.org, 2008.

4. M. C. Suárez-Figueroa, S. Brockmans, A. Gangemi, A. Gómez-Pérez, J. Lehmann,
H. Lewen, V. Presutti, and M. Sabou. Neon modelling components. Technical
report, NeOn project deliverable D5.1.1, 2007.

115

Pattern for Re-engineering a Classification
Scheme, Which Follows the Adjacency List Data

Model, to a Taxonomy
http://ontologydesignpatterns.org/wiki/Submissions:Classification scheme -

adjacency list model - to Taxonomy

Boris Villazón-Terrazas1, Mari Carmen Suárez-Figueroa1, and Asunción
Gómez-Pérez1

Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de
Informática, Universidad Politécnica de Madrid, Spain

{bvillazon,mcsuarez,asun}@fi.upm.es,
WWW home page: http://www.oeg-upm.net/

1 Introduction

This pattern for re-engineering non-ontological resources (PR-NOR) fits in the
Schema Re-engineering Category proposed by [3]. The pattern defines a proce-
dure that transforms the classification scheme components into ontology repre-
sentational primitives. This pattern comes from the experience of ontology en-
gineers in developing ontologies using classification schemes in several projects
(SEEMP1, NeOn2, and Knowledge Web3). The pattern is included in a pool of
patterns, which is a key element of our method for re-engineering non-ontological
resources into ontologies [2]. The patterns generate the ontologies at a concep-
tualization level, independent of the ontology implementation language.

2 Pattern

Problem

Re-engineering a classification scheme, which follows the adjacency list model, to design a
taxonomy.

Non-Ontological Resource

A non-ontological resource holds a classification
scheme which follows the adjacency list model. A
classification scheme is a rooted tree of concepts,
in which each concept groups entities by some par-
ticular degree of similarity.
The semantics of the hierarchical relation between
parents and children concepts may vary depending
of the context. The adjacency list data model [1]
for hierarchical classifications proposes to create
an entity which holds a list of items with a linking
column associated to their parent items.

1
http://www.seemp.org

2
http://www.neon-project.org

3
http://knowledgeweb.semanticweb.org

116

Applicability

The semantics of the relation between parent and children items are subClassOf.
There is not multi-inheritance nor cyclic relations.

Ontology Generated

The ontology generated will be based on the tax-
onomy architectural pattern (AP-TX-01) [4].
Each category in the classification scheme is
mapped to a class, and the semantics of the re-
lationship between children and parent categories
are mapped to subClassOf relations.

Process - Solution

1. Identify the classification scheme items which
do not have a parent key value, i.e. classifica-
tion scheme items without parents.

2. For each one of the above identified classifi-
cation scheme items cei:
2.1. Create the corresponding ontology class,

Ci class.
2.2. Identify the classification scheme items,

cej , which are children of cei, by using
the parent key values.

2.3. For each one of the above identified clas-
sification scheme items cej :

2.3.1. Create the corresponding ontology
class, Cj class.

2.3.2. Set up the subClassOf relation be-
tween Cj and Ci.

2.3.3. Repeat from step 2.2 for cej as a
new cei.

3. If there are more than one classification
scheme items without parent cei

3.1. Create an ad-hoc class as the root class
of the ontology.

3.2. Set up the subClassOf relation between
Ci class and the root class.

Example

Suppose that someone wants to build an ontology based on the water areas classification published
by FAO. This classification scheme follows the adjacency list data model.

Non-Ontological Resource

The FAO classification for water areas groups
them according to some different criteria as envi-
ronment, statistics, and jurisdiction, among oth-
ers. This classification scheme is available at
http://www.fao.org/figis/servlet/RefServlet

117

Ontology Generated

The ontology generated will be based on the tax-
onomy architectural pattern (AP-TX-01) [4].
Each category in the classification scheme is
mapped to a class, and the semantics of the re-
lationship between children and parent categories
are mapped to subClassOf relations.

Process - Solution

1. Create the Water area class.
2. Create the Environmental area class, and set

up the subClassOf relation between the
Environmental area class and the Water area
class.
2.1. Create the Inland/marine class, and

set up the subClassOf relation be-
tween the Inland/marine class and the
Environmental area class.

2.2. Create the Ocean class, and set up the
subClassOf relation between the Ocean
class and the Environmental area class.

2.3. Create the North/South/Equatorial
class, and set up the sub-
ClassOf relation between the
North/South/Equatorial class and
the Environmental area class.

3. Create the Fishing Statistical area class,
and set up the subClassOf relation between
the Fishing Statistical area class and the
Water area class.
3.1. Create the FAO statistical area class,

and set up the subClassOf relation
between the FAO statistical area class
and the Fishing Statistical area class.

3.2. Create the Areal grid system class, and
set up the subClassOf relation be-
tween the Areal grid system class and
the Fishing Statistical area class.

4. Create the Jurisdiction area class, and set
up the subClassOf relation between the
Jurisdiction area class and the Water area
class.

Related Resources

This pattern is related to the architectural pattern TX-AP-01 [4] for modelling a taxonomy.

3 Pattern Usage

This pattern was applied to re-engineer the ISTAT4, geography italian stan-
dard, into a Geography Ontology5, within the context of the SEEMP project.
This standard is a classification scheme which consists of 4 divisions, 20 regions
and 106 provinces. ISTAT is modelled following the adjacency list data model.
Because of the number of divisions, regions and provinces of the ISTAT standard,
it was not practical to create the ontology manually. Therefore, we created an

4 http://www.istat.it/
5 The ontology is available at http://droz.dia.fi.upm.es/hrmontology/

118

ad-hoc wrapper, implemented in Java, that reads the data from the resource im-
plementation and automatically creates the corresponding elements of the new
ontology following the suggestion given by the pattern.

4 Summary and Future Work

We have presented a pattern for transforming a classification scheme, which is
modelled following the adjacency list data model, into a taxonomy. The pattern
is included in a pool of patterns, which is a key element of our method for
re-engineering non-ontological resources into ontologies [2].

We plan to develop software libraries within a framework that implement the
transformation process suggested by the pattern. Moreover, we will include exter-
nal resources to improve the quality of the resultant ontologies. Finally, we need
to calculate how much effort do we save re-engineering classification schemes us-
ing patterns compared with re-engineering classification schemes without them.

Acknowledgments. This work has been partially supported by the European
Comission projects NeOn(FP6-027595) and SEEMP(FP6-027347), as well as by
an R+D grant from the UPM.

References

1. D. Brandon. Recursive database structures. Journal of Computing Sciences in
Colleges, 2005.

2. A. Garćıa, A. Gómez-Pérez, M. C. Suárez-Figueroa, and B. Villazón-Terrazas. A
Pattern Based Approach for Re-engineering Non-Ontological Resources into On-
tologies. In Proceedings of the 3rd Asian Semantic Web Conference (ASWC2008).
Springer-Verlag, 2008.

3. V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M. C. Surez-Figueroa,
E. Montiel-Ponsoda, and M. Poveda. NeOn Deliverable D2.5.1. A Library of On-
tology Design Patterns: reusable solutions for collaborative design of networked
ontologies. In NeOn Project. http://www.neon-project.org, 2008.

4. M. C. Suárez-Figueroa, S. Brockmans, A. Gangemi, A. Gómez-Pérez, J. Lehmann,
H. Lewen, V. Presutti, and M. Sabou. Neon modelling components. Technical
report, NeOn project deliverable D5.1.1, 2007.

119

Negative Property Assertion Pattern (NPAs)
http://

ontologydesignpatterns.org/wiki/Submissions:NegativePropertyAssertions

Olaf Noppens

Inst. of Artificial Intelligence
Ulm University

Germany
olaf.noppens@uni-ulm.de

1 Introduction

The basic building blocks of Description Logics (DLs) in general are concept and
role constructors (e. g. , intersection, union, nominals, negation etc.), termino-
logical as well as individual axioms. Combining axioms, meaningful statements
can be expressed. Additional axiom constructors (so-called syntactical sugar)
has been introduced in most ontology language (such as OWL and OWL 2 [1])
in order to simplify ontology modeling, understanding and maintenance. These
syntactical sugar axioms can be reduced to basic axioms. A simple example is
disjointness of concepts that can be reduced to GCI axioms. However, even ex-
perts have often difficulties to understand the reduced forms in comparison to
syntactical sugar forms. From the modeling perspective, patterns can support
the user in modeling logical meaning that is not directly supported in an on-
tology language. For instance, OWL 2 provides a syntactical form for modeling
negative property assertions whereas using the predecessor OWL 1 one have to
model it by a more or less complicated inclusion axiom (or, alternatively, disjoint
axiom).

The motivation of this pattern is to model negative property assertions (NPAs)
in ontology languages such as OWL 1 that do not provide a special construct for
it. It is worth mentioning that not all knowledge base systems can be migrated
to OWL 2 for several reasons. On the other hand, NPAs modeled according to
this pattern can be migrated to OWL 2 using the newly introduced constructor.
A negative property assertion as defined in the upcoming OWL 2 states that a
given individual i is never connected to a given individual j by a given property
expression P . In other words, asserting that i is connected to j by P results in
an inconsistent ontology. In this sense this assertion can be considered as a con-
straint that should not be violated. In contrast, considering an ontology where
it cannot be inferred that i is connected to j by p does not necessarily mean
that there cannot be such a connection – in fact, it is merely not modeled.

2 Pattern

In this section we describe the Negative Property Assertion Pattern in detail.

120

2.1 Problem

Prior to OWL 2 it is difficult to model negative property assertions and, if they
are contained in an ontology, difficult to understand because OWL 1 does not
provide a specialized constructor for it. In addition, with help of this pattern
one can also migrate OWL 1 ontologies containing axioms describing NPAs into
the NPA constructor of OWL 2.

Intent This patterns allows to express NPAs in ontologies written in an ontology
language such as OWL 1 that does not allow NPA directly. The pattern can also
be understood as a transformation rule for transforming axioms modeling NPAs
into the direct NPA axiom constructor of OWL 2.

2.2 Solution

A negative property assertion that states that an individual Individual1 is not
connected to an individual Individual2 by a property property can be modeled
as the following inclusion axiom: {Individual1} �¬ (∃property {Individual2})
1. Here we are using the German DL syntax where {x} denotes an enumeration
class with a single individual x (aka. ‘one-of’). A graphical representation of this
pattern is given in Figure 1.

Fig. 1. Graphical representation of the pattern using the UML-based notation proposed
in [2].

In the following we proof the equivalence between the axiom produced by
the pattern and NPA as defined in OWL 2.

1 Note that this can also be modeled with help of a disjointness axiom. However, not
all languages provide a special disjointness constructor.

121

Proof Let C and D be concepts. Then C and D are disjoint if, and only if,
C is subsumed by the complement of D, i. e. , (C � ¬D). The equivalence is
correct because of the duality of disjointness, equivalence, and unsatisfiability:
C is subsumed by D if, and only if, C �¬D is unsatisfiable, and the intersection
of C and D is unsatisfiable if, and only if, C and D are disjoint.
One also reminds that the extension of the concept ∃ prop.C is the set of indi-
viduals i which are connected to an individual j that is in the extension of the
concept C, by the property prop.
Let NPA (p a b) be a negative property assertion axiom, i. e. , the individual a is
not related to b by the property p. Then the extension of ∃ p. {b} which contains
all individuals that are connected to b by p must not contain a. This is true, if,
and only if, {a} is disjoint to ∃ p. {b}.

Consequences Applying this pattern to an ontology will add the logical mean-
ing of a NPA to the ontology. There are not any restrictions or limitations of the
solution besides that nominals and unrestricted existential quantification must
be supported in the target ontology language.

2.3 Example

Consider a social network containing facts about people and their relationships.
Let Adam and Eve be two persons and like a property (’A likes B’). Furthermore
we know that Adam does not like Eve but we have no dislike relationship. More-
over, our language (such as OWL 1) does not have any NPA axiom constructor.

The sample ontology is interpreted with respect to the open-world semantics,
i. e. , one can not infer the dislike merely from the lack of a property assertion
axiom Adam like Eve. Then this fact can be expressed with the following axiom
in OWL 1: {Adam} �¬ (∃likes {Eve}).

3 Pattern Usage

The NPA pattern is useful in all situations where one has to model a negative
property assertion but the language does not allow it directly. One real-world
example here is the one mentioned in Section 2.3 where we had modeled a social
network structure and need a possibility to express that one person does not like
another and to ensure that one person does not know another person. With help
of NPAs we have the possibility to distinguish between ‘Person A does not know
Person” and “We do not know whether Person A knows Person B or not”.

4 Summary

The Negative Property Assertion Pattern allows to express negative property
assertions in languages such as OWL 1 that do not a build-in constructor for
this kind of assertions. In addition, when migrating OWL 1 ontologies to OWL
2 ontologies this pattern can be used to find negative property assertions and to
transform them into the special NPA constructor of OWL 2.

122

References

1. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Structural Specification and
Functional-Style Syntax. W3C Candidate Recommendation 11 June 2009 (June
2009)

2. Borckmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual Modeling of OWL DL
Ontologies Using UML. 198–213

123

ConceptTerms
http://ontologydesignpatterns.org/wiki/Submissions:ConceptTerms

Pierre-Yves Vandenbussche1,2 and Jean Charlet1,3

1 INSERM UMRS 872, éq.20, 15, rue de l’école de médecine, 75006 Paris, France
2 MONDECA, 3, cité Nollez, 75018 Paris, France

3 DSI AP-HP, Paris, FRANCE
pierre-yves.vandenbussche@etu.jussieu.fr

jean.charlet@spim.jussieu.fr

1 Introduction

The integration of domain terminological resources is a major issue for their full
utilization. This integration is made difficult by the nature of these resources
and their formal representation heterogeneity. In order to tackle this integration
problem, we foster a solution based on metamodeling: the unfied metamodel for
structured vocabularies. In this abstract, we sketch out assets for using Ontology
Design Patterns (ODPs) in a unified metamodel by reusing n-ary relation pattern
and describing new ODP for concept-terms representation. This ConceptTerms
ODP allows designers to represent jointly conceptual and linguistic part of a
vocabulary. The pattern purpose is not to encompass all linguistic complexity
as Linginfo or LMF does, but to describe linguistic information in more details
than SKOS which names concept with simple labels.

2 Pattern

2.1 Problem

Intent ConceptTerms pattern allows designers to represent jointly conceptual
and linguistic part of a vocabulary. The pattern purpose is not to encompass
all linguistic complexity as Linginfo or LMF does, but to describe linguistic
information in more details than SKOS which names concept whith simple labels.

Domains Linguistic, Vocabulary.

Covers Requirements What preferred terms and synonyms (simple non pre-
ferred term) have a concept? What is the preferred term of a concept in a
specific language? By which preferred term a coumpound non preferred term is
composed?

124

2.2 Solution

A concept is named in a particular language by a preferred term and a set
of simple non preferred terms (multilinguism). Those terms artifacts specialize
the term entity which owns common properties. This list of properties may be
extended depending on vocabulary specific needs. This pattern suits for vari-
ous vocabularies (thesaurus, terminology, taxonomy) and has been applied to
GEMET, Eurovoc, CIM10 among other. Modeling takes into account: - the pos-
sibility to extend the current pattern in order to add some more precise linguistic
information (for instance represent translation relation between two terms since
term is a class) - minimal linguistic artifacts necessary for vocabulary resource
access by providing a preferred Term to name a concept and some synonyms
which are Simple non preferred terms.

Fig. 1. The ConceptTerms Content ODP’s graphical representation in UML.

Consequences Compare to labels on a concept class, this solution has a higher
data load.

2.3 Example

Used for vocabulary representation. For example in Eurovoc (http://europa.eu/eurovoc/),
a concept has a preferred term social sciences in english and a simple non pre-
ferred term (i.e. synonyms) humanities in the same language whereas the same
concept has a preferred term sciences sociales in french and a simple non
preferred term sciences humaines in this language. If we wanted to add a

125

translation relation between terms we could state that social sciences english
term is a translation of sciences sociales french term. If we consider a second
preferred term in english award which names a concept, in a particular in-
formation retrieval context, we could define a coumpound non preferred term
social sciences awards which is related to preferred terms social sciences and
award .

2.4 Related Resources

In BS8723 model, triangular-shaped relations are defined between a thesaurus
concept, a preferred term and some simple non preferred terms. We are convinced
that maintaining this model can be optimized by reifying those relations in a
single relation class. That is why we defines the Concept-Terms relation which
reusing N-ary pattern in order to represent terms on a concept. Between all
terms, we distinguish a preferred term and some synonyms (simple non preferred
terms).

3 Pattern Usage

This pattern suits for various vocabularies (thesaurus, terminology, taxonomy)
and has been applied to Eurovoc authoring management.

4 Summary and Future Work

This pattern allows ontology designers to represent jointly conceptual and lin-
guistic part of a vocabulary. Therefore, it is a complementary pattern to linguistic
ones.

126

Concept Partition Pattern
http:// ontologydesignpatterns.org/wiki/Submission:Partition

Olaf Noppens

Inst. of Artificial Intelligence
Ulm University

Germany
olaf.noppens@uni-ulm.de

1 Introduction

The Partition Pattern is a logical pattern that introduces axioms which model a
partition of concepts. A partition is a general structure which is divided into sev-
eral disjoint parts. With respect to ontologies the structure is a concept which is
divided into several pair-wise disjoint concepts. This pattern reflects the simplest
case where a named concept is defined as a partition of concepts.

2 Pattern

2.1 Problem

The Partition Pattern describes how to model a partition, i. e., a named con-
cept which is divided into several disjoint concepts. Applying this pattern to an
ontology will introduce the necessary axioms.

2.2 Solution

Let P be a named concept that is the partition which is divided into several
concepts Ci. Then the partition is defined by introducing the following axioms
(expressed in the standard DL syntax) as also be shown in Figure 1:
P ≡ C0 � C1 � · · ·� Cn and Ci � Cj = ⊥ for 0 ≤ i, j ≤ n, i
= j.
Note that some ontology languages such as OWL 2 [1] provides disjointness ax-
ioms as syntactical sugar to make the definition of pair-wise disjointness easier.
In OWL 2 the pattern can be translated into the following axioms (expressed in
OWL 2 abstract syntax):

EquivalentClasses(P ObjectUnionOf(C0, C1, ..., Cn))
DisjointClasses(C0, C1, ..., Cn)

127

Fig. 1. Graphical representation of the Partition Pattern. Here, EquivalentClasses and
DisjointClasses are axioms and ObjectUnionOf is a class constructor building a dis-
junction over an arbitrary number of concepts C0, ..., Cn.

128

2.3 Example

Consider a world where only humans and animals live. Then the inhabitants of
this world are partitioned into humans and animals. The following two axioms

EquivalentClasses(Inhabitant ObjectUnionOf(Human, Animal))
DisjointClasses(Human, Animal)

describe the partitions of inhabitants into human and animals.

3 Pattern Usage

In an ontology about family relationship we defined concepts such as Person,
Aunt and ParentOfSon which are characterized by a relationships such as hasChild
(resp. the inverse relationship hasParent), hasSibling, married-with as well
as by the gender of people (Male respectively Female). There are a lot of sim-
ilar ontologies about family relationships. Our version can be downloaded at
http://www.informatik.uni-ulm.de/ki/Noppens/generation.owl.

EquivalentClasses(Parent-Of-Son
ObjectSomeValuesFrom (has-Child Male))

EquivalentClasses(Parent-Of-Daughter
ObjectSomeValuesFrom(has-Child Female))

EquivalentClasses(Aunt ObjectIntersectionOf(Uncle-Or-Aunt Female))
EquivalentClasses(Uncle-Or-Aunt

ObjectIntersectionOf(Person
ObjectSomeValuesFrom(has-Sibling Parent)))

The concept Gender is partitioned in Male and Female. Applying this pattern
results in the following axioms:

EquivalentClasses(Gender, ObjectUnionOf(Male Female))
DisjointClasses(Male Female)

4 Summary and Future Work

The Partition Pattern describes how to model a partition. The pattern reflects
the simplest case where a named concept is the partition of (arbitrary) concepts.
Future work will be concerned with a more general variant of this pattern: in
some cases, the partition concept is not explicitly named (i. e., is not a named
concept) but implicitly used, for instance, as value range of quantifications. In
other words, no equivalent class axiom will be used but the value range is the
union of the pair-wise disjoint parts of the partition.

References

1. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Structural Specification and
Functional-Style Syntax. W3C Candidate Recommendation 11 June 2009 (June
2009)

129

Part 3:

Short Papers (Posters)

130

Pattern Definitions and Semantically Annotated
Instances

Ivan Perez1 and Oscar Corcho2

1 IMDEA Software�. Universidad Politécnica de Madrid, Spain.
ivan.perez@imdea.org

2 Ontology Engineering Group. Departamento de Inteligencia Artificial.
Universidad Politécnica de Madrid, Spain.

ocorcho@fi.upm.es

Abstract Ontology design patterns are normally instantiated by repli-
cating and adapting the pattern concepts and roles. The relation between
pattern definitions and their instantiations is documented in natural lan-
guage. The use of parametric ontologies or pattern-reuse modifications
to OWL-DL has been suggested before, but so far only practical aspects
have been analysed, leaving the formal semantics of these extensions
as future work. In this work we present formal definitions for ontology
pattern and pattern instantiations, together with the semantics of in-
stantiation. We propose the use of semantic annotations to describe and
generate OWL pattern instantiations, without the need for explicit on-
tology replication, and provide tools to support this process.

1 Introduction

Ontology patterns represent knowledge that is subject to appear frequently in
different ontologies, normally with different names. Relations such as “being part
of something”, “participating in an event” and “n-ary relations” are examples
of such frequent type of knowledge.

Pattern instantiation is normally done in two different ways: (1) importing
the pattern axioms and establishing mappings (equivalences) with existing ele-
ments in our ontology, or (2) replicating the pattern by changing the names of its
elements. The former leads to representation and reasoning problems in case we
use the pattern twice in the same ontology, as described in section 2. The latter
is error prone and loses the relation between the instantiations and the pattern,
which is in some cases only described with comments in natural language.

Ad-hoc pattern definition and instantiation languages have been proposed for
this purpose. However, we propose using the ontology language expressiveness,
by means of semantic annotations, to support this pattern instantiation process.

This paper is organised as follows. In section 2 we introduce some of the
problems found when trying to reuse ontology design patterns. In section 3
� The work of IMDEA Software on this paper has been partially funded by the Spanish

Ministry of Industry, Tourism and Trade under the grant FIT-340503-2007-2, as part
of the Morfeo EzWeb strategic singular project.

131

we define formally the concepts of pattern and pattern instance. In section 4
we describe our tools for supporting pattern reuse. Finally, section 5 presents
conclusions, related work and further research topics in this area.
Notation. We use the notation Concept for concepts or classes, property for
properties or roles, and individual for individuals. The notation used for DL
formulas, unless stated otherwise, follows the one presented in [1].

2 Problem description

Let us start with an example where we want to represent cities as part of
provinces, which we will use as an ontological pattern. We use the concepts
City and Province, the property isPartOf, and the following axioms3:

� � ∀isPartOf−1.City
� � ∀isPartOf.Province

City � = 1 isPartOf.�

If we add the concepts GermanCity and GermanProvince, we can reuse
the above axiom to relate them. With the following axioms, we can use the
relation isPartOf also for German cities and provinces:

GermanCity � City
GermanProvince � Province

These axioms do not guarantee that a GermanCity belongs to (isPartOf) a
GermanProvince. This situation is more clear if we add new subconcepts of
City and Province, for instance, FrenchCity and FrenchProvince:

FrenchCity � City
FrenchProvince � Province

According to our axioms, it could be the case that a FrenchCity is part of
a GermanProvince. To solve this, we may add the following axioms:

GermanCity ≡ ∀isPartOf.GermanProvince
FrenchCity ≡ ∀isPartOf.FrenchProvince

This solution is correct for our case. Note, however, that we have proposed
an ad-hoc solution to a simple problem of multiple instantiation of one pattern.
In larger ontologies, it may be easier to simply duplicate the original pattern
using different names for each element in the pattern:
3 We use this adhoc “pattern” to simplify our explanation, since we have not found any

well-known ontology pattern that contained these axioms and could be used instead.
Potential candidate patterns like Componency [12], Collection [4], Collection Entity
[11] or Classification [10] lacked some of the concepts or axioms.

132

� � ∀gIsPartOf−1.GermanCity
� � ∀gIsPartOf.GermanProvince

GermanCity � = 1 gIsPartOf.GermanProvince

with a similar description for the concepts FrenchCity and FrenchProvince,
and the role fIsPartOf. To document the relation between the pattern and its in-
stances, we may keep the subclass relations above and add the following axioms:

gIsPartOf � isPartOf
fIsPartOf � isPartOf

but this adds one new axiom for each element that is part of an instance of a
pattern, and that relation is often just documented in natural language (as an
rdfs:comment associated to the role).

3 Pattern definitions and instantiations

Two key elements are needed in ontologies to support patterns: a means to define
the patterns and a way to use them. Before going into details, we introduce a
few elementary definitions that will be used along the paper. We use C for a
set of concept names, R for a set of role names, and I for individual names. We
consider a DL, with a set of symbols S, as a language over the union of all four
sets C, R, I and S. DL sentences are formulas, and an ontology is a finite set of
formulas of a particular DL. We consider C+, R+, I+ and S+ pairwise disjoint4.
Finally, given a set W , a list of symbols w1, . . . , wn ∈ W all different, and a
second list of symbols w′

1, . . . , w
′
n ∈ W , we define the substitution function from

w1, . . . , wn ∈ W to w′
1, . . . , w

′
n respectively, as the function f ⊆ W × W such

that:

f(x) =

{
w′

i if there is an i ∈ {1, . . . , n} such that wi = x

x otherwise

We refer to that substitution function as the mapping
[w1 �→ w′

1, . . . , wn �→ w′
n] or [f]. Given a substitution function f , and given

a string w of elements in W of length n (that is, w : [n] → W)5, we define the
substitution of w under the total substitution function f : W → W , and we rep-
resent it as w[f], as the string w′ : [n] → W such that ∀i ∈ [n] w′(i) = f(w(i)).

3.1 Pattern definitions

Ontology patterns are defined as DL models or UML diagrams, plus descriptions
in natural language. If we use DL, we have no standard way of establishing
4 We use the notation X+ for the Kleene plus, that is, the Kleene closure of the set

X without the empty string. More details can be found in [3].
5 We follow the notation for strings and alphabets in [3]. [n], where n is a natural

number, represents the subset of natural numbers from 1 to n.

133

which parts of the model are meant to be substituted. In case we use UML, the
semantics in ontologies when the pattern is instantiated is not clear.

In our proposal, we also use DL models to define patterns. However, we add an
interface to the pattern, that is, a definition of which parts are instantiable. This
allows us to establish if an element in a pattern is not meant to be substituted
or instantiated. This can happen because a name is just presented to simplify
the axioms, or if the element in question represents more general knowledge.

As an example, we will use the model in section 2, with concepts City and
Province, the property isPartOf, and the following axioms:

� � ∀isPartOf−1.City
� � ∀isPartOf.Province

City � = 1 isPartOf.�

This model and the interface {City,Province, isPartOf} is a pattern defi-
nition.

Definition 1. (Ontological knowledge pattern)
Given an ontology O, and given the sets C ′ ⊆ C, R′ ⊆ R and I ′ ⊆ I. The tuple
〈O,C ′, R′, I ′〉 is an ontological knowledge pattern.

Unless stated otherwise, we will normally refer to ontology patterns as pat-
tern definitions or simply patterns. If 〈O,C ′, R′, I ′〉 is a pattern, we will refer to
C ′, R′ and I ′ as the interface of the pattern.

3.2 Pattern instantiations

A model is an instantiation of a pattern with a parameter/value assignation if
the model has exactly the same axioms as the pattern, where the parameters
have been substituted with their corresponding values. Note that the values must
be of the same kind, that is, we can substitute or instantiate a concept with a
concept, a role with a role and an individual with an individual.

Given the pattern definition above, we can instantiate it with the assignations
FrenchCity to City and FrenchProvince to Province, having as a result
the following model:

� � ∀isPartOf−1.FrenchCity
� � ∀isPartOf.FrenchProvince

FrenchCity � = 1 isPartOf.�

The following is a formal definition of pattern instantiation:

Definition 2. (Pattern instantiation)
Let 〈O,C ′, R′, I ′〉 be a pattern, where O is an ontology over some description
logic D. Let c1, . . . , cm ∈ C ′, k1, . . . , km ∈ C be concepts, r1, . . . , rn ∈ R′,
s1, . . . , sn ∈ R be roles, and i1, . . . , ip ∈ I ′, j1, . . . , jp ∈ I be individuals.

134

We say that O′ is an instance of the pattern 〈O,C ′, R′, I ′〉 with the mappings
c1 �→ k1, . . . , cm �→ km, r1 �→ s1, . . . , rn �→ sn, i1 �→ i1, . . . , ip �→ jp if O′ =
{o[c1 �→ k1, . . . , cm �→ km, r1 �→ s1, . . . , rn �→ sn, i1 �→ i1, . . . , ip �→ jp] | o ∈ O}
and O′ is also an ontology over D.

3.3 Rebasing ontologies to avoid name clashing

We now address a practical issue commonly found when partially instantiating
the same pattern twice as part of the same ontology. Imagine that we instantiate
the city pattern for French and German cities, and do not want to name isPartOf
differently in each case. The following axioms would be part of the result:

� � ∀isPartOf−1.GermanCity

� � ∀isPartOf−1.FrenchCity

which implies that either isPartOf is empty or GermanCity and FrenchCity
are related (one is a subclass of the other).

Finding these problems may not be so obvious. Besides, name clashes may
occur in non-instantiable elements. The pattern designer may document or avoid
these issues, but it is the responsibility of the pattern user to make sure that no
inconsistencies are introduced with multiple instantiations of a pattern.

Name clashes are not necessarily a mistake from a formal point of view, so
these are only guidelines to pattern design. However, we will help avoid these
situations by means of namespace (or URI) translations.

URIs and ontology rebasing. When coded in OWL, ontologies have a base
URI and all entities local to it have that URI as a prefix of their complete names.
By changing the base URI of an ontology, we are effectively renaming all the local
entities at once, thus avoiding all name clashes of non-instanced local names.

In our formal definitions, we consider the unqualified name sets Cu, Ru and
Iu, respectively, for concepts, names and individuals. We also consider a set M
of namespaces, such that C = M × Cu, R = M × Ru, and I = M × Iu. Like
before, Cu, Ru and Iu are pairwise disjoint.

Definition 3. (Ontology rebasing)
Let O be an ontology, and m, m′ ∈ M two namespaces. We define the rebasing of
O from m to m′, and we represent it as Om�→m′

, as the ontology {o[f] | o ∈ O}
where f is the substitution function defined by the relation {(x, y) ∈ C ∪R∪ I ×
C ∪ R ∪ I | ∃z ∈ (Cu ∪ Ru ∪ Iu) x = 〈m, z〉 ∧ y = 〈m′, z〉}.

The previous definition of pattern instantiation is now extended as follows:

Definition 4. (Pattern instantiation)
We say that an ontology O is an instantiation of the pattern P with the names-
pace change from m to m′ and the mappings [e1 �→ d1, . . . , en �→ dn] if O =
O′m→m′

and O′ is an instantiation of the pattern P with the mappings [e1 �→
d1, . . . , en �→ dn].

135

For example, assume we use http://foo/Cities as the base URI of the cities
pattern and http://foo/Cities#isPartOf as the qualified name of isPartOf. If
we set http://foo/FCities and http://foo/GCities as the base URIs of the
instances for French and German cities respectively, applying the new pattern
instance definition with the same mappings as before would give us the following
axioms instead, where no name clashes occur:

� � ∀http://foo/GCities#isPartOf−1.http://foo/GCities#GermanCity

� � ∀http://foo/FCities#isPartOf−1.http://foo/FCities#FrenchCity

4 Tool support

We provide tool support for the processes of pattern definition and instantiation.

Pattern definition. Patterns are defined as ontologies with an interface, hence
to define patterns we simply need to support interface declaration. For this pur-
pose, we have developed:

– An ontology [7] with the annotation property exportable, which can be set
for any class, property or individual, and is true if the element is part of the
interface (instantiable) or false otherwise. Its default value is assumed to
be true, so that users do not need to annotate all the elements in a pattern.

– A Protégé plugin [6] to assign values for this annotation property.

Pattern instantiation and use. Defining pattern instances means identifying
the pattern to be used, establishing a parameter/value map and a URI rebasing.
This task is supported with the following elements:

– An ontology [9] to describe instantiations. It contains concepts to represent
mappings between entities and URI rebases.

– A Protégé plugin [6] that eases the creation of these instantiation A-Boxes.
It also allows the user to apply a particular instantiation.

– An ontology [8] with an annotation property called isPatternInstance,
that indicates that an ontology is the result of applying a particular pattern
instance definition as defined in the first step.

The new Protégé plugin is accessible under the menu Tools, as an import
wizard. The process is divided in three steps. First, the location of a pattern
definition (an ontology) is provided. Second, the plugin shows all the elements
in that pattern that are exportable. The user can then introduce the main infor-
mation about the instantiation, that is, the new names for each entity that will
be instantiated, and the URI rebase. Third, the plugin allows the user to select a
location where the instantiation will be saved. This will create an ontology with
all the information of this particular instantiation (the entity mappings and the
URI rebase), located in a different file. A screenshot is shown in Fig. 1.

136

Figure 1. Screenshot of the instantiation wizard plugin running in Protégé 4

Once the process is finished, the plugin loads the pattern, applies the URI
rebase and entity mapping, and adds all the axioms into the currently active
ontology. It also annotates the ontology with the property isPatternInstance,
using the base URI of the pattern instance definition as value.

5 Conclusions and future work

In this paper we have shown how patterns can be defined as ontologies with an
interface (as if they were parametric ontologies), and how pattern instantiations
can be formalised as a substitution of the parameters in a pattern ontology,
providing formal definitions for both concepts. We have also analysed some of
the problems derived from multiple pattern instantiation, and suggested ontology
rebasing as a way to avoid name clashes.

Some notable work in pattern definition is presented in [5], where patterns are
presented as part of an ontology modification language (OPPL), not focusing on
pattern reuse specifically. There are also some relationships with Package-Based
Description Logics [2], where three views to entities are provided: public, pro-
tected and private. The authors of Package-Based Description Logics state that
this change introduces parameterism in ontologies, although its expressiveness
is not explored.

The current OWL syntax and tool support is built completely around anno-
tation properties. Protégé plugins are based on the OWLAPI library, and they
are currently in an early beta-testing state of development. In future versions of
the syntax, we plan to keep annotation properties to indicate if an element is
instantiable in a pattern, and add support for pattern imports to the modules
mechanism in OWL. This could be done by extending owl:imports with a nested

137

tag owl:patterninstance, which in turn would have from uri and to uri at-
tributes for the rebasing. Also, nested owl:mapping elements with attributes
from name and to name could be used for the element/value assignations. The
meaning of these attributes, their domain and range, would be according to what
was established in the Pattern Instance definition ontology, in section 4.

Regarding the expressiveness of the pattern definition language, it currently
allows roles, concepts and individuals to be treated as parameters. This may be
sufficient in most cases, but it might be interesting to have other parametrisable
parts of an ontology. For instance, numbers in cardinality restrictions could also
be parameters. Note that the introduction of parametricity at this level would
likely make the pattern definition no longer be an ontology.

Even though some content ODPs can easily be represented with our definition
of pattern, it is not clear that all ODPs can. Future research should also focus
on trying to find Ontology Design patterns that cannot be represented with our
definition, in order to identify other elements that can also be parameterised.

References

1. Franz Baader and Werner Nutt. Basic description logics. In Franz Baader, Diego
Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,
editors, Description Logic Handbook, pages 43–95. Cambridge University Press,
2003.

2. Jie Bao, Doina Caragea, and Vasant Honavar. On the semantics of linking and
importing in modular ontologies. In International Semantic Web Conference, pages
72–86, 2006.

3. Jean H. Gallier. Logic for computer science: foundations of automatic theorem
proving. Harper & Row Publishers, Inc., New York, NY, USA, 1985.

4. Aldo Gangemi. Collection design pattern.
http://ontologydesignpatterns.org/wiki/Submissions:Collection.

5. Luigi Iannone, Alan Rector, and Robert Stevens. Embedding knowledge patterns
into OWL. In 6th Annual European Semantic Web Conference (ESWC2009), pages
218–232, June 2009.

6. Iván Pérez. Ontology engineering protege plugins, 2009. IMDEA Software.
http://sharesource.org/project/ontoengineeringprotegepluglins/.

7. Iván Pérez. Pattern definition ontology, 2009. IMDEA Software.
http://babel.ls.fi.upm.es/˜iperez/pattern-ontologies/patterndefinition.

8. Iván Pérez. Pattern instance ontology, 2009. IMDEA Software.
http://babel.ls.fi.upm.es/˜iperez/pattern-ontologies/patterninstance.

9. Iván Pérez. Pattern Instance definition ontology, 2009. IMDEA Software.
http://babel.ls.fi.upm.es/˜iperez/pattern-ontologies/patterninstancedefinition.

10. Valentina Presutti. Classification design pattern.
http://ontologydesignpatterns.org/wiki/Submissions:Classification.

11. Valentina Presutti. Collection Entity design pattern.
http://ontologydesignpatterns.org/wiki/Submissions:CollectionEntity.

12. Valentina Presutti. Componency design pattern.
http://ontologydesignpatterns.org/wiki/Submissions:Componency.

138

Preliminary Results of Logical Ontology Pattern
Detection Using SPARQL and Lexical Heuristics

Ondřej Šváb-Zamazal1,2, François Scharffe2, and Vojtěch Svátek1

1University of Economics, Prague, {ondrej.zamazal,svatek}@vse.cz
2 INRIA & LIG, Montbonnot, France, {francois.scharffe}@inria.fr

Abstract. Ontology design patterns were proposed in order to assist
the ontology engineering task, providing models of specific construction
representing a particular form of knowledge. Various kinds of patterns
have since been introduced and classes of patterns identified. Detecting
these patterns in existing ontologies is needed in various scenarios, for
example the detection of the the two parts of an alignment pattern in
an ontology matching scenario, or the detection of an anti-pattern in an
optimization scenario.
In this paper we present a novel method for the detection of logical
patterns in ontologies. This method is based on both SPARQL, as the
underlying language for retrieving patterns, and a lexical heuristic con-
straining the query. It extends our previous works on ontology patterns
modeling and detection. We describe an algorithm computing a token-
based similarity measure used as the lexical heuristic. We conduct an
experiment on a large number of Web ontologies, obtaining interesting
measures on the usage frequency of three selected patterns.

1 Introduction

Ontology Patterns turn out to be an important instrument in many diverse
applications on the Semantic Web. This is reflected by many different Ontology
Design Pattern types such as Logical Patterns, Content Patterns, Refactoring
Patterns, Transformation Patterns or Alignment Patterns1. Many applications
of ontology patterns need to detect patterns at first. In this paper we present
preliminary experiments with logical ontology pattern detection using SPARQL
and additional lexical heuristics. This work extends the work presented in [7, 8]
in terms of detection experiments over real ontologies. Our particular motivation
for ontology pattern detection is ontology transformation where detection is the
first step. In [8] we argue that ontology transformation is useful for many different
Semantic Web use-cases such as ontology matching and ontology re-engineering.
The remainder of this paper is organized as follows: in the next section we
describe three ontology patterns and the way to detect them. Then in Section 3
we present preliminary results of a large scale detection experiment along with
illustrative examples of these ontology patterns. We wrap-up the paper with
conclusions and future work.
1 http://ontologydesignpatterns.org/wiki/OPTypes

139

2 Patterns and their Detection

All of the logical ontology patterns introduced in this section have been pre-
sented before [8]. We introduce here preliminary results of their detection over
a collection of real ontologies. The detection of these patterns has two aspects:
structural and naming ones. Our method first detect the structural aspect us-
ing the SPARQL language2. We currently use the SPARQL query engine from
the Jena framework3. SPARQL queries corresponding to each detected pattern
are detailed in sections below. Then, the method applies the lexical heuristic
computed by Algorithm 1.

Algorithm 1 calculateAverageTokenBasedSimilarityMeasure

MainEntity ⇐ lemmatized tokens of main entity
Entities ⇐ lemmatized tokens of entities
c ⇐ 0
i ⇐ 0
for all u ∈ Entities do

if |u ∩ MainEntity| �= ∅ then
i ⇐ i + 1

end if
end for
c ⇐ i/|Entities|
return c

Algorihtm 1 computes an average token-based similarity measure c. The par-
ticular instantiation of MainEntity and Entities depends on the ontology pat-
tern, see below. This algorithm works on names of entities (a fragment of the
entity URI) which are tokenised (See [6]) and lemmatized.4 Lemmatization can
potentially increase the recall of the detection process. The lexical heuristics
constraint is fulfilled when c exceeds a certain threshold which is dependent on
particular ontology pattern. The motivation of this computation is based on an
assumption that entities involved in patterns share tokens. More entities share
the same token, the higher probability of occurrence of a pattern. We detail be-
low three patterns that were detected in the experiment described in Section 3.

2.1 Attribute Value Restriction

The AVR pattern has been originally introduced in [4] as a constituent part
of an alignment pattern, a pattern of correspondence between entities in two
ontologies. Basically, it is a class the instances of which are restricted with some

2 http://www.w3.org/TR/rdf-sparql-query/
3 http://jena.sourceforge.net/
4 We use the Stanford POS tagger http://nlp.stanford.edu/software/tagger.

shtml.

140

attribute value. The SPARQL query for detection of this ontology pattern is the
following:

SELECT ?c1 ?c2 ?c3
WHERE {
?c1 rdfs:subClassOf _:b.
_:b owl:onProperty ?c2.
_:b owl:hasValue ?c3.
?c2 rdf:type owl:ObjectProperty.
FILTER (!isBlank(?c1)) }

In this query we express a value restriction applied on a named class. Fur-
thermore restricting properties must be of the type ’ObjectProperty’ in order to
have individuals (eg. ’Sweet’) as values and not data types (eg. String). Currently
we do not consider the naming aspect for this pattern.

2.2 Specified Values

We first considered the SV pattern in [7], but it had been originally presented in
a document from the SWBPD group5. This ontology pattern deals with ’value
partitions’ representing specified collection of values expressing ’qualities’, ’at-
tributes’, or ’features’. An example is given in the next section 3.

There are mainly two ways for capturing this pattern which are reflected by
two different SPARQL queries. Either individuals where qualities are instances
can be used for the detection:

SELECT distinct ?p ?a1 ?a2
WHERE {
?a1 rdf:type ?p.
?a2 rdf:type ?p.
?a1 owl:differentFrom ?a2 }

Or subclasses where qualities are classes partitioning a ’feature’ can be used:

SELECT distinct ?p ?c1 ?c2
WHERE {
?c1 rdfs:subClassOf ?p.
?c2 rdfs:subClassOf ?p.
?c1 owl:disjointWith ?c2
FILTER (
!isBlank(?c1) && !isBlank(?c2) && !isBlank(?p))}

We are interested in mutually disjoint named classes (siblings) and we use
non-transitive semantics (ie. direct) of ’subClassOf’ relation here. Otherwise we
would get ’specified value’ as many times as there are different superclasses for
those siblings. Regarding the initialisation of variables from the Algorithm 1,
the MainEntity is either a ?p instance (for the first query) or class (for the
second query). Entities are all other entities from the SELECT construct. The
experimental setting for the threshold is 0.5.

5 http://www.w3.org/TR/swbp-specified-values/

141

2.3 Reified N-ary Relations

We have already considered the N-ary pattern in [7]. It has also been an im-
portant topic of the SWBPD group [2], because there is no direct way how to
express N-ary relations in OWL6. Basically, a N-ary relation is a relation con-
necting an individual to many individuals or values. For this pattern we adhere
to a solution introduced in [2]: introducing a new class for a relation which is
therefore reified. For examples in the next section 3 we will use the following
syntax (property(domain,range)):

relationX(X,Y); relationY 1(Y,A); relationY 2(Y,B)

� �

�

�

�

��	
��
��
��	

��

�
��

��	
��
���
��	
��
������

Fig. 1. N-ary relation

The structural aspect of this pattern is captured
using the following SPARQL query:
SELECT ?relationX ?Y ?relationY1 ?relationY2 ?A ?B
WHERE {
?relationX rdfs:domain ?X.
?relationX rdfs:range ?Y.
?relationY1 rdfs:domain ?Y.
?relationY1 rdfs:range ?A.
?relationY2 rdfs:domain ?Y.
?relationY2 rdfs:range ?B
FILTER (?relationY1!=?relationY2)}

The intended structure of this reified N-ary relation pattern is depicted in
the Figure on the right. In order to increase the precision of the detection we also
apply lexical heuristics introduced above in Algorithm 1: variable MainEntity
is initialised with the value ?relationX. Entities are all other entities from the
SELECT construct. The experimental setting for the threshold is 0.4.

3 Experiment

In order to acquire a high number of ontologies, we applied the Watson tool7 via
its API. We searched ontologies imposing conjuction of the following constraints:
OWL as the representation language, at least 10 classes, and at least 5 prop-
erties. Alltogether we collected 490 ontologies. However, many ontologies have
not been accessible at the time of querying or there were some parser problems.
Futhermore we only include ontologies having less than 300 entities. All in all
our collection has 273 ontologies.

Table 1 presents overall numbers of ontologies where certain amount of on-
tology patterns were detected.

We can see that patterns were only detected in a small portion of ontologies
from the collection. In four ontologies, the AVR pattern was detected more than
10 times. It reflects the fact that some designers tend to extensively use this

6 It also holds for OWL 2. The notion of N-ary datatype was not introduced there,
except for syntactic constructs allowing further extensions, see http://www.w3.org/

TR/2009/WD-owl2-new-features-20090611/#F11:_N-ary_Datatypes
7 http://watson.kmi.open.ac.uk/WS_and_API.html

142

≥ 10× (9 − 4)× 3× 2× 1× all

AVR pattern 4× – 2× 1× 1× 8×
SV pattern – 4× – 2× 9× 15×
N-ary pattern – 5× 4× 16× 25× 50×

Table 1. Frequency table of ontologies wrt. number of ontology patterns detected.

pattern. Other two ontology patterns were not so frequent in one ontology (the
SV pattern was detected maximally 8 times and the N-ary pattern was detected
maximally six times). On the other hand the most frequent pattern regarding a
number of ontologies was the N-ary pattern. This goes against an intution that
this pattern is quite rare. It can be explained with a low precision detection of
this pattern, see below.

In order to obtain raw preliminary precision estimation for the ontology pat-
tern detection we analysed one randomly chosen detected pattern instance from
10 ontologies (in the case of the AVR pattern from 8 ontologies). Although
we tried to apply ontology transformation perspective for manual evaluation, we
could not fully avoid coarse-grained and subjective evaluation due to soft bound-
aries between ontology patterns and sometimes unexpected conceptualisations
in some Web ontologies.

The overall precision for the AVR pattern is 0.6, for the SV pattern 0.7, and
for the N-ary pattern 0.3. For better insight we will look at two examples (one
positive and one negative) for each of these ontology patterns.

AVR pattern This ontology pattern was found many times in a wine on-
tology8 with high precision. One positive example is the following:

� hasColor.{White} � Chardonnay

Chardonnay wine is restricted on these instances having value ’White’ for the
property hasColor. On the other hand, one negative example is the following9:

� 2.{coordinate 0} � North

In this ontology each point of the compass (eg. North) is described using
three different relations (2 is one of them) having coordinates. This cannot be
interpreted as an attribute value restriction pattern.

SV pattern The following10 is one example which we evaluated as positive
(a shared token is ’Molecule’, c = 1.0):

Molecule � AnorganicMolecule; Molecule � OrganicMolecule

This can be interpreted as a collection of different kinds of molecules which is a
complete partitioning. Furthermore disjointness is ensured by a query. On the other
hand in another ontology11 a negative example was detected:

8 http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine
9 http://sweet.jpl.nasa.gov/ontology/space.owl

10 http://www.meteck.org/PilotPollution1.owl
11 http://www.cip.ifi.lmu.de/~oezden/MastersThesisWeb/STCONCEPTS.owl

143

T imePeriods � SocioculturalT imePeriods; T imePeriods � CalendarDatePeriods

In this case it can hardly be a complete partitioning, however this is always de-
pendent on domain of discourse. It points out that ontology pattern detection should
generally be a semi-automatic process.

N-ary pattern This pattern has the lowest precision. Due to the usage of a relaxed
structural condition there are a lot of negative cases. Even if the lexical heuristics
constraint improves this low precision, there is still ample space for improvement.

In the PML ontology12 the following positive example was detected:

hasPrettyNameMapping(InferenceStep, PrettyNameMapping)
hasPrettyName(PrettyNameMapping, string)

hasReplacee(PrettyNameMapping, string)

This is the example of N-ary relation where the reified property ’PrettyNameMap-
ping’ (’?Y’) captures additional attributes (’hasReplacee’) describing the relation (’hasPret-
tyNameMapping’). c = 0.5 where shared tokens were ’Pretty’ resp. ’has’.

On the other hand in the earthrealm13 a negative example was detected:

hasUpperBoundary(EarthRealm, LayerBoundary)
isUpperBoundaryOf(LayerBoundary, EarthRealm)

isLowerBoundaryOf(LayerBoundary, EarthRealm)

In this case ’LayerBoundary’ was detected as a reified N-ary relation (’?relationX’)
connecting different aspects (’?relationY1’, ’?A’ and ’?relationY2’,’?B’) of the same
relation; c = 0.75 where a shared token was ’Boundary’. But if we look at the classes
bound with ’?X’, ’?A’ and ’?B’, we can see that there is an implicit ’inverseOf’ relation
between ’hasUpperBoundary’ and ’isUpperBoundaryOf’ resp. with ’isLowerBound-
aryOf’. This ’inverseOf’ relation cannot be directly found in this ontology. However
we could assume this and therefore we could increase the precision considering this
specific case in the future work.

Another recurrent negative example is the following14:

concludedby(perdurant, perdurant)
startedby(perdurant, perdurant)

concludedby(perdurant, perdurant)

This is a chain of properties connected with the same class in domain/range; c =
0.66 where a shared token is ’by’. Thus, at the first sight a detection could be improved
with considering this negative example (’?X’=’?Y’=’?A’=’?B’). On the other hand
we can also find a counter-example considering true semantics of domain and range in
OWL, ie. restrictions are superclasses of possible individuals. As usual, applying this
condition we could filter out some current negative examples (getting higher precision),
on the other side we could miss other positive examples (getting lower recall). This
choice is application-dependant.

4 Related Work

In [3] the authors generally consider using SPARQL expressions for extracting Content
Ontology Design Patterns from an existing reference ontology. It is followed by a manual

12 http://inferenceweb.stanford.edu/2004/07/iw.owl
13 http://sweet.jpl.nasa.gov/sweet/earthrealm.owl
14 http://neuroscientific.net/bio-zen.owl

144

selection of particular useful axioms towards creating new Content Ontology Design
Pattern. The Ontology Pre-Processing Language (OPPL) is specialized on pattern-
based manipulation with ontologies. It can be used for ontology pattern detection,
however there is no such a lexical support which our detection needs. In [1] the authors
envision employing OPPL for detecting recurring patterns in ontologies and materialize
them as new patterns. This is also one of our long-term effort.

By now, we use the SPARQL language for detecting structural aspect of ontology
patterns. But SPARQL is a query language for RDF. Considering ontology patterns
as DL-like conceptualisations, it leads to a necessity of expressing DL-like concepts in
RDF representations which is rarely 1:1. This can be overcome by using some OWL-DL
aware query language, eg. SPARQL-DL [5]. However for now this language does not
support some specific DL constructs e.g. restriction and it is not fully implemented
yet.

5 Conclusions and Future Work

In this paper we presented preliminary results of logical ontology pattern detection for
which we use SPARQL and lexical heuristics. We conducted an experiment on a large
number of Web ontologies. We manually evaluated 28 ontology pattern instances so
as to roughly estimate precision. The performance of this detection must be further
improved. Besides future work depicted in Section 3, we have to further work on more
sophisticated lexical heuristics constraint. We could also employ head noun detection
[6]. Further, we should also try to perform our queries using SPARQL-DL as OWL-DL
aware language. We work on a specific FILTER extension (in connection with head
noun detection) for the SPARQL language which could include the naming aspect
already at the level of the query language.

Acknowledgement The work has been partially supported by the IGA VSE grant no.
20/08 “Evaluation and matching ontologies via patterns”.

References

1. A. R. Luigi Iannone and R. Stevens. Embedding Knowledge Patterns into OWL.
In Proceedings of the 6th European Semantic Web Conference, 2009.

2. N. Noy and A. Rector. Defining n-ary relations on the semantic web, Apr. 2006.

3. V. Presutti and A. Gangemi. Content ontology design patterns as practical building
blocks for web ontologies. In Proceedings of ER2008. Barcelona, Spain, 2008.

4. F. Scharffe. Correspondence Patterns Representation. PhD thesis, University of
Innsbruck, 2009.

5. E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In
OWLED2007, 2007.

6. O. Šváb Zamazal and V. Svátek. Analysing Ontological Structures through Name
Pattern Tracking. In Proceedings of the 16th International Conference on Knowledge
Engineering and Knowledge Management, 2008.

7. O. Šváb-Zamazal and V. Svátek. Towards Ontology Matching via Pattern-Based
Detection of Semantic Structures in OWL Ontologies. In Proceedings of the Znalosti
Czecho-Slovak Knowledge Technology conference, 2009.

145

8. O. Šváb-Zamazal, V. Svátek, and F. Scharffe. Pattern-based Ontology Transfor-
mation Service. In Proceedings of the 1st International Conference on Knowledge
Engineering and Ontology Development, 2009.

146

Ontology Construction for Web Services

Aviv Segev1 and Quan Z. Sheng2

1 Department of Knowledge Service Engineering, KAIST, Daejeon 305-701, Korea

aviv@kaist.edu
2 School of Computer Science, The University of Adelaide, SA 5005, Australia

qsheng@cs.adelaide.edu.au

Abstract. Ontologies have become the de-facto modeling tool of choice, em-

ployed in a variety of applications and prominently in the Semantic Web. Nev-

ertheless, ontology construction remains a daunting task. Ontological bootstrap-

ping, which aims at automatically generating concepts and their relations in a

given domain, is a promising technique for ontology construction. Bootstrapping

an ontology based on a set of predefined textual sources, such as Web services,

must address the problem of multiple concepts that are largely unrelated. This

paper exploits the advantage that Web services usually consist of both WSDL

and free text descriptors. The WSDL descriptor is evaluated using two methods,

namely Term Frequency/Inverse Document Frequency (TF/IDF) and Web con-

text generation. We propose an ontology bootstrapping process that integrates the

results of both methods and validates the concepts using the free text descriptors,

thereby offering a more accurate definition of ontologies.

1 Introduction
Ontologies are used in an increasing range of applications, notably the Semantic Web,

and essentially have become the preferred modeling tool. However, the design and

maintenance of ontologies is a formidable process [1]. Ontology bootstrapping, which

has recently emerged as an important technology for ontology construction, involves

automatic identification of concepts relevant to a domain and relations between the con-

cepts [2]. Previous work on ontology bootstrapping focused on either a limited domain

or expanding an existing ontology [3]. In the field of Web services, registries such as

the Universal Description, Discovery and Integration (UDDI) have been created to en-

courage interoperability and adoption of Web services. Unfortunately, UDDI registries

have some major flaws [4]. In particular, UDDI registries either are publicly available

and contain many obsolete entries or require registration which limits access. In either

case, a registry only stores a limited description of the available services. Ontologies

created for classifying and utilizing Web services can serve as an alternative solution.

However, the increasing number of available Web services makes it difficult to classify

Web services using a single domain ontology or a set of existing ontologies created

for other purposes. Furthermore, the constant increase in the number of Web services

requires continuous manual effort to evolve an ontology.

The Web service ontology bootstrapping process proposed in this paper is based

on the advantage that a Web service can be separated into two types of descriptions: i)

the Web Service Description Language (WSDL) describing “how” the service should

be used and ii) a free text description of the Web service describing “what” the service

does. This advantage allows bootstrapping the ontology based on WSDL and verifying

the process based on the Web service free text descriptor.

147

2

The ontology bootstrapping process is based on analyzing a Web service using three

different methods, where each method represents a different perspective of viewing the

Web service. In particular, the first method analyzes the Web service from an internal

point of view, i.e., what concept in the text best describes the document content. The

second method describes the document from an external point of view, i.e., what most

common concept represents the answers to the Web search queries based on the WSDL

content. Finally, the third method is used to resolve inconsistencies with the current

ontology. An ontology evolution is performed when all three analysis methods agree

on the identification of a new concept or a relation change between the ontology con-

cepts. The relation between two concepts is defined using the descriptors related to both

concepts. Our approach facilitates automatic building of an ontology that could assist

in expanding, classifying, and retrieving relevant services, without the prior training

required by previously developed approaches.

2 Related Work
The field of automatic annotation of syntactic Web services contains several works rel-

evant to our research. [5] presents a combined approach toward automatic semantic an-

notation of Web services. The approach relies on several matchers (e.g., string matcher,

structural matcher, and synonym finder), which are combined using a simple aggrega-

tion function. Machine learning is used in a tool called Assam [6], which uses exist-

ing annotation of semantic Web services to improve new annotations. [7] suggests a

context-based semantic approach to the problem of matching and ranking Web services

for possible service composition. Unfortunately, all these approaches require clear and

formal semantic annotations to ontologies.

Ontology evolution has been researched on domain specific Web sites [8]. Noy and

Klein [1] defined a set of ontology-change operations and their effects on instance data

used during the ontology evolution process. Unlike prior work which was heavily based

on existing ontology or domain specific, our work evolves an ontology for Web services

“from scratch”. A survey on the state of the art Web service repositories [9] suggests

that analyzing the Web service textual description in addition to the WSDL description

can be more useful than analyzing each descriptor separately. The survey mentions the

limitation of existing ontology evolution techniques which yield low recall. Our solution

overcomes the low recall using Web context recognition.

3 The Bootstrapping Ontology Model
The bootstrapping ontology model proposed in this paper is based on the continuous

analysis of WSDL documents and employs an ontology model based on concepts and

relationships [10]. The innovation of the proposed bootstrapping model is the combi-

nation of the use of two different extraction methods, TF/IDF and Web based, and the

verification of the results using a third method analyzing the external service descriptor.

We used these three methods to demonstrate the feasibility of our model. Other more

complex methods, from the field of Machine Learning (ML) and Information Retrieval

(IR), can also be used to implement the model. However, the straightforward use of the

methods emphasizes that many methods can be “plugged in” and that the results are

attributed to the model’s process of combination and verification.

148

3

WSDL
Ontology
Evolution

Token
Extraction

Web
Context

Retrieval

TF/IDF
Ranking

Concept

Evocation

Service
Description

Fig. 1. Web Service Ontology Bootstrapping Process

The overall bootstrapping ontology process is described in Figure 1. There are four

main steps in the process. The token extraction step extracts tokens representing rel-

evant information from a WSDL document. The second step analyzes in parallel the

extracted WSDL tokens using two methods. In particular, TF/IDF analyzes the most

common terms appearing in each Web service document and appearing less frequently

in other documents. Web context extraction uses the sets of tokens as a query to a search

engine, clusters the results according to descriptors, and classifies which set of descrip-

tors identifies the context of the Web service. The concept evocation step identifies the

descriptors appearing in both the TF/IDF method and the Web context method. These

descriptors identify possible concept names which could be utilized by the ontology

evolution. The context descriptors also assist in the convergence process of the rela-

tions between concepts. Finally, the ontology evolution step expands the ontology as

required according to the newly identified concepts and modifies the relations between

them. The external Web service textual descriptor serves as a moderator if there is a

conflict between the current ontology and a new concept. The relations are defined as

an ongoing process according to the most common context descriptors between the

concepts. After the ontology evolution, the process continues with the next WSDL. It

should be noted that the processing order of WSDL documents is arbitrary.

3.1 Token Extraction
The analysis starts with token extraction, representing each service, 𝒮, using a set of to-

kens called descriptors. Each token is a textual term, extracted by simply parsing the un-

derlying documentation of the service. The descriptor represents the WSDL document,

formally put as 𝒟𝒮
𝑤𝑠𝑑𝑙 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, where 𝑡𝑖 is a token. WSDL tokens require

special handling, since meaningful tokens (such as names of parameters and operations)

are usually composed of a sequence of words, with the first word lowercase, followed by

first letter of other words capitalized (e.g., getInstitutionNameFromDomain).

Therefore, the descriptors are divided into separate tokens. Figure 2 depicts a WSDL

document with the tokens bolded.

The extracted token list serves as a baseline. These tokens are extracted from the

WSDL document of a Web service that determines whether an email address or domain

name belongs to an academic institution. The service is used to illustrate the initial step

in building the ontology. All elements classified as name are extracted, including tokens

that might be less relevant.

3.2 TF/IDF Analysis
TF/IDF is a common mechanism in IR to generate a robust set of representative key-

words from a corpus of documents. The method is applied here to the WSDL de-

149

4

<definitions name="AcademicVerifier"
targetNamespace="http://www.capeclear.com/AcademicVerifier.wsdl" ...>
<message name="isAcademicEmailAddress"><part name="emailAddress">
 <message name="getInstitutionNameFromDomain">
 <message name="getInstitutionNameFromDomainResponse">
 <message name="getInstitutionNameFromEmailAddress">

Fig. 2. Initial Processing Example of the Academic Verifier

scriptors. By building an independent corpus for each document, irrelevant terms are

more distinct and can be thrown away with a higher confidence. To formally define

TF/IDF, we start by defining 𝑓𝑟𝑒𝑞(𝑡𝑖,𝒟𝑖) as the number of occurrences of the token

𝑡𝑖 within the document descriptor 𝒟𝑖. We define the term frequency of each token 𝑡𝑖
as: tf(𝑡𝑖) = 𝑓𝑟𝑒𝑞(𝑡𝑖,𝒟𝑖)

∣𝒟𝑖∣ . We define 𝒟𝑤𝑠𝑑𝑙 to be the corpus of WSDL descriptors. The

inverse document frequency is calculated as the ratio between the total number of docu-

ments and the number of documents which contain the term: idf(𝑡𝑖) = log ∣𝒟∣
∣{𝒟𝑖 : 𝑡𝑖∈𝒟𝑖}∣ .

Here, 𝒟 is defined generically, and its actual instantiation is chosen according to the ori-

gin of the descriptor. The TF/IDF weight of a token, annotated as 𝑤(𝑡𝑖), is calculated

as: 𝑤(𝑡𝑖) = tf(𝑡𝑖)× idf2(𝑡𝑖).
The token weight is used to induce ranking over the descriptor’s tokens. We define

the ranking using a precedence relation ⪯𝑡𝑓/𝑖𝑑𝑓 , which is a partial order over 𝒟, such

that 𝑡𝑙 ⪯𝑡𝑓/𝑖𝑑𝑓 𝑡𝑘 if 𝑤(𝑡𝑙) < 𝑤(𝑡𝑘). The ranking is used to filter the tokens according to

a threshold which filters out words with a frequency count higher than the second stan-

dard deviation from the average frequency. Figure 3 on the left circle of every concept

presents the list of tokens which received a higher weight than the threshold. Several to-

kens which appeared in the baseline list (see Figure 2) were removed due to the filtering

process. For instance, words such as “response” and “get” received below-the-threshold

TF/IDF weight, due to their high frequency.

3.3 Context Extraction

We define a context descriptor 𝑐𝑖 from domain 𝒟𝒪ℳ as an index term used to identify

a record of information, which in our case is a Web service. A weight 𝑤𝑖 ∈ ℜ identifies

the importance of descriptor 𝑐𝑖 in relation to the Web service. For example, we can have

a descriptor 𝑐1 = 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 and 𝑤1 = 42. A descriptor set {⟨𝑐𝑖, 𝑤𝑖⟩}𝑖 is defined by a set

of pairs, descriptors and weights. Each descriptor can define a different point of view of

the concept. The descriptor set defines all the different perspectives and their relevant

weights, which identify the importance of each perspective.

By collecting all the different view points delineated by the different descriptors we

obtain the context. A context 𝒞 =
{{⟨𝑐𝑖𝑗 , 𝑤𝑖𝑗⟩}𝑖}𝑗 is a set of finite sets of descriptors,

where 𝑖 represents each context descriptor and 𝑗 represents the index of each set. For

example, a context 𝒞 may be a set of words (hence 𝒟𝒪ℳ is a set of all possible char-

acter combinations) defining a Web service and the weights can represent the relevance

of a descriptor to the Web service. In classic IR, ⟨𝑐𝑖𝑗 , 𝑤𝑖𝑗⟩ may represent the fact that

the word 𝑐𝑖𝑗 is repeated 𝑤𝑖𝑗 times in the Web service descriptor document.

The context recognition algorithm was adapted from [11], which can be formally

defined as: Let 𝒟 = {𝒫1,𝒫2, ...,𝒫𝑚} be a set of textual propositions representing a Web

service, where for all 𝒫𝑖 there exists a collection of descriptor sets forming the context

𝒞𝑖 = {⟨𝑐𝑖1, 𝑤𝑖1⟩, ..., ⟨𝑐𝑖𝑛, 𝑤𝑖𝑛⟩} so that 𝑖𝑠𝑡(𝒞𝑖,𝒫𝑖) is satisfied. McCarthy [12] defines a

relation 𝑖𝑠𝑡(𝒞,𝒫), asserting that a proposition 𝒫 is true in a context 𝒞. In our case, the

adapted algorithm uses the corpus of WSDL descriptors, 𝒟𝑤𝑠𝑑𝑙, as propositions 𝒫𝑖 and

150

5

Software
Registration

Domain Name

Academic
Institute
From
Address
Verifier

TF / IDF Web Context

Web Service
AcademicVerifier

Domain

Registration
Hosting

Software
Search

Registrant
Name
Location

TF / IDF Web Context

Web Service
DomainSpy

Domain
Address

Database
IP

Code
Picture

Zip
City
Resolver

TF / IDF Web Context

Web Service
ZipCodeResolver

Address
XML

Address

Domain
Address

XML

?

?

?

?

Concept Evocation

?

Software
Registration

Domain Name

Academic
Institute
From
Address
Verifier

TF / IDF Web Context

Web Service
AcademicVerifier

Domain

Registration
Hosting

Software
Search

Registrant
Name
Location

TF / IDF Web Context

Web Service
DomainSpy

Domain
Address

Database
IP

Code
Picture

Zip
City
Resolver

TF / IDF Web Context

Web Service
ZipCodeResolver

Address

Ontology Evolution

XML

?

Con Concept

Subclass
Relation

?
Undefined
Relation

Key

Zip
City

Descriptor
Results

Fig. 3. Example of Web Service Ontology Bootstrapping

the contexts describing the WSDL as descriptors 𝑐𝑖𝑗 with their associated weight 𝑤𝑖𝑗 .
The context recognition algorithm identifies the outer context 𝑖𝑠𝑡(𝒞,∩𝑚𝑖=1 𝑖𝑠𝑡(𝒞𝑖,𝒫𝑖)).

The context recognition algorithm consists of three main phases: 1) selecting con-

texts for each text, 2) ranking the contexts, and 3) declaring the current contexts. The

result of the token extraction is a list of keywords obtained from the text. The selection

of the current context is based on searching the Web for relevant documents according

to these keywords and on clustering the results into possible contexts. The output of the

ranking stage is the current context or a set of highest ranking contexts. The set of pre-

liminary contexts that has the top number of references, both in number of Web pages

and in number of appearances in all the texts, is declared to be the current context and

the weight is defined by integrating the value of references and appearances. The input

to the algorithm is a stream of information in text format. Figure 3 shows the result

of the Web context extraction in the right circle of each concept. The figure shows the

context that includes only the highest ranking descriptors which pass the cutoff to be in-

cluded in the context. For example, Domain, Software, Registration, and Domain Name
are the context descriptors selected to describe the AcademicVerifier service.

3.4 Concept Evocation

Concept evocation identifies a possible concept definition which will be refined in the

ontology evolution. The concept evocation is based on context intersection. An ontology

concept is defined by the descriptors which appear in the intersection of both the Web

context results and the TF/IDF results. We defined one descriptor set from the TF/IDF

results, 𝑡𝑓/𝑖𝑑𝑓𝑟𝑒𝑠𝑢𝑙𝑡, based on extracted tokens from the WSDL text. The context, 𝒞,

is initially defined as a descriptor set extracted from the Web representing the same

document. As a result, the ontology concept is represented by a set of descriptors, 𝑐𝑖,
which belong to both sets: 𝐶𝑜𝑛𝑐𝑒𝑝𝑡 = {𝑐1, ..., 𝑐𝑛∣𝑐𝑖 ∈ 𝑡𝑓/𝑖𝑑𝑓𝑟𝑒𝑠𝑢𝑙𝑡 ∩ 𝑐𝑖 ∈ 𝒞}.

Figure 3 shows an example of the concept identified by the intersection. For the

AcademicVerifier Web service, the concept is based on the intersection of both

descriptor sets is identified as Domain. The concept can consist of more than one de-

scriptor (e.g., DomainSpy Web service is identified by the descriptors Domain and

Address). Concepts can be evoked as a result of partial overlapping concepts. This ex-

ample can be seen by Address and the set of Domain, Address, and XML.

151

6

A context can consist of multiple descriptor sets and can be viewed as a meta-

representation of the Web service. The added value of having such a meta-representation

is that each descriptor set can belong to several ontology concepts simultaneously. For

example, a descriptor set {⟨ 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛, 23⟩} can be shared by multiple ontology

concepts (Figure 3) that have interest in domain registration. The different concepts can

be related by verifying whether a specific domain exists, domain spying, etc., although

the descriptor may have differing relevance to the concept and hence different weights

are assigned to it. Such overlap of contexts in ontology concepts affects the task of Web

service ontology bootstrapping. The appropriate interpretation of a Web service context

that is part of several ontology concepts is that the service is relevant to all such con-

cepts. This leads to the possibility of the same service belonging to multiple concepts

based on different perspectives of the service use.

The concept relations can be deduced based on convergence of the context de-

scriptors. The ontology concept is described by a set of contexts, each of which in-

cludes descriptors. Each new Web service that relates to the concept adds new con-

text descriptor sets. As a result, the most common context descriptors which relate

to more than one concept can change after every iteration. The sets of descriptors

of each concept are defined by the union of the descriptors of both the Web context

and the TF/IDF results. The context is expanded to include the descriptors identified

by the Web context, the TF/IDF, and the concept descriptors: 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 =
{𝑐1, ..., 𝑐𝑛∣𝑐𝑖 ∈ 𝑡𝑓/𝑖𝑑𝑓𝑟𝑒𝑠𝑢𝑙𝑡 ∪ 𝑐𝑖 ∈ 𝒞}. For example, in Figure 3, the context of ser-

vice AcademicVerifier includes the descriptors: Software, Registration, Domain
Name, Domain, Academic, Institute, From, Address, and Verifier.

The relation between two concepts, 𝐶𝑜𝑛𝑖 and 𝐶𝑜𝑛𝑗 , can be defined as the con-

text descriptors common to both concepts, for which weight 𝑤𝑘 is greater than a cut

off value of 𝑎: 𝑅𝑒(𝐶𝑜𝑛𝑖, 𝐶𝑜𝑛𝑗) = {𝑐𝑘∣𝑐𝑘 ∈ 𝐶𝑜𝑛𝑖 ∩ 𝐶𝑜𝑛𝑗 , 𝑤𝑘 > 𝑎}. However, since

multiple context descriptors can belong to two concepts, the value of 𝑎 for the relevant

descriptors needs to be predetermined. A possible cutoff can be defined by TF/IDF,

Web Context, or both. Alternatively, the cutoff can be defined by a minimum number

or percent of Web services belonging to both concepts based on shared context descrip-

tors. The relation between the two concepts Domain and Domain Address in Figure 3

can be based on Domain or Registration. The example takes a minimum number of

appearances in a document as the cutoff of both the TF/IDF and Web Context methods.

3.5 Ontology Evolution
The ontology evolution consists of four steps including: 1) building new concepts, 2)

determining the concept relations, 3) identifying relations types, and 4) re-setting the

process for the next WSDL document. Building a new concept is based on refining

the possible identified concepts. The evocation of a concept in the previous step does

not guarantee that it should be integrated with the current ontology. Instead, the new

possible concept should be analyzed in relation to the current ontology.

The descriptor is further validated using the textual service descriptor. The analysis

is based on the advantage that a Web service can be separated into two descriptions:

the WSDL description and a description of the Web service in free text. The WSDL

descriptor is analyzed to extract the context descriptors and possible concepts as de-

scribed previously. The second descriptor, 𝒟𝒮
𝑑𝑒𝑠𝑐 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, represents the text

152

7
1: For each Web service
2: Extract tokens from WSDL
3: 𝑇𝐹/𝐼𝐷𝐹𝑟𝑒𝑠𝑢𝑙𝑡 = Apply TF/IDF algorithm to 𝒟𝑤𝑠𝑑𝑙

4: 𝑊𝑒𝑏𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑢𝑙𝑡 = Apply Web Context algorithm to 𝒟𝑤𝑠𝑑𝑙

5: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖 = 𝑇𝐹/𝐼𝐷𝐹𝑟𝑒𝑠𝑢𝑙𝑡 ∩𝑊𝑒𝑏𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑢𝑙𝑡

6: If(𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖 ⊆ 𝒟𝑑𝑒𝑠𝑐)
7: 𝐶𝑜𝑛𝑖 = 𝑇𝐹/𝐼𝐷𝐹𝑟𝑒𝑠𝑢𝑙𝑡 ∩𝑊𝑒𝑏𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑢𝑙𝑡

8: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑖 = 𝑇𝐹/𝐼𝐷𝐹𝑟𝑒𝑠𝑢𝑙𝑡 ∪𝑊𝑒𝑏𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑢𝑙𝑡

9: For each concept pair 𝐶𝑜𝑛𝑖, 𝐶𝑜𝑛𝑗

10: If(𝐶𝑜𝑛𝑖 ⊆ 𝐶𝑜𝑛𝑗)
11: 𝐶𝑜𝑛𝑖 subclass 𝐶𝑜𝑛𝑗

12: Else
13: 𝑅𝑒(𝐶𝑜𝑛𝑖, 𝐶𝑜𝑛𝑗) = 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑖 ∩ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑗

Fig. 4. Ontology Bootstrapping Algorithm

description of the service supplied by the service developer in free text. These descrip-

tions are relatively short and include a sentence or two to describe the Web service. The

verification process includes matching the concept descriptors in simple string match-

ing against all the descriptors of the textual service descriptor. We use a simple string-

matching function, 𝑚𝑎𝑡𝑐ℎ𝑠𝑡𝑟, which returns 1 if two strings match and 0 otherwise.

Continuing the example in Figure 3, analysis of the AcademicVerifier service

yields only one descriptor as a possible concept. The descriptor Domain was identified

by both the TF/IDF and the Web Context results and matched with a textual descriptor. It

is similar for the Domain and Address appearing in the DomainSpy service. However,

for the ZipCodeResolver service both Address and XML are possible concepts but

only Address passes the verification with the textual descriptor. As a result, the concept

is split into two separate concepts and the ZipCodeResolver service descriptors are

associated with both of them.

To evaluate the relation between concepts, we analyze the overlapping context de-

scriptors between different concepts. In this case, we use descriptors which were in-

cluded in the union of the descriptors extracted by both the TF/IDF and Web context

methods. Precedence is given to descriptors which appear in both concept definitions

over descriptors which appear in the context descriptors. In our example, the descrip-

tors related to both Domain and Domain Address are: Software, Registration, Domain,

Name, and Address. However, only the Domain descriptor belongs to both concepts

and receives the priority to serve as the relation. The result is the relation which can be

identified as a subclass, where Domain Address is a subclass of Domain.

The process of analyzing the relation between concepts is performed after the con-

cepts are identified. The identification of a concept prior to the relation allows in the

case of Domain Address and Address to again apply the subclass relation based on the

similar concept descriptor. However, the relation of Address and XML concepts remains

undefined at the current iteration of the process since it would include all the descrip-

tors that relate to ZipCodeResolver service. The relation described in the example

is based on descriptors which are the intersection of the concepts. Basing the relations

on a minimum number of Web services belonging to both concepts will result in a less

rigid classification of relations. The process is performed iteratively for each additional

service which is related to the ontology. The iterations stop once all the services are

analyzed. Alternatively, an ontology administrator can decide to suspend the ontology

evolution at any given time.

To summarize, we give the ontology bootstrapping algorithm in Figure 4. The first

step is extracting the tokens from the WSDL for each Web service (line 2). The next

153

8

step is applying the TF/IDF and Web Context to extract the result of each algorithm

(lines 3-4). The possible concept, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖, is based on the intersection of tokens

of the results of both algorithms (line 5). If 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖 tokens appear in the doc-

ument descriptor, 𝒟𝑑𝑒𝑠𝑐, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖 is defined as concept, 𝐶𝑜𝑛𝑖. The union of all

token results is 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑖 for concept relation evaluation (lines 6-8). Each pair of

concepts, 𝐶𝑜𝑛𝑖 and 𝐶𝑜𝑛𝑗 , is analyzed for whether the token descriptors are contained

in one another. If yes, a subclass relation is defined. Otherwise the concept relation can

be defined by the intersection of the possible relation descriptors, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑖 and

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑗 (lines 9-13).

4 Conclusion
This paper proposes an approach for bootstrapping an ontology based on Web service

descriptions. The approach analyzes Web services from multiple perspectives and in-

tegrates the results. Web services usually consist of both WSDL and free text descrip-

tors. This allows bootstrapping the ontology based on WSDL and verifying the process

based on the Web service free text descriptor. The approach enables the automatic con-

struction of an ontology without the prior training required by previously developed

methods. As a result, ontology construction and maintenance efforts can be substan-

tially reduced. Our ongoing work includes further performance study of the proposed

ontology bootstrapping approach. We plan to apply the approach in other domains in

order to examine the automatic verification of the results.

References
1. Noy, N.F., Klein, M.: Ontology Evolution: Not the Same as Schema Evolution. Knowledge

and Information Systems 6(4) (2004) 428–440
2. Ehrig, M., Staab, S., Sure, Y.: Bootstrapping Ontology Alignment Methods with APFEL.

In: Proc. of 4th Intl. Semantic Web Conference (ISWC’05), Galway, Ireland (2005)
3. Zhang, G., Troy, A., Bourgoin, K.: Bootstrapping Ontology Learning for Information Re-

trieval Using Formal Concept Analysis and Information Anchors. In: Proc. of 14th Intl.

Conference on Conceptual Structures (ICCS’06), Aalborg University, Denmark (2006)
4. Platzer, C., Dustdar, S.: A Vector Space Search Engine for Web Services. In: Proc. of the

3rd European Conference on Web Services (ECOWS’05), Växjö, Sweden (2005)
5. Patil, A., Oundhakar, S., Sheth, A., Verma, K.: METEOR-S Web Service Annotation Frame-

work. In: Proc. of the 13th Intl. Conference on World Wide Web. (2004)
6. Heß, A., Johnston, E., Kushmerick, N.: ASSAM: A Tool for Semi-automatically Annotating

Semantic Web Services. In: Proc. of Intl. Semantic Web Conference (ISWC’04). (2004)
7. Segev, A., Toch, E.: Context-Based Matching and Ranking of Web Services for Composition.

IEEE Transactions on Services Computing 2(3) (2009) 210–222
8. Davulcu, H., Vadrevu, S., Nagarajan, S., Ramakrishnan, I.: OntoMiner: Bootstrapping and

Populating Ontologies From Domain Specific Web Sites. IEEE Intelligent Systems 18(5)

(2003) 24–33
9. Sabou, M., Pan, J.: Towards Semantically Enhanced Web Service Repositories. Web Se-

mantics 5(2) (2007) 142–150
10. Gruber, T.R.: A Translation Approach to Portable Ontologies. Knowledge Acquisition 5(2)

(1993) 199–220
11. Segev, A., Leshno, M., Zviran, M.: Context Recognition Using Internet as a Knowledge

Base. Journal of Intelligent Information Systems 29(3) (2007) 305–327
12. McCarthy, J.: Notes on Formalizing Context. In: Proc. of the 13th Intl. Joint Conference on

Artificial Intelligence (IJCAI’93), Chambéry, France (1993)

154

��������	
�����
�	�����	��	��������	���
��	��������		

��������	
�������
�����
������
���
��
����������
������
�����
��
���� ��!�"��
�

�
�������#$�%
#�����
�����
�&��

�
��
�����
'
�
� $�

���� �����
�&�'�����
����(�
	
��
������
����
����
�����
�$��
���#����
�����
����
����)�$��

*+,,-�.���
 ���
 �����
$�����
�$��#�
��
�#�	
��/�

�
��$'
$�#�$
���0������
�������1/'
$�#�$
��

��������� 23
� �����
�	���� ��!� %
�
��� ����
���� 4�%��5�� 63
�3� 3�	
� 7

��
�
'
�
�� ��� �� ��
���� ��� ���� ��
�� � �
�
��� #��7
���� ��
� �'� ��
��� 3
 #� ���
�
	
 �#
��� 63
�� ���

��� ���� ��

�� �
��
� �3
�
� #���
���� #��	
�
� ��
�
	
 �#�
��� ��
�
� ����
�#��	
� �3
� 8��
�!� �'� �3
� �
�� �
��� ���� ��

�$�
9�6
	
���
�� 3���7

���
��������
�� �3����
�����!����
����
	
 �#
���
������
��
�
''
�� �

��63
���3
!�3�	
�����
��
����� ��!��
�
���#���
��������
�� ��
�
������

�� �3
� ���

��$� 23���� ��� �	�
��
������
�� ���� ��!� ���

���� �3
�� #�#
��
#��#��
��� ���
'!
���
������
�����6���!#
�:�4;5�
�������
 ��
�����
<
��
����%����
��
������������	�
�� ���� 4*5�
������ ���� �
 ��
�� ���
<
��
����%���� ��
����	
�

�	������
��23
��� ���
'
���
���
���3
��
�� ���'���� !�
������
���'����� ��

��63
�3�
���
� '������� ����
�
��
<#
�
�
��$� &�� ���
�
���� �3
�#�#
��#�
�
���� �� �
�
�� �
� ���
'
���
����'��3
�6�����#����
�
��'������������
���'�6�����#����
�
�
<��#
�$�
�
�� !���3
�#�#
���3�6�����
<��#
��'�3�6��3
��'��
�
��
��
��6�����#����
�
��
��� ��7
��
 ��
���������3
�$��

���������	#���
��������
�#���
�����6�����#����
�
������� ��!$�

�			���������
��	

���

��� ���� ��

�� 3��� 7
���
� ��
� �'� �3
� ��
�� ��#
��� �'� �
�
���3� 6
�3
��
���� ��
�� �
��
�

�
��� 7
����
� �'� �3
� �
''
�� �

��
��
�	� 	
�$� &�� �
�
��� !
����� �3
�

�
��
��
� �'� ���� ��!� %
�
��� ����
���� 4�%��5�� 63
�3� ��
� �
'
�
�� ��� �� ��
���� ���
�
�
���#��7
���=>?��3�����##��
������
���3
 #�������� ��!��
	
 �#
��$�

���
�
<#
�
�
����=*?�����

������
������ ��!�
��
�

�
���3�	
��
��������
���3���
�
�
���#���
������
�#
��

	
���������
��������

������� ��

������
	
 �#�
�����
�
��
���� �� 6�!� ���
�#��	
� �3
� 8��
�!� �'� �3
� �
�� �
��� ���� ��

�$� 9�6
	
���
��
�� 6
 �
@��6�� �3��� =*�� ;?��
�� ���
� ���
��� ���� ��!� �
	
 �#
���
<#
�

��
� �
''
�� �

�� 63
��
�
��
����3
�#���
�������
������

��������
�� ��
�
������
���3
����

��$�23
�
'��
��

�����
��������
�������������
�����
�� !��%����6
��

����7
��
����##�����3���#�
	
����
�3
�
�
��
��
��'����

���
�����$�

23��������	�
���3
��##
�����
��'�
������
������ ��!��
	
 �#�
����6
���
�6��@
���
��� �3
� ��
��
��� �'� �� �
6� �
�� �'� �
�3��� ��
�� � ��
�
�$� 23
�
� ��
�
��� 7��
�� ��� �3
�

�
��
'
���
�������� ���
'
���
����'����

���
�������� ���
'!�
������
�����6���!#
�:�4;5�

�������
 ��
������%������
������������	�
A�����4*5�
�����������
 ��
������%������
��
��	
�
�	������
$�23
��� ���
'
���
����'�
��������
�
��'����#
�'���
��������� !�
���7��
��

155

����%�����'��� �
���'����� ��

�$� &�� �3
��#�#
��� ���3���� ���
'
���
���
��#�
�
��
�$� &��
���
�
���� 6
�
�� ��
� �� � ���
'
���
��� �'� �3
� 6����� #����
�
��
�
��
'

�� ���� �� �
�� �'�

<��#
���'����3�6�����#����
�
�$��

23
��
��
��
���'��3
����
�
�
����������
�����'� �6�:��
��
���*�#�
�
�����3
�����
��'�
�3
������'�#���
�����������
�#���
����
������ ��
�� �
��
�

�
��$��
��
���>��
���
7
���3
�

<#
�
�
�������

������
�����
������7��
���3
��
���'����� ��

����� !�
��
���3
��#�#
�$�
�
��
���B��
���
7
���3
���� !�
������

������
���3
��'��
�
��
��
������ ��

���63
�3�
�3�6���3
�#�
�
��
��'��%��������
���
7
�����
�#���
��������6�����#����
�
�$��
��
���C�

�� ��
�� �3
� � ���
'
���
��� �'� �3
� 6����� #����
�
�� '������ �� �
�� �'�
<��#
�� �'� 6�����
#����
�
����������
<��#
��'�3�6��3
�6�����#����
�
����� ��7
��
 ��
�������� �3
�$�
�
�� !���
��
���,�
�� ��
���3
����� ��
�������6������'����
�
�
���'�6��@$��

�			�����	��	� �	
���	��������	���	
��
!��������	

&������ ��!�
��
�

�
�����3
����� ��!��
�
���#���
��������7
�����
�
�
��������

���
�� ��
���� ���#��7
���6
�
 !�@��6��
�� �3
���
�$�23
�
� �� ��
������
�7��
����������
#����
�
�������� 	
����

���#��7
��$�

&�� �3
� �%��� '

 ��� 6
� ���� �
��
���
�3� 7
�6

�� ��
�� � #���
���� ���� ����
#��� �
#���
���$�D
�3� �
����� ��� ��
�� � #���
����� �3
�D>��6��@� �
����@��6����� E��������

���
 ��
�
 �	������

 ���
 ����������
 4�D.�%5;�� 3���
���7
�3
�� �3���
�� ���
�� ���
#��	
�
���##��������
	
 �#
���������
����'��3
��
����
��D
7�����
���'������#����
�
��

���
8�
�
�$�2���3���#��#��
���3
������#�#��#��
��#���
�����3����� 	
��
�
���#��7
���

�� �3
� �DF� ������
��
��
#
��
�� !� �'� �3
� #���
�� ��� �#
�
'
���
���� 63
�3� �� 	
�
 ��
�� �#��7
��$�G
����
�������
#��� �#���
����=>?���3
����3���#��#��
��#���
����4
��
�DF������!���3
�� ��
�� � ������
5��3����� 	
��
�
���#��7
���'����#
�
'
������
����
63
�3��� 	
�����
���#��7
��$�

&�� ���
�
��� ��� �3
� �
��
���
��� �
��
��
�� �7�	
��
�� =C�� B?� �3
� ���3���� � ���
'!� �3
�
�%���
���� ����
���� ��������� ��
<
����!�����
��� �
����
���� #�
�
����
��� ����
����
�#���
��
�������3

����7�!#
�$��

23
�6��@��
���
7
��
��=C��B?�
��'����
���������
���#���
��������#��	
�
����
�

�
��
��� 3�6� ��� �## !� ����
��� �%��� ��
���
�#����� �#
�
�
���
���� ���#��
�
��� ����

<#���
��� '����
���$� &�� �3
� ���
�6��@�� �3
� ����
��� ���� ��!� ���
�#���
��� ����
#��
��
�
'
�
��������
�
����3���
���
''
�
���'����������
���#���
���
���3����3
�'���
�����
���3
�
�� ��
��������#��7
��
����6�����6�!$�

9�6
	
���6
� 3�	
��7�
�	
�� �3��� ���
��'� �3
�#�#
��� ��� !�
��3�	
� ����

������ ��
�3�����3�����!�����3
���
��'���!��!#
��'��%��������3

������
�#���
������
�#���
���$�
D
� 3�	
� � ��� �7�
�	
�� �3��� �3
�
�
�� ��� #�
	
���� 6��@� '����
�� ���
�
��
'!
��� ����
#�
	
��
���������
 �
�����������
 ��
�������!�
<
��
����%�$��

�%��� ���� 7
� '�����
�� ���
�
�
7���

�� �3���
�� ��
� 7��3� �3
� �
���
#�
��� ���� �3
�
�DF����
������
��
������3
�#���
�������� '���
<��#
��E�3
���������
��
���
�����	��
����� H*����� �3
!�����7
��7��
�
��'�����3
�6��@��
���E��������
���
��
�
�	������

���
������������
���
� ��3
�

7���

�� =C�� ,?� ��� ���� #��	
�
� �3
� #���
��� ���
�� 7���

�� �������������������
;�3��#:))666$6>$���)*--;)�6).
�������
�
�)�
*�3��#:))���� ��!�
�
��#���
���$���)�

156

�3
!� ����
��
���
#�
�����'� �� ��
��� ���7
���'��%��$�23
�
�
7���

���63
�3� '� �6���
��'�6��
�
��
�

�
����##����3����
����
�# ��
�'����
���
7
����3
�#���
���$�

"			#$%��
&���	�����
%�
��	

D
�3� �3
� �
�� �'�
�
��
'!
��� �3
� �!#
�� �'�
������ ����� !� ���
� 63
�� �
	
 �#
���
���� ��

��� 6
� 3�	
� ��� !�
�� ;;� ���� ��

�� �3��� ���@
� �
''
�
��� ��#
���� 4�����
���3
�
����
���
����#3!������
������
@
���������������
�!��
�	
�
�5��'��3
�����
���'�
��
��� I��
�J�� D�!$� 23
�
� ���� ��

�� 6
�
� �
	
 �#
�� 7!� ����
�� ����
���� ��� ��
#����
�� � ���
���
��� ��� �3
� E���� ��

�� ���� �3
� �
����
�� D
7H� ��7K
��� ��� �3
�
�����	
����
�����������
��
 ��	�������
���*--L�*--+$�

.
'��
�#
�'���
��� �3
�#����
�� ����
���
���� �3
��
�
�� �
���
�� �
 ��
�� ������� ��!�
�
	
 �#�
���6
�
�
<# �
�
������3
�����
���$����3��3
��
�
�� �
������6
�
����7
�
��
6
�3�3�����������
	
�

���3���� �6
������
��������
���3
�7��
��'���7�
 �
������� ��

�$�

2�� �
	
 �#� �3
� ���� ��

��
�� �3
� #����
�� � ���
���
���� ����
���� 6��@
��
�� #�
���
7
��
���
���
����3
�#���
�� �����#
���6
�3
���3
���
���I��
�J��D�!�����
���3����3
!�
�3���
$�����
�������#������

�������3
�'� �6
�����
#������
	
 �#��3

������ ��

�:�
;$ 2��'
���@��6
��
��
�����
����
��7
�'����
��
�
���3
����� ��!��
	
 �#�
��$�
*$ 2��
�
��
'!� �3
�
'
� �!�
� ���
 � ���� �3
�
'
� �!�
� '��� �3
� ���� ��!� ��� 7
�

�
	
 �#
������������3
��
��3
����� ��!��
	
 �#�
���#��K
��$�
>$ 2��
�
��
'!��3
��
8�
�
�
�����3����3
����� ��!����7
��
	
 �#
���3�� ��'� '
 $�
B$ 2�����
 ��3
�@��6
��
����7
��
#�
�
��
��
���3
����� ��!��
��
����
���4
'��

�
�5�

�3
�@��6
��
�'�����3
��
�����
��'�����
����
#�;$��
C$ 2��
�#
�
����3
����� ��!�
���DF$��

����
����6
�
�'�

�����3���
�����3
����� ��!� ������
��������#��
�3��"��
�3�����
7��3�� � �3���3� ����� �'� �3
�� �
	
 �#
�� �3
� ���� ��

��
�� �#��
�3$� �
�� !�� 6
�
�7��
�
��*����� ��

���7���������7��3�
���#��
�3A�*����� ��

���7�������3
�
����
��;�
��
�#��
�3� ���� ;�
�� "��
�3A� *� ���� ��

�� �7���� �
����#3!�� ;�
�� �#��
�3� ���� ;�
��
"��
�3A� ;� ���� ��!� �7���� ����
�� ����
@
����
�� �#��
�3A� ���� B� ���� ��

�� �7����
������
�!��
�	
�
���>�
���#��
�3�����;�
��"��
�3$�

&��
��6���3��
��
��
����3����%���
���
��6
�
�����
<# �
�
���������
�������
����3
�
����
�� �����
$� 23���� ����
���� �
�� ���� 3�	
� ��!� ���
��� �7���� �%��� ��� 7
� �##

��
���
����3
����� ��!��
	
 �#�
��A��3
�
'��
��
���
��������@
��
��
����'�������������!�
��� �3
� ����
�� !� ���
�����
�� !� �
��
� �'� �%��$� &���
���� 6
� '����
�� ���� ����!� ���

<��
�
���63
�3
���%������ ��7
��
�
��
��
���3
��
�� �
������� ��

�$�23
��##����3�
���#�
��
���3
���� !�
��6���7��
������3
������ ��
���3��'��%���
������ ��

���������
�3
������ �
�
��
'
���
����'��6���!#
���'����

���
�����:�4;5��3��
��
 ��
������%����
��
������������	�
!�����4*5��3��
������
 ��
������%������
����	
�
�	������
$��

'			
�����
�	�����	��	��������	���
��	��������	

����
��
��
��
���
��
���>��6
�'����
����������!������� !�
��� �3
�;;����� ��

��
��
�3
���
���I��
�J�D�!�6
�3��3
��
���'��
���3
���63
�3
���%������ ��7
��
�
��
��
��
�3
� �
�� �
��� ���� ��

�$� 23
� �##����3� ���#�
��
�� �3
� ��� !�
�� 6��� 7��
�� ��� �3
�

157

����� ��
���3��'��3�

�#���
7
���
���
���
���3
�;;����� ��

�:�4;5��%����##
��
���
��
���� ��

�A�4*5����

���
�������
 ��
������%��A�����4>5����

���
�����������
 ��
��
����%��$��

������
�� ���'��3
���� !�
������

�������6
�3�	
�
�
��
'

���3
�#���
7

�

���3�6��
��
�3
���

��'��
�$�;$�&���3
�'
����# ��
��6
������
��
���
�3��6����
��7����3
��
���3
���

:�
�3
�
'����
��3����
#�
�
����63
�3
�����
�
���
8�
	�
����������%��3���7

���7�
�	
�A�
�����3
��
�3����
��3����
#�
�
�����3
����
�63
������
�
���
8�
	�
��� �������%��3���
7

���7�
�	
�$��
����������'
�� !���3
���

�� ���
'

��
��3��'��3
���
���
���'�����
��
���
� �'� �3
� '����
�'� ���
�
 ���� �
�
��
�
��
'� ���3� ��
���
�� ����3
�� �� #���
���

�
��
'
���
���� ��� ���
�#���
���
�
��
'
���
���� ��� �� 6����� #����
�
�
�
��
'
���
���
�� �3
�
'� �6
���6�!:�
;$ "�����#�������
 �#
 ��
 ��������
 ��
���
 �����	��� 4;���
�'� '���� �3
�
'�5
D
� 3�	
�

�
��
'

�����
����
���3���3�	
�������
����
�
���'����3
����

���#��7
�A����3���
�
�
�������3
������%���'��3��
�
���3
��	�
 �7
�
7���

�$�

*$ "�����#�������
 �#
 ��
 ����������	�$� 4*��� ���� >���
�'5� &�� ���
� ���
�� 6
� 3�	
�

�
��
'

�����
�
����3�������3
������%��7����3
���
�
���
����������
��7
��� ��
������
�3
����

���#��7
�$� &�� ���
���3
�� ���
��6
�3�	
�����
�
��
'

�� �� �
�
��� �3���
��� �� ����3� ��� �%��
�� �� ��
��7
� �� ��
��� ��� �3
� ���

��� #��7
�A� 3�6
	
���
�3
�
�
������
��7
�#���
����3������ ��3�	
�7

���##

��
'�6
�3���@��6���3
��%��$�

>$ "�����#�������
 �#
 �
 ��	
�
 �	������
 $��%$� 4B�3�
�'5� &�� ���
� ��3
�� ���
�� 6
� 3�	
�
�7�
�	
�� �3��� �3
�
�
�� ��� ����
��7
� �� ��
��� ��� �3
� ���

��� #��7
�� 63
�
���
�3
�
�
����������%����
��7
� '����3
����

���#��7
�$�������'� �3
�
����
��3�	
�
7

����
��
�����D��A�3�6
	
�����'
6��
���'����
����� ��3�	
�7

���� 	
��7!��
����
�'����#�
���������7
�
���
<
��
����%��$��

�

(
��	���%
�
�
�����

�'���� ���
'!
���#���
��������
�#���
��������6�����#����
�
�$�

%��
��� �3
� ��� !�
�� #
�'���
�� 6
�3� �3
� �'��
�
��
��
�� ;;� ���� ��

��� 6
� 3�	
�
'����� *-+� ���
��
�� 63
�3� 6
� 3�	
�
�
��
'

�� �� ����
��� �
�
��� �'� �� �� ��
��� �3���
����3
�� ��� �%�$� D
� 3�	
� � ��� '����� ;;L� ���
�� �'� ���
�#���
����� �'� 63
�3� +>�
����
�#���� ��� �
����
����
�� 63
�3� �3
� �� ��
��� ����3
�� �3
� ���

��� #��#��
��
��
���
��%�$�9�6
	
������3����� ��
���
��������
��7
�'����3
��
�
���#��7
��
��
��
��
��� �� 	
$� .
�
�
��� 6
� 3�	
� '����� >B� ���
��
�� 63
�3� 6
� 6
�
� ���7
� ���
�
��
'!� ��
�
�
��� �� ��
��� ����3
��� ��� �%�� �3���3� �� ��
��7
� �%��
<
���$� �
�� !�� 6
� 3�	
�
���
�����������
���'�*>;�D�����3���
����� ��
��������
��7
�'����3
��
�
���#��7
��
��
�3
�����
���'��3
����� ��

������

��'������3��
�
���#��7
�A����3�D����������3�	
�
����%�������
��
�$�23
�
�D�����
��
���
7
��
���
��
���C$�

158

)			*����
�
���
��	���	#$�&%���	��	+����	�����
���	

��� ���� 7
� �

��
�� �
��
��� B�� 6
� 3�	
�
�
��
'

�� �
�
���� ����
��7
� '��� �� 	
��� ��
���

���#��7
��'���63
�3��3
�
�
���������	�
 �7
��%�$�&���3
��#�#
����3
���!#
��'�
�
�
����� ��
����
�����
��6�����#����
�
��4D��5$�	

D
�3�	
�� ���
'

���3
�D���
�
��
'

��
���3
���� !�
������ ��

��7
��
���
���
���
�3
��!#
���'��%���#��#��
��
��=C��B?$�&���
�$�*��
��3�D��
�������
��
������3
��!#
4�5��'�
�%�� ��� 63
�3� �� #���
��� ��
��
�� ��� �	�
�� ���3� �� D�� ��� �� 7
 ���$� &�� 2�7
� ;� 6
�
#��	
�
���7�

'��
���
#�
����'�
��3�D��� ���
'

�$�

�

�
(
��	�$�� ���
'
���
����'��3
�6�����#����
�
��
�
��
'

�$�

�������7
��7�
�	
��
���3
�D���� ���
'
���
����##
��
���
���
�$�*���3
��!#
���'�D���

�
��
'

����
��3
�'� �6
��:�;5�
������
��	+�� �3����
'
�������3
����� ��!����7

�!�
'���� �3
� ��
�J�� #�
��� �'� 	

6� 7!�
�� ��
��� ���
�
��� �
�'�����
���
�� �3
� '���� �'�
�������
����
���3
����� ��!A�*5�,�����
��	+�� �3����
'
�������3
�
�#
�
��@��6
��
�
�
�
	
�� '���� �3
� ���� ��!� 63
�� �
����
��� #���
���
�� ��
� �##

�� ��� ���3� ���
���� ��!A�>5	-�&
��	+���3����
'
�������3
����� ��!����7

�!�'�����3
���
�J��#�
����'�
	

6�������#
�
'
�� !�� ��� �3
����
����'� �3
����� ��!�

�
���A�B5	.��
���	+�� �3���
�
'
�������3
��� ��
�������
�
���#��7
���
��63
�3��3
�#�
�
�
	
���'��3
��
#�
�
����
���
 ������
���
���������#��	
�
���##���A�����C5�*������	+���3����
'
�������3
��� ��
���
����
�
���#��7
����
 ��
������3
����� ��!�����
�$��

/����	���D����
���
#�
���$�

+�	-�&�	 +�	�����
%�
��	

������&�	��	�������� 23
��D������
����7��3�
����
��
����
	
�� �� ���
��63��
�
�
��
'

���
��
��!���!�������
���
'
�
����3
�����
8�
	�
��$	

.����	0��	*�&&���	���	�� ��	
�������
����

23
��D������
����
��
��
��3���
����3
�����
�����'��3
��������
����
�'� �3
� �!#
�� E �7
 H� ���� E����
��H� ����
�� ����
�� ��
��� ��!�
�������
����'��3
��!#
�E �7
 H�����E����
��H$	

��0����	�����
���
%�	� ��	���	
���	
�0�����

23
��D������
����
���
'
�
����6���
 ��
���3
#�����
�	
��
�63
���
��
'������3
!���
����$	

1����
���	
�0����	
�����
���
%��

23
��D������
����
��3�	
���
�	
��
� �
 ��
���3
#��
�� �3
����� ��!��
7����3
!���
������
'
�
��������3$	

,�����
0�	���
�
�
��� 23
��D��
���
 ����
���������� ��!�

�
���
��
����6���
'
�
�
��$	
2���
%��	�������	
�	��&�
��	
���3��	������	��	�����
���
%�	
���3��	����
������

23
�� D�� ����
����
�� �
'
�
��� �3
� ����
��� ���)��� ����
�� �'� �3
�
�
 ��
���3
#�� ���)��� ����
7��
�� 7!�
��
��
��
��� �
	
�� � � ���
��
��
���
��
��63
�3��3
!��3�� ��7
��3
���
����'����3�� ���
�$	

���
��&�� 23
��D��
���
 ����
���������� ��!�

�
��� ��� �
#�
�
�������
#���
�
''
�
���'�����3
�����
�����
������
�
���
��$	

��&�	1,�	���	�
�������	
��������	���&�����

23
��D��
���
 �����
��
����3
����
�(G&�����6���
''
�
������� ��!�

�
���$	

159

+�	-�&�	 +�	�����
%�
��	

,����
���
%������
23
��D��
���
 �����'��
��� �3
���7� ���� �
 ��
���3
#� 4
&����

�#5��
�3
� �
�7
��3
#� ��� �� � ���� 4��
������#5�� ��� �3
�
8��
�!� 7
�6

��

������
��$
���"������&��5�6
�3�������3����
 ��
�����
��E
�H$	

*����	�	
�	�	 23
�� D��
���
 �� ��
��
��� �� � ���� 63��
� ���
�
��
E� ���;���� ���*H$	

*������	0��	���������	
23
��D������
����
���

#
�
���
���� ��3

����3!� ��� �3��� �3
����
�
�#
�
'
�� � ���
����� ���� 3�	
�
������
�� �
��
� ���3� � ���
��7
���
�
� ����
������
���'��3
��##
��
	
 ��'��3
�3

����3!$	

,����
���
%����3��	����
�����	
�
� ���	��&�
�	���3��	�����	

23
�	D�	 ����
����
�	 ���� �#
�
'!
��	 �3
� ����
�� ��� ����
�
�� �3
�
�
 ��
���3
#�)����
7��
�$	

����&%����	
����&��
��	 23
��D��
���
 ������ �
#�
�
��
���� � �3
�@��6
��
� �3������ ��7
�

�� ��
��
���3
����� ��!$	

2
�����������	�����	
23
�� D�� ����
����
�� ��
��
��� ��� ���
'
�
� � �
��
 ��
���� � ���� ���
� ���
'!�
�����
���
���
	
 ��3
�
������
������7
 ���
��������!��'��3
�
�
7
���� ���
���'��3
��
	
 $	

�
&���
��
���C$;�6
�#�
�
������
���'�D��� �3���3�	
��##
��
��	
�!�'�
8�
�� !�
�� �3
�

���� ��

����� !�
�$23
�
�D�����
��
 ��
���������3
��
���
��
���C$*$�

)��	+����	%����
���	
�	�����
���
%	&�����
��	

23
�� �
��
��� #�
�
���� �3�

�
<��#
�� �'� D����
�
��
'

��
�� �3
� ���� ��

�� 6
� 3�	
�
��� !�
��� �3��� 6�� �� �''
��� �3
� �
 ��
���3
#� ���

��$� 23
� '
���� ��
�
�� �
 ��
�� ���
 ��
�� �#���
����������3
���3
���6�������
����
���#���
���$�
;$,����
���
%�	���3��	����
�����	�
� ���	��&�
�	���3��	�������23
��D��
���
 ��

���� �#
�
'!
��� �3
� ����
�� ���)��� ����
�
�� �3
� �
 ��
���3
#�)����
7��
�$� &�� �3
�
���� ��!���� !�
��6
�'������3����3
��
 ��
���3
#�E
�&�&�H�3���7

���
'
�
��6
�3����
�#
�
'!
�������
�������
����������
$�23����
 ��
���3
#��3�� ��7
��
'
�
��
�� ��
���
�3
� ����
�� ���� �3
� ����
�
�	� 	
�$� ����
<��#
�� �3
� ����
��� �3�� �� �
'
�
� �3
�
�
 ��
���3
#�E
�&�&�H��3���3�	
�E���������
��H��������
������E� ��
H��������
$�

*$ 1����
���	
�0����	�����
���
%���23
�D������
����
��3�	
���
�	
��
��
 ��
���3
#��

���3
����� ��!�7��������
'
�
����3
��������3$�23
��
�#

���3���63
���
����
���6
�
�7��
��
���
�'�����
����3����3���6
���� ��
�'
�$�����
<��#
��6
�3
��������� ��!�
������3
�
����
��6
�3�	
��7�
�	
��3�6��3
��
 ��
���3
#��E
�&�&�H�����E
�.�
 �H�3�	
�
7

����
��
��6
�3�����
'
�
����3
�����
�	
��
$�D
�3��3
�����

����
'�6
�3�	
��3���
“building1 itIsIn site3”���3
���63
��6
����
	��
����
����
���6
�6
 �����
�7��
�� �3���
��“site3 isBuilt building1”$� &'� �
 ��
���3
#��6
�
��
'
�
��
���
�	
��
���3
���3
��
����
����� ��
�'
���3
�
<#
��
��@��6
��
$�

>$ ��0����	 �����
���
%�	 � ��	 ���	 ���	
�0�����	 23
�� D�� ����
����
�� �
'
�
��� �6��
�
 ��
���3
#�����
�	
��
�63
���
��'������3
!���
����$����������
8�
��
��'��3
��D���
���
�
�
�� @��6
��
�
�� #��7�7 !� �7��
�
�� 63
�� �� �
����
��
�� �##

�� ��� �3
�
���� ��!$� ����
<��#
�� 6
�3
�� ��� ���� ��!� ��� ����� 6
� 3�	
� �

�� �3��� �3
�
�
 ��
���3
#�� E
��� �&�H����� E
�.���3�&�H���
��
'
�
�����
�	
��
$�23
�� '���� ��� ��
����
����
���������3
��
����
��
	
 ���
��
�
'�6
�3�	
��3���“object1 isSoldIn
place3”�� �3
�� �3
� �
����
�� 6
 �
�'
�� �3��� “place3 isBoughtIn
object1”$� ��� �##��#�
��
� �� ��
��� 6�� �� 7
� ��� �
��
� �3
� �
 ��
���3
#�
E
�.���3�&�H� 7!� E
���
���'��
H$� &�� �3
�� 6�!�� �3
� �
����
��
����� �7�	
�

160

����
��
�� �
��##
����� �
��
�
'� “object1 isSoldIn place3”�� �3
�� �3
�
�
����
��6
 �
�'
���3���“place3 isPointOfSale object1”$�	

)��	,����
���
%�	�&���	�����	%����
���		

%��
��� �3
���� !�
���'��3
����� ��

��6
�3�	
��7�
�	
���3��� �3
�D�������7
��
 ��
��
�3����3��
''
�
����!#
���'��
 ��
���3
#�$�����
������
�����
�D�������7
��#
�
'
�����
��
�'������
��
�
�� �D��������D���������������������
8�
��
��'���3
��D�$�

D
�3� �
����� ��� �3
� D��� #�
�
��
��
�� �
��
��� C$;��
�� �3�� �� 7
� ���
�� �3��� �3
�
E&�	
��
� �
 ��
���3
#�� �3��� ��
� ����
�	
��
H� ���� EM��� �
'
�
��
�	
��
� �
 ��
���3
#�H�
D�����
�
�	
��
$�23���
���
���3
�'
�������
������	�
��@��6
��
�
���
#�
�
��
���63
�
���

���3
��
��������
�@��6
��
�
����
��
��� �3���3�
��	�
�$�&�����
�
�����3
�
��6��D���
����7
�������
8�
��
��'� �3
�EG
 ��
���3
#�����)�������
7��
��6
�3��������
�����)���
����
H�D����
��
�
���3
����
��'�EM����
'
�
��
�	
��
��
 ��
���3
#�H�D����6��
�	
��
�
�
 ��
���3
#����!�����7
��
'
�
��������3�7
����
��3

������
����������
���3�	
�����
7

���
'
�
�$� &����3
��6������
'� �3
�
� ��
� �6�� �
 ��
���3
#��
��63
�3� �3
�����
���'�
��
�
�� �3
� ����
� �'� �3
� ��3
�� ���� 	
�
� 	
����� 6
� ��!� 3
��� �3��� 7��3� ��
�
�	
��
A�
3�6
	
����
��
�7��3�����
�����������
����
������
'
�
��� �3
�3
���
���������� ��
��$�
D
�6�� ����!����� ��
'!��3
�
����
�����3����3��3
�#
����
��3�6��
���
�$�>>$�

�

�
(
��	"�	���
��
 ��
���3
#��������6�����#����
�
���

D
� �3
�@� �3��� �3
� �
 ��
���3
#�� 7
�6

�� �3
� D��� ���� 7
� 	
�!� ��
'� � ���
��� �3
�
�
	
 �#�
����'��3
��
�3��� ��
�� ���
�
������	�
��D��$�23
�
'��
��6
���
�����
�� !�
��� !�
����3
�
<
��
��
������!#
���'��
 ��
���3
#�$�

4			*������
���	���	(�����	.
���	��	���5	

23
��#�#
��#�
�
���� �3
� ��� !�
�� ����

������ ���;;����� ��

���63
�3� ���
� '�������
����
�
��
<#
�
�
���� 6
�3� �3
� �
�� �'�
�
��
'!
��� �� �
�

�� �'� #���
���� ���� ���
�
#���
���$�%��
����3
���� !�
��6
�3�	
�� ���'��������
���'�D����3�����!��##
������
���

�� �������������������
>�23
��
�����
����3
�����6��6
�3�����
������
�
������
�����
������
�
��
#�
�
����3
�� ���
���

�3
��
 ��
���3
#��������3
�����	
��#�#��#
��

��6
�3
��������� ��!��
�#
��
	
 !$�

161

�3
� ���� ��!� �
	
 �#�
��$� 23
� D���
�
��
'

�� 3�	
� 7

�� � ���
'

�� ������
��� ��� ��
��7�
���'��3
��!#
���'��%���'�����
���3
�
�
�����
�6
�3�63
�3��3
!���� ��7
��
 ��
�$�
&�����
�
�������
���'�
<��#
���'��3
�
�D���
��#��	
�
��
���3
��#�#
�$�

9�6
	
���
	
���3���3�
��
��#���
7
����'
����
 ��
���3
#���������3
��
''
�
���D����
���� �
��!��3�6���6
�3�	
���������

��� � �3
�#���
7
��
 ��
���3
#�$�23
�
'��
�������
'����
�
�
� �'� 6��@� 6
� #��#��
� �3
�
�
��
'
���
��� �'� �3
� �
 ��
���3
#�� 7
�6

�� �3
�
�
''
�
��� D��$� &�� 6�� �� 7
�
��
�
��
��� ���
�
��
'!� �3
� ����#�� �'� D��� �3��� ���� !�
�##
����
�� ���
��� !�����3�������
��3
��������
��
��'���D��
��
�
��
'

��� �3
���3
��
D����3������ ���##
������ ��� ���7
�
�
��
'

�$��

D
� � ��� #��#��
� ��� ��� !�
� �3
�
<
��
��
� �'� D��� ���� �3

�� �
 ��
���3
#��
��
����
�����3
���3����3��
��
#�
�
��
��
���3
����� ��

������

��
���3
��#�#
�$�

����3
��
��
�
��
���6��@���� ��7
��������!������3
���� !�
���
���
7
��
���3
��#�#
��
7��� ���
'!
��� �3
� ���� ��!� �
	
 �#�
��� #���
��� '� �6
�� 7!� �3
� ����
���$� &�� �3
��
�
6� #���
��� 6
� #��#��
� ���
�� ��
� ���
���� �7���� �%���
�� ���
�� ��� ���#��
� �3
�
�
�� �
������� ��

��6
�3�����6
�3�������
�����7������%��������� !�
����63���
<�
���
�3
�D�����������##
��$��

�
�� !�� ���6
�3�	
�� �
��!��
��
��
��� �3
�D���
�
��
'

����
����� �
 ��
�� �����!�
�%��#�
�
���
�� �3
� ����
���
7���

�A� �3
�
'��
�� 6
� ��
�
�	
��
���
��� �3
� ��
��
��� �'�
�
6��
�
���#���
����6
�3��3
��7K
��
	
��'��	�
�
����3
���
��'����3�D��$��
	

�5�������&������ 23
�� 6��@� 3��� 7

�� #���
� !� ��##���
�� 7!� �3
� "���#
���
����
��
��� #��K
��� M
��� 4��,�-*LCNC5� ���� �3
� �#��
�3� #��K
��� �
�.���

��
42�&*--L�,C,LL��-*5$��

,���������	

;$ ������� %
� �
��� �$�� ���
�����
��� �$�� ����

 ���������� "$�� ���� ����
���
��
����� �$�$�
'��&	��
(���&������
��
)��	���*
#�	
+������
��
�*�
,�&
�
�#
��������
��
���
�����	�
$�
&���	��������

�#
 �*�
-.�*
 "���	��������
/��#�	����
��
0��������
1������	���
 $10)�%��
##$�>*�BL$�4*--+5�

*$. ��8	
����"$A�����
�
���$A���
����
��O$�12��	�����

��
�����	����
��
��������
��
���$�&��
�	��������

�#
�*�
3�#�*
"���	��������
/��#�	����
��
0��������
/���&	�
$0�/)�%��##$�B;�
B+$�4*--N5�

>$ ����
�
�� �$� ��������
 ��
���
 �����	�

 #�	
 ��������
 ���
 /������$� ���
�� ��
 ���� 4
��$5:�
����

�
�����'� �3
������3�&��
����
��� ��
����
��D
7����'
�
��
�4&�D��*--C5���� 6�!��
&�
 ���$�FM����	� $�>L*N��##$�*,*P*L,$��#�
��
���9

�
 7
���4*--C5�

B$ ����
�
�� �$A� ��
����
�� O$� ��������
 ��
���
 �����	�
$� 9���7��@� ��� ���� ��

�� 4�
�����
"�
�
��5$��$�����7�����G$�����
��"�
����$��#�
��
�$�&��
����
��� �9���7��@�����&�'�����
���
�!��
��$�4*--N5�

C$ ��
����
��O$A�����
�
���$A�%�	
���$A���������
��
����$A�����
���
��
������$�$A�����

 �
���������"$A���	
�����$�'���
�4�5�-6
)
(��	�	�
�#
��������
��
���
�����	�
6
 	�&
����

��&����

#�	
�������	�����
��
���
�#
�����	7��
���������
�
'���
�	�8�����3��#:))666$�
���
#��K
��$���$�4*--+5�

,$ ����
���
��
����� �$�$A� .���@������ �$A� ����
�
�� �$A� ���
�����
��� �$A� F
3������ I$A�
F
6
��� 9$A� ��
����
�� O$A� ��7���� �$� '���
 �5�-�-6
 '���
 ��������
 /��������
$� '���

�	�8����
3��#:))666$�
���#��K
��$���$�4*--L5�

162

View Inheritance as an Extension of the
Normalization Ontology Design Pattern

Bene Rodriguez-Castro, Hugh Glaser, and Ian Millard

Intelligence, Agents and Multimedia Group,
School of Electronics and Computer Science,

University of Southampton,
Southampton SO17 1BJ, UK,

{b.rodriguez, hg, icm}@ecs.soton.ac.uk

Abstract. There are ontology domain concepts that are difficult to rep-
resent due to the complexities in their definition and the presence of mul-
tiple alternative criteria to classify their abstractions. To assist ontolo-
gists in overcoming these challenges, an analysis of available design pat-
terns in ontology and object-oriented modeling has been carried out. As
a result, the View Inheritance Ontology Design Pattern (ODP) is intro-
duced. The pattern extends the Normalization ODP (a.k.a. Untangling
or Modularization) and revelas the notion of Inter- and Intra-criterion
Multiple Inheritance. Our contribution is illustrated with a concrete ex-
ample of a use case scenario that benefits from the outcome of this study.

1 Introduction

Ontologies have emerged as one of the key components needed for the realization
of the Semantic Web vision. Ontologies bring with them a broad range of devel-
opment activities that can be grouped into what is called ontology engineering.
Ontology engineering practices present many similarities to those in the software
engineering field and there have been different adaptations of software engineer-
ing principles to the ontology engineering domain [1]. Within ontology engineer-
ing, this research primarily focuses on ontology modeling, more specifically on
Ontology Design Patterns (ODPs) [2] and on how they can help representing
complex domain concepts. ODPs have evolved from the general notion of design
pattern, defined in [2] as “archetypal solutions to design problems in a certain
context” and they are justifiably receiving a significant amount of attention by
ontologists due to the preceding success achieved by software design patterns [3].

In this study, we introduce the View Inheritance ODP. The View Inheritance
pattern intends to represent ontology domain concepts that presents multiple
alternative criteria to classify their abstractions. The motivation that led us
to the development of the View Inheritance pattern originates in the ReSIST
(Resilience for Survivability in Information Society Technologies) project [4].
One of the objectives of ReSIST is to create a knowledge base application in
the field of resilient and dependable computing. The ReSIST Knowledge Base

163

(RKB)1 features an ontology in the domain of resilient systems. This ontology
was built using the definitions and taxonomies presented in [5].

Among all the ReSIST concepts, one that particularly stands out from a
representational point of view is the concept of “Fault”. The concept of “Fault”
referred hereto is extensively detailed in [5]. This concept involves certain com-
plexities that makes it difficult to represent in the ReSIST ontology, such as a)
the dual role that it supports in the ontology, b) the number of relationships that
it participates in with other ontology domain concepts, c) support for classifying
occurrences of actual faults in real world systems and d) providing a keyword
index for subjects of publications and research interests/areas of projects, insti-
tutions or people. The characteristics of role and reusability of domain concepts
that we identified in [6] laid out some guidelines to handle the first two aspects.
To handle the rest, it is crucial that all types of faults identified in [5] can be
represented in the ReSIST ontology.

Fig. 1. Matrix representation of “Fault” in Avizienis et al. [5] used in the ReSIST KB
ontology

Figure 1 in particular, shows a matrix representation of all types of faults
which may affect a system during its life (see also Figure 5b in [5] for a tree
representation of these faults). Implicitly, the figure reveals several alternative
criteria for the classification of faults:

– A first criterion can be derived from the left column of the matrix. This
column represents the values of the eight basic viewpoints (see Figure 4 in
[5]) which lead to the elementary fault classes : “Development/Operational
Faults”, “Internal/External Faults” and so on.

1 http://rkbexplorer.com/

164

– A second criterion can be abstracted from the bottom row (listing numbers
1 to 31). This row represents the 31 likely combinations of fault classes out
of the 256 possible.

– A third criterion is implicit at the top row, representing the three major
partially overlapping groupings of faults: “Development”, “Physical” and
“Interaction”.

– A fourth criterion can be seen at the bottom row, labeled “Examples”, con-
taining nine illustrative examples of fault classes.

The representation of multiple alternative criteria (views) to classify the ab-
stractions of a certain domain concept motivated the development of the View
Inheritance ODP, which is explained throughout the paper as follows: Section
2 presents a brief overview of the main work related to the modeling of ODPs.
Section 3 introduces the View Inheritance ODP in detail and finally, Section 4
covers the conclusions gathered from this endeavor and open lines for further
investigation.

2 Related Research

An initial set of ODPs is introduced in [2]. The notion of Conceptual (or Con-
tent) Ontology Design Patterns (CODePs) is defined and several examples are
included. Future work in the direction of CODePs has been carried out in the
context of the NeOn project2 [7][8]. They present a more detailed overview and
refinement of different types of ODPs at different levels of abstraction (see Figure
2.2 in [8]) and a thorough catalogue of patterns is also documented and made
available online3.

Experiences in the development of large ontologies in the Biology domain
led to the development of a separate repository of ODPs4 [9] although with a
significant degree of overlap with the one previously mentioned.

From all the patterns surveyed, only the Normalization ODP [9][10] analyzes
the implications of having a high number of multiple inheritance relations in the
ontology and it refers to the notion of modelling different semantic axes as the
cause that can lead to polihierarchical structures or a tangled ontology. It then
outlines a very effective step by step procedure that would untangle the ontology
becoming a collection of independent modules easy to maintain.

To achieve this however, it relies on modelling constructs available only at the
OWL-DL expressivity level of the OWL language (such as owl:disjointWith and
to some extent owl:intersectionOf). This also implies the need of an OWL-DL
capable reasoner in order to fully benefit from the use of this pattern. Unfortu-
nately, in the context of ReSIST support for OWL-DL reasoning is beyond the
scope of the project.

2 http://www.neon-project.org
3 http://ontologydesignpatterns.org/
4 http://odps.sourceforge.net/

165

Another aspect where the Normalization ODP and the representation of
“Fault” in ReSIST diverge is connected to the normalization criteria of the
pattern. These criteria requires the primitive skeleton of the domain ontology
to consist only of disjoint homogeneous trees [10]. Intuitively, this appears as a
very limiting constrain considering the amount of overlap that Figure 1 reveals
among the types of faults identified.

Praising the virtues of the Normalization pattern, we attempted to find com-
plementary material to characterize the modelling scenario that the many faces
of “Fault” presents. In that sense and again in the domain of O-O software, the
rationale of View Inheritance given in [11] as part of his detailed taxonomy of
types of inheritance and discussion of multiple inheritance seem to correlate very
well with the representation needs of “Fault”.

In summary, the related work referred hereto, provided an essential frame-
work that served as the basis for the proposed View Inheritance ODP to assist
with the development of the ontology component of ReSIST.

3 View Inheritance Ontology Design Pattern

It might be too early to consider View Inheritance a full right member of the ODP
family given that certain aspects of it are still being refined and a more extensive
collection of archetypal use cases is still needed. The intent of the pattern is to
provide a characterization to the ontological modelling problem of representing a
certain domain concept whose abstractions can be classified according to multiple
alternative criteria. It represents all of these relevant classification criteria so that
multiple possible combinations of the concepts that refine them are allowed.

The applicability requirements below stems from the use of View Inheritance
in the O-O design [11]. Nonetheless, the level of abstraction is high enough to
deem them suitable for ontology development as well. In ontology design terms,
these applicability requirements can be summarized as:

– The various classification criteria of the ontology domain concept being rep-
resented are equally important, so any choice of a primary one would be
arbitrary.

– Many possible combinations of the concepts that refine the various classifi-
cation criteria are needed.

– Reusability. The domain concepts under consideration are so important as
to justify spending significant time to get the best possible inheritance struc-
ture.

Structure (Diagram). Figure 2 provides a generic graphical representation
of the View Inheritance pattern while Figure 3 shows a subset of the classes
involved in the overall representation of “Fault” and how it aligns to this generic
structure.

166

Fig. 2. Structure of a generic use case of the View Inheritance ODP.

Fig. 3. Structure of the View Inheritance ODP for the representation of “Fault”. For
simplicity, only 2 types of faults are shown out of the 31 types defined.

167

Elements and Relationships. The classes participating in the pattern to-
gether with their responsibility are listed below. The generic names for classes
corresponds to classes located in Figure 2 and the names of classes from the
representation of the “Fault” example are located in Figure 3.

– TargetDomainConcept (Fault)
• This class represents the ontology domain concept being defined for

which multiple alternative abstraction criteria exist.
– Criterion i (BasicViewPointFault, MajorGroupFault, NamedClassFault, Named-

CombinedFault)
• These classes represent each one of the alternative abstraction criteria

of the TargetDomainConcept (Criterion1, Criterion2, Criterion i in Fig-
ure 2). The list of classes may not be exhaustive or pairwise disjoint.

– Ci Class x5 (All subclasses of BasicViewPointFault, MajorGroupFault, Named-
ClassFault, NamedCombinedFault)
• These classes refine each abstraction criteria class (C1 Class1, ..., C2 Class1,

..., Ci Class i in Figure 2). The list of classes may not be exhaustive or
pairwise disjoint.

– CiClass x CjClass y6, Ci Class xClass y7 (FaultType1, FaultType2, ...,
FaultType32)
• These classes participate in multiple inheritance relationships combin-

ing different refinements from the alternative abstraction criteria classes
(C1Class3 C2Class2 and C1 Class1Class2 in Figure 2).

Inter- and Intra-criterion Multiple Inheritance. There is an interesting
feature regarding the types of multiple inheritance relations that can take place
in the context of a View Inheritance pattern, that to the best of our knowledge
has not been made explicit so far in ontology modeling. These types of multiple
inheritance relationships can be characterized as:

– Inter-criterion, when the parent classes involved in the multiple inheritance
relation are subclasses of different abstraction criteria. The class C1Class3 C2Class2
in Figure 2 is an example of this type of inheritance because one of its parent
classes, C1 Class3, is a refining concept of Criterion1 and the other parent
class, C2 Class2, is a refining concept of Criterion2.

– Intra-criterion, when the parent classes involved in the multiple inheri-
tance relation are subclasses of the same abstraction criterion. The class
C1 Class1Class2 is an example of this type of inheritance because all of its
parents classes, C1 Class1 and C1 Class2, are refining concepts of the same
criterion, Criterion1.

– Intra- and inter-criterion, when there are at least two parents involved in
the relation that are subclasses of the same abstraction criterion and there is
at least one more different parent that is a subclass of a different abstraction
criterion. An example of this type of inheritance is trivial to extrapolate from
the composition of the previous two.

5 Short for: Class x from Criterion i
6 Short for: Class x from Criterion i and Class y from Criterion j
7 Short for: Class x and Class y from Criterion i

168

Nested View Inheritance. It is worth noting that View Inheritance patterns
could occur in a nested fashion. That is, a View Inheritance pattern with a
concept Ci as root, could enclose another case of a View Inheritance pattern
with a different concept Cj as root where Ci subsumes Cj.

As an example, consider the View Inheritance scenario with “Fault” as root
in Figure 3. Let us focus in the subtree that originates in one of its abstrac-
tion criterion, in this case “BasicViewPointFault” and zoom in on it. From the
point of view of “BasicViewPointFault” and with this concept as root, its direct
subclasses (“ObjectiveFault”, “BoundaryFault” and so on) could be regarded as
alternative abstraction criteria of “BasicViewPointFault”. The classes “Fault-
Type1” and “FaultType2” could be regarded as cases of inter-criterion multiple
inheritance given that each one of their parents is a class subsumed by a different
abstraction criterion of “BasicViewPointFault”.

ODP Classification. According to the classification in [8], the View Inheri-
tance ODP could be considered an Architectural OP given that it provides an
ontological characterization of a particular case of polihierarchy in the overall
ontology structure. By the same classification, the definition of Inter- and Inter-
criterion Multiple Inheritance could be regarded as Logical OPs given that they
refine the Logical OP that describes the case of generic multiple inheritance in
[7][8]. This classification situates View Inheritance at a higher level of abstraction
than that of Inter- and Intra-criterion Multiple Inheritance.

Based on the classification of ODPs in [9], View Inheritance can be regarded
as an extension to the Normalization ODP, which is considered part of the
group of Good Practices ODPs. In this sense, the former concentrates on certain
ontological aspects of the modelling problem that the latter addresses. View
Inheritance focuses on the nature of a specific type of polyhierarchy structure
and provides a characterization of it.

4 Conclusions and Future Work

There are a number of key points that would be worth summarizing. There can
be certain ontology domain concepts difficult to represent due to the existing
alternative abstraction criteria that define them. That is the case of the “Fault”
concept in the context of the ReSIST project.

A survey of the current ontology building techniques was carried out. The
Normalization ODP seemed a viable option, yet the pattern did not fully address
the definition of “Fault” and the application requirements of the ReSIST project.

To bridge this gap, the View Inheritance ODP is put forward as an exten-
sion to the Normalization ODP, combining the latter with the notion of View
Inheritance originated in the O-O software design. View Inheritance revealed
two basic types of likely relations that could take place in the structure of the
pattern: Inter- or Intra-criterion Multiple Inheritance.

169

These contributions, while not solving all the modelling challenges of the
ontology module for ReSIST, do provide additional awareness to be considered
in the development process.

Outstanding issues open for future work include the identification of addi-
tional examples of real world use cases of View Inheritance. In that sense, we
intend to selectively explore the ontologies most frequently used in the data
repositories that are part of the Linked Data project8 for possible occurrences
of View Inheritance patterns. The ReSIST project is one of the contributors to
the Linked Data set of repositories.

References

1. Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering :
with examples from the areas of Knowledge Management, e-Commerce and the
Semantic Web. First Edition (Advanced Information and Knowledge Processing).
Springer (July 2004)

2. Gangemi, A.: Ontology design patterns for semantic web content. In Gil, Y., Motta,
E., Benjamins, V.R., Musen, M.A., eds.: International Semantic Web Conference.
Volume 3729 of Lecture Notes in Computer Science., Springer (2005) 262–276

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional (1995)

4. ReSIST: Resilience and Survivability in IST. Network of Excellence. Contract:
IST 4 026764 NOE, EU and Sixth Framework Programme (FP6) and Information
Society Technology (IST) (2005–2008) http://www.resist-noe.eu/.

5. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 01(1) (2004) 11–33

6. Rodriguez-Castro, B., Glaser, H.: Whose ”fault” is this? untangling domain con-
cepts in ontology design patterns. In: 1st International Workshop on Knowledge
Reuse and Reengineering over the Semantic Web at the 5th European Semantic
Web Conference. (June 2008)

7. Suarez-Figueroa, M.C., Brockmans, S., Gangemi, A., Gomez-Perez, A., Lehmann,
J., Lewen, H., Presutti, V., Sabou, M.: Neon modelling components. NeOn deliv-
erable D5.1.1, Universidad Politecnica de Madrid (2007)

8. Presutti, V., Gangemi, A., David, S., de Cea, G.A., Surez-Figueroa, M.C., Montiel-
Ponsoda, E., Poveda, M.: A library of ontology design patterns: reusable solutions
for collaborative design of networked ontologies. NeOn deliverable D2.5.1, Institute
of Cognitive Sciences and Technologies (CNR) (2008)

9. Egana-Aranguren, M.: Ontology Design Patterns for the Formalisation of Bio-
logical Ontologies. MPhil Dissertation, Bio-Health Informatics Group, School of
Computer Science, University of Manchester (2005)

10. Rector, A.L.: Modularisation of domain ontologies implemented in description
logics and related formalisms including owl. In: K-CAP ’03: Proceedings of the
2nd international conference on Knowledge capture, New York, NY, USA, ACM
(2003) 121–128

11. Meyer, B.: Object-Oriented Software Construction (Book/CD-ROM) (2nd Edi-
tion). Prentice Hall PTR (March 2000)

8 http://linkeddata.org/

170

Ontology Naming Pattern Sauce
for (Human and Computer) Gourmets

Vojtěch Svátek1, Ondřej Šváb-Zamazal1, and Valentina Presutti2

1 Department of Information and Knowledge Engineering,
University of Economics, W. Churchill Sq.4, 130 67 Prague 3, Czech Republic

{svatek|ondrej.zamazal}@vse.cz
2 ISTC-CNR, Via Nomentana 56, 00161 Rome, Italy

presutti@cnr.it

Abstract. Various explicit and implicit naming conventions for entities
have emerged in ontological engineering realms during the decade/s of
its existence. In the paper we argue that the naming principles are nei-
ther trivial nor completely haphazard in practice, present a preliminary
categorisation of ontology naming patterns, and discuss the impact of
entity naming on both human and computer perception of ontologies.

1 Introduction

By the OntologyDesignPatterns.org (ODP) portal categorisation, ontology nam-
ing patterns (Naming OPs) are “good practices that boost ontology readability
and understanding by humans, by supporting homogeneity in naming proce-
dures”. The present work is one of first attempts to systematically populate this
category of design patterns; there has recently been similar effort carried out in
the narrower context of bioinformatics [6], and references to entity name content
have been made in general literature on ontological modelling such as [3, 8].

Meaningful names are helpful for both people and machines. Undoubtedly, in
particular from the point of view of machine ‘consumers’, the logical structure of
an ontology is mandatory and unambiguous, while entity naming is dependent
on subjective choices of designers, and is even optional in the sense that random
strings can be used instead of names. Metaphorically, we could thus view the
logic as ‘meat’ and naming as ‘sauce’. Even if sauce is not a necessary part of ev-
ery meal, it often helps digest the meat, and could in some cases be more caloric
(to read: bear more real-world semantics) than the meat. ‘Digesting’ the logic is
easy when entities are presented to the user in small chunks, such as in window-
based interfaces of ontology editing environments. However, in this mode, only a
small part of the whole knowledge structure can be viewed. On the other hand,
various linear and diagrammatic notations allow to display larger clusters of en-
tities but require the user to employ his/her intuition on the role of each entity
in the structure. Then natural-language-like naming gains on importance. Note
that some user-facing initiatives in ontological engineering, such as the intro-
duction of Manchester syntax for OWL [1], use natural-language-like features to

171

improve the readability at the level of meta-model constructions. Naming pat-
terns could play an analogous role at the level of model entities. Naming can also
increase the ‘nourishing factor’ (i.e. information value) of knowledge structures,
just because of the same feature that precludes their unambiguous processing:
while the inventory of logical constructs (and even logical design patterns) in a
language such as OWL is necessarily restricted by the language norm, naming
conventions and patterns can exploit any kind of structure that can be expressed
within alphanumeric strings. While ‘digesting’ is only an issue for humans, ‘addi-
tional calories’ can be quite beneficial for software tools that analyse and process
ontologies, such as ontology matchers over complex correspondences [5].

Let us rapidly demonstrate the ‘digestive’ and ‘nourishing’ potential of ade-
quate naming on an OWL restriction in Manchester syntax:

StateOwned Director only (nomination some ministry)

With more careful naming the same axiom could look like this:
StateOwnedCompany hasDirector only (nominatedBy some Ministry)

Presumably, this version much more clearly conveys the message that “all direc-
tors of state-owned companies are nominated by some ministry”. We will refer
to elements of this example later. The rest of the paper is structured as follows.
Section 2 outlines our principles of categorising naming patterns. Section 3 then
characterises different categories of patterns, including examples from existing
ontologies.3 We first discuss generic naming conventions, then focus on patterns
specific for a particular entity type (classes, instances or properties), and finally
on patterns spanning over multiple entities. Finally, Section 4 wraps up the paper
and outlines directions for future research.

2 Naming Pattern Categorisation Criteria

In this first approximation we suggest to categorise naming patterns along four
interdependent dimensions: (1) by structural complexity and underlying (mod-
elling) language construct; (2) by lexical specificity and linguistic depth; (3) by
domain specificity; (4) by descriptiveness/prescriptiveness.

In this paper we use the structural complexity of the pattern and underlying
language construct (from the meta-model) as the primary categorisation crite-
rion, as it is rather crisp. In this respect, we distinguish between generic naming
conventions, single-entity patterns related to different entity types (classes, ob-
ject properties, data properties and instances) and cross-entity patterns related
to constructs such as class-subclass pairs or pairs of mutually inverse properties.
For the moment, we do not systematically cover patterns defined on the top of
more than two directly connected entities. We also assume the underlying lan-
guage to be OWL, although naming patterns are obviously, compared to logical
patterns, less sensitive to shifting to a different language (say, with different
formal semantics but similar outlook, as is the case with frame languages).

3 A more thorough description is in the long version of the paper, see http://nb.vse.

cz/~svatek/wop09long.pdf.

172

Patterns can differ in their lexical specificity. Some refer to concrete lexemes,
which can be both ‘stop words’ (such as ‘is’ or ‘of’) and ‘semantic’ words (such
as ‘part’); on the other hand, some patterns only refer to parts of speech. The
linguistic depth of patterns may span from surface attributes of strings such as
capitalisation or presence of numerals to patterns referring to deeper linguistic
notions such as active/passive mode of verbs.

Some naming patterns can certainly be characteristic for problem domains,
say, engineering or genomics. We do not consider this aspect here.

Finally, we include both patterns that have been tentatively verified as ‘fre-
quent’ in existing ontologies, i.e. ‘descriptive’ patterns, and patterns that we see
as useful as guidance for developing new ontologies (or reengineering old ones)
even if they are not widely used nowadays, i.e. ‘prescriptive’ patterns. We believe
that naming patterns should on the one hand try to accomodate what is intu-
itive for most modellers (and thus widely used) and on the other hand promote
clarity and readability even at the cost of going against the mainstream.

3 Detailed Descriptions of Naming Pattern Categories

3.1 Generic Principles and Conventions

Naming Vocabulary In view of comprehensibility to humans as well as NLP
tools, the terms from which an entity name is constructed should be built from
human language vocabulary ; as mentioned in the introduction, the designer
should not forget that the ontology will probably be used not only by purely
formal reasoners but also by people and even NLP procedures that could lever-
age on meaningful naming. Furthermore, abbreviations (as also suggested in [3])
and colloquialisms should be avoided. Acronyms are often inevitable; however,
the practice of using acronyms as prefixes of whole taxonomic trees, as artificial
codes indicating the membership of the entity to this tree, is questionable, as it
alienates the naming from the natural language.

The requirement of using human language naturally does not stipulate that
only terms from common, generic vocabularies can appear in entity names. Spe-
cific domains may have their own terminology that is only familiar to a few
dozens of experts and still could (or even should) be included in ontologies.
Some of the terms may not exhibit typical features of words in human language;
for example, names of genes in a gene ontology would consist of mixed alpha-
betic/numeric strings. Moreover, terms having a different generic meaning could
be used in a specific domain ontology; for example the term ‘Mouse’ (as one of
numerous metaphoric terms that are no longer viewed as colloquialisms) can be
used in a domain ontology of computer equipment without the need for (unnat-
ural) specifier such as ‘ComputerMouse’. Care should however be taken when
using terms so generic that they could interfere with entities in the same ontol-
ogy (e.g. qualifier terms such as ‘high’ or ‘light’); this problem is discussed in
Section 3.3.

173

Case and Delimiter Conventions Such conventions exist even in program-
ming environments. For OWL ontologies, a minimal requirement on capitalisa-
tion and delimiters seems to be to keep the same convention for all occurrences
of one entity type; in addition, we would recommend, consistently with [3] (and
following conventions used in description logics), to capitalise class names and de-
capitalise property names. As we saw in Example 1, this improves the readability
of complex OWL restrictions, which often consist of sequences of alternating class
and property names (aside modelling language keywords). For delimiters, OWL
best practices do not encourage blanks in names, so underscore (This Class),
hyphen (This-Class) and ‘camel case’ (ThisClass) are all frequently used. In our
opinion, however, underscore and ‘camel case’ are better alternatives, as the use
of hyphen may interfere with compound words (in which the token before the
hyphen often has a different role than if the same term were used in appositive),
especially if the ontology is analysed by an automated NLP procedure that tries
to properly tokenise each entity name.

3.2 Class Naming Patterns

The central issue in naming classes is whether the name of a class should im-
peratively be a noun phrase and whether it should be in singular or plural. We
would strongly encourage singular for OWL ontologies: first, it is nowadays pre-
dominant in existing ontologies; second, some linear RDF notations such as N34

expect it in their syntax by using the ‘a’ (indefinite article) token for instance-
class relationship, such as “John a Person” (John is an instance of class Person).
On the other hand, there are situations where merely syntactical plural is fully
justified for a class name. Let us consider ‘Bananas’ as subclass of ‘FruitMeal’
in a catering ontology: here, multiple physical entities (bananas) play the role of
a single object (meal) and do not matter individually.

There does not seem to be any logical reason for using another part of speech
than noun for class name. Modellers sometimes omit the noun if it is present
at a higher level of the hierarchy, and only use the specifying adjective, such as
‘StateOwned’ as subclass of ‘Company’ in our initial example. We however dis-
courage from such shorthanding. First, for elementary comprehensibility reasons
illustrated on Example 2. Second, even if frame-based ontology engineering is
tolerant in this respect ([3] for example only discourages from incomplete short-
handing, such as having both ‘RedWine’ and ‘White’ as subclasses of ‘Wine’),
note that in OWL ontologies, due to the underlying description logics, the ex-
plicit taxonomy is only secondary to axiomatisation as such. Making a concept
anyhow dependent (even in a ‘harmless’ manner, such as in terms of naming) on
its parent concept is thus rather awkward.

On the other hand, entity names consisting of too many tokens are also unde-
sirable. It may be the case that they could be transformed to anonymous classes
as part of axioms, see for example ‘FictionalBookbyLatinAmericanAuthor’ men-
tioned by Welty [8] or linguistic disjunctions mentioned below.

4 http://www.w3.org/2000/10/swap/Primer

174

3.3 Instance Naming Patterns

If individuals are present in an OWL ontology, their names typically correspond
to standard vocabulary noun phrases; examples are chemical elements or polit-
ical countries. In very specific ontologies (or ontologies that are melted with
a specific knowledge base) instance names could also be non-linguistic strings
such as names of genes or product codes. Individuals are sometimes also used for
specified values, as depicted in the corresponding in logical pattern [4]. Then the
enumerated individuals (usually declared as different from each other) define a
class; e.g. the set of individuals ‘poor health’, ‘medium health’ and ‘good health’
defines the class ‘Health value’. A subtle issue is whether the name of such an
individual can be other than noun phrase. It seems that if an individual is to de-
note a mere ‘value’ or ‘status’ rather than a real-world entity, the part of speech
of its name does not matter in principle. However, using plain adjectives such as
‘good’ or ‘high’ is tricky. Note that there is a risk of confusing such individuals
with the general notions of ‘goodness’ or ‘highness’; this is emphasised by the
status of individuals as first-class citizens in OWL. It may then easily happen
that an individual originally defining a specified value with respect to a certain
class would be improperly reused with respect to another class. For example, in
a wine ontology5 the individual Light is part of enumeration of class WineBody;
then someone might reuse the same individual as part of enumeration of Wine-
Grape, or even of WineBottle or anything that can be light or heavy. Clearly,
the lightness values of wine body are ontologically different from the lightness
values of a wine grape; and even the physical lightness values of a wine grape are
ontologically different from the lightness values of a wine bottle, as each of them
is associated with a different scope of weight (as measurable quantity). For this
reason we recommend to refer to the name of class in the name of the individuals
representing specified values. On the other hand, there is a risk of confusing the
‘value’ or ‘status’ individuals with real-world entities; for example the individual
representing the status of ‘excellent student’ should probably not be an instance
of class Student. A safe option for naming such individuals thus would be to
include both the class name and a term such as ‘status’ or ‘value’ in their name,
e.g. ‘poor health value’, ‘excellent student status’ or ‘light wineBody value’.

3.4 Property Naming Patterns

Although object properties and data properties have similar status in OWL,
their naming seems to be linked to different patterns.

Comprehensibility concerns suggest that the name of an object property
should not normally be a plain noun phrase, for clear discernability from class
names as well as from the name of the inverse property. Indeed, a majority of
object properties either have a verb as their head term or end with an attributive
preposition (such as ‘of’, ‘for’), which indicates that the name should be read as
if it started with ‘is’: for example ‘(is) friend of’, ‘(is) component for’. A plain

5 http://www.ninebynine.org/Software/HaskellRDF/RDF/Harp/test/wine.rdf

175

preposition is occasionally used for spatio-temporal relationships. Furthermore,
linguistic processing of ontologies would possibly benefit from the usage of con-
tent verbs rather than auxiliary ones where appropriate, as content verbs bring
additional lexemes into the game. In this sense, property names like ‘manu-
factures’ or ‘writtenBy’ bring ‘extra calories’ compared to property names like
‘hasProduct’ or ‘hasAuthor’ (assuming that the range of the properties is ‘Prod-
uct’ and ‘Author’, respectively). We elaborate further on object properties in
the paragraph on naming patterns over restrictions in Section 3.7.

On the other hand, for data property names nouns seem appropriate, as
they are analogous to database fields. Often the ‘primitive data’ nature of data
properties can be underlined by using head nouns such as ‘date’, ‘code’, ‘number’,
‘value’, ‘id’ or the like.

3.5 Subclass and Instantiation Naming Patterns

It is quite common that a subclass has the same head noun as its parent class.6

By an earlier study [7] we found out that this pattern typically represents be-
tween 50–80% of class-subclass pairs such that the subclass name is a multi-token
one. This number further increases if we consider thesaurus correspondence (syn-
onymy and hyperonymy) rather than literal string equality. Sometimes the head
noun also disappears and reappears again along the taxonomic path, as a specific
concept cannot be expressed by a dedicated term but only by circumlocution; for
example in Player - Flutist - PiccoloPlayer (note that Flutist is a single-token
name, i.e. not in conflict with our pattern), in a music ontology.7

Retrospectively, violation of head noun correspondence in many cases indi-
cates a problem in the ontology. Common situations are:

– Inadequate use of class-subclass relationship, typically in the place of whole-
part or class-instance relationship, i.e. a conceptualisation error.

– Name shorthanding, typically manifested by use of adjective, such as ‘State-
Owned’ (subclass of ‘Company’), as mentioned above.

While the former probably requires manual debugging of the ontology, the latter
could possibly be healed by propagation of the parent name downto the child
name. Note that such propagation may not be straightforward if the parent itself
has a multi-word name. For example, ‘MD Georectified’, which is a subclass of
‘MD GridSpatialRepresentation’,8 could be extended to ‘MD GeorectifiedRepre-
sentation’, ‘MD GeorectifiedSpatialRepresentation’ or ‘MD GeorectifiedGridSpa-
tialRepresentation’, and only deep understanding of the domain would allow to
choose the right alternative.

The class-instance relationship does not seem to follow generic naming pat-
terns. An exception is the case of specified values discussed in Section 3.3.
6 The head noun is typically the last token, but not always, in particular due to

possible prepositional constructions, as e.g. in ‘HeadOfDepartment’.
7 http://www.kanzaki.com/ns/music
8 Taken from http://lists.w3.org/Archives/Public/public-webont-comments/

2003Oct/att-0026/iso-metadata.owl.

176

3.6 Subproperty and Inverse Property Naming Patterns

We are not aware of a conspicuous naming pattern for the subproperty rela-
tionship. A tentative suggestion for reengineering methods could perhaps be the
following: if there are multiple (object or data) properties with same head noun
(depending on a usual auxilliary verb), they could possibly be generalized to a su-
perproperty. For example, the properties ‘hasFirstName’, and ‘hasFamilyName’
could yield ‘hasName’ as superproperty.

Inverse property naming patterns should help link an object property to its
inverse and at the same time discern between the two. They are thus related
to the logical design pattern of bi-directional relations: if there is no inverse
property, there is less of problem at the level of naming but more at the logical
level. As canonical inverse property naming patterns we can see the following:

– active and passive form of the same verb, such as ‘wrote’ and ‘writtenBy’
– same noun phrase packed in auxilliary terms (verbs and/or prepositions),

such as ‘memberOf’ and ‘hasMember’.

If the nominal and verbal form are mixed, e.g. ‘identifies’ and ‘hasIdentifier’, the
accessibility is fine for humans but worse for NLP procedures.

3.7 Naming Patterns over Restrictions

As we mentioned Section 3.4, one alternative for object property name is that
including the name of the class in the range and/or domain of this property. This
can be seen as a naming pattern over a global property restriction. Let us illustrate
some options for such patterns on the notorious pizza domain. We suggest that
the property from PizzaTopping to Pizza can be labelled as:9 ‘isToppingOfPizza’;
‘isToppingOf’; ‘toppingOf’; or maybe ‘ofPizza’. Intuitively, we probably feel that
‘hasPizza’ does not sound well. On the other hand, for the inverse property we
would rather suggest10 ‘hasTopping’ or maybe ‘PizzaTopping’.

As possible reasons for the different ‘psychologically natural’ choice of naming
pattern for the mutually inverse properties we could see the nature of topping as
1) an entity dependent on a pizza entity (a topping cannot exist without a pizza),
or 2) a role entity (as being a pizza topping is merely a role of some food). The
first hypothesis would mean that the presence of the name of a class in the name
of a property (for which this class is in the domain or range) indicates that entity
of this class is dependent on the entity on the other side of the property. The
second hypothesis would mean that the presence of the name of a class in the
name of a property (for which this class is in the domain or range) indicates that
this class is a role. Both hypotheses can also be adjusted according to presence
of auxilliary verbs (‘is’, ‘has’) and suffixed propositions.

In principle, we could also identify naming patterns over local property re-
strictions, for example in the form of ‘lexical tautologies’ such as MushroomPizza
9 Let us for simplicity ignore the naming options with alternative prepositions (‘isTop-

pingOn’) or without domain/range tokens at all (‘laidOn’, ‘on’).
10 Again ignoring essentially different options such as ‘withTopping’ or ‘laidWith’.

177

equivalentTo (Pizza and contains some Mushroom). This issue may deserve
further study, although the frequency of such constructions is not very high.

4 Conclusions and Future Work

The intended contribution of the paper is a preliminary system of ontology nam-
ing patterns, which we illustrated on examples. Undoubtedly, consistent and
comprehensible entity naming is an important aspect of re/usability of ontolo-
gies. The main reason why research on this topic has been quite scarce to date is
probably the high risk of subjectivity and subtle, heuristic nature of any cues one
could figure out. We are aware of this risk; the naming suggestions in this paper
are meant to serve as starting point for discussion in the pattern community
rather than a mature system of best practices.

Most imminent future work will consist in large-scale evaluation of existing
ontologies in terms of naming as well as bare plain logical patterns.11 Within
the empirical analysis stream, we should also study the usage of other textual
labels rather than URI fragments (such as rdf:label and rdf:description), and
compare their content with that of the URIs. We would also like to set up a
specific metadata schema for collecting this type of patterns in the ODP portal.
Finally, in the context of this portal, we would like to apply the naming patterns
to evaluate other types of ontology design patterns, especially the content ones.

This work has been partially supported by the IGA VSE grant no.20/08 “Eval-
uation and matching ontologies via patterns”.

References

1. The Manchester OWL Syntax. Online http://www.co-ode.org/resources/

reference/manchester_syntax/
2. Annotation System. OWL WG, Work-in-Progress document, http://www.w3.org/

2007/OWL/wiki/Annotation_System.
3. Noy N. F., McGuinness D.L.: Ontology Development 101: A Guide to Creating

Your First Ontology. Online http://www-ksl.stanford.edu/people/dlm/papers/

ontology-tutorial-noy-mcguinness.pdf
4. Rector A. (ed.): Representing Specified Values in OWL: ”value partitions” and

”value sets”. W3C Working Group Note, 17 May 2005, online at http://www.w3.

org/TR/swbp-specified-values/.
5. Ritze D., Meilicke C., Šváb-Zamazal O., Stuckenschmidt H.: A pattern-based ontol-

ogy matching approach for detecting complex correspondences. In: OM Workshop
at ISWC’09.

6. Schober D. et al.: Survey-based naming conventions for use in OBO Foundry ontol-
ogy development. BMC Bioinformatics, Vol.10, Issue 1, 2009.

7. Šváb-Zamazal O., Svátek V.: Analysing Ontological Structures through Name Pat-
tern Tracking. In: EKAW-2008, Acitrezza, Italy, 2008.

8. Welty C.: Ontology Engineering with OntoClean. In: SWAP 2007, Bari.

11 We plan to continuously update these results at http://nb.vse.cz/~svabo/

namingPatternsAnalysis/.

178

Ontology Patterns and Beyond

Towards a Universal Pattern Language

Olaf Noppens and Thorsten Liebig

Inst. of Artificial Intelligence, Ulm University, Ulm, Germany
firstname.lastname@uni-ulm.de

Abstract. In this paper we argue for a broader view of ontology pat-
terns and therefore present different use-cases where drawbacks of the
current declarative pattern languages can be seen. We also discuss use-
cases where a declarative pattern approach can replace procedural-coded
ontology patterns. With previous work on an ontology pattern language
in mind we argue for a general pattern language.

1 Motivation

Though ontology engineers are supported by a wide range of authoring tools the
task of designing ontologies is still difficult even for experts. Several studies on
analyzing common errors in formalizing knowledge may serve as a prime example
(e. g. [1], [2]). They have shown that often modeling problems were concerned
with the act of writing down conflicting axioms, or with finding solutions for non-
obvious but common modeling challenges (e. g. n-ary relationships). Extending
the original notion of knowledge patterns [3] ontology design patterns (ODP)
provide a modeling solution to solve a recurring ontology design problem [4], [5].
There is a wide range of ODP types such as ontology content patterns (OCPs),
logical patterns, architectural patterns etc. [6].

In this paper, we would like to broaden the term ontology pattern by looking
at different ontology engineering approaches. Some of them rely on procedu-
ral knowledge. We argue that lifting them to a declarative level would enable
a (semi-)automatic handling of patterns with the aim to support the ontology
engineer during the entire ontology’s life-cycle. The instantiation of an ontology
pattern, e. g., a logical pattern, also depends on conditions that must be fulfilled.
Violating these conditions at a later stage typically results in an incorrect in-
stantiation. For that we argue that monitoring pattern instantiations is crucial.
In our opinion, there is also a duality between finding pattern instances and
instantiating patterns. For instance, finding axioms that correspond to a logical
ontology pattern without having explicitly applied that pattern could be useful
during (distributed) ontology engineering for better understanding or finding
undesired modeling issues. Only little work has been spent in guiding the ontol-
ogy engineer in finding patterns and monitoring correct instantiation of them.

179

Recently some work has been done with respect to collaborative and distributed
ontology engineering [6] as well as in the context of Protégé 4 [7].

The reminder of this paper is organized as follows: first we discuss use-cases
of the application of ontology patterns where some are hidden in procedural
knowledge. Then we present a proposal for the obtained requirements and we
will briefly discuss the integration in our language in an ontology authoring tool.

2 Use-Cases and Requirements

We will try to broaden the term ontology pattern by looking at different ontology
engineering support methods to extract commonalities that should be fulfilled by
a universal ontology pattern language in order to encode patterns in a declarative
way. These use-cases are mainly driven by our experience in ontology authoring
and therefore not intended to be exhaustive. As a starting point we take into
account a recently proposed pattern language [7] based on OPPL. We refer to
it as the Manchester Ontology Pattern Language (MPL). To the best of our
knowledge, it is the only ontology pattern language.

Ontology Design Patterns Repositories such as ontologydesignpatterns.
org provide access to pattern catalogues. Instead of encoding patterns in a
declarative way they are described by their intent, examples and diagrams. Re-
cently, the authors of MPL propose to describe patterns in a declarative way
to support a more automatic handling of patterns. In the following we observe
two shortcomings of their approach. Consider a very simple partition pattern:
a partition is a structure that is divided into several disjoint parts. Using the
Abstract Syntax of OWL 2 [8] it can be specified by the following axioms where
P is the partition class, and C1, ..., Cn are arbitrary classes or class expressions:

EquivalentClasses(P ObjectUnionOf(C1, C2, ..., Cn))
DisjointClasses (C1, C2, ..., Cn)

The first axiom can be expressed in MPL using createUnion(?x.VALUES) to
bind an arbitrary number of classes to a given variable ?x. However, MPL does
not allow to express a set of classes as needed in the second axiom 1. Moreover,
OPPL/MPL allow variables of named entities only. This limits the usage of the
language because some situations (as shown before) cannot be expressed.

To sum up a general pattern language has to deal also with an arbitrary
number of classes in conjunction with all axioms in OWL which allow a set of
classes (unions, intersections as in MPL but also disjointness, equivalences etc.).
All types of OWL objects should be used as variable parts. Otherwise, the very
simple partition example would only contain named classes.

1 We refer here to the MPL grammar available at http://www.cs.man.ac.uk/

?iannonel/oppl/grammar.html, last accessed on 20th of July, 2009, and [7].

180

Refactoring/Re-engineering There are different syntactical forms to model
the same logical meaning in OWL. One reason is that syntactical sugar makes
things easier to read and to express. For instance, property range restrictions
can be expressed either as ObjectPropertyRange(hasParent Person) or using
a GCI SubClassOf(Thing ObjectAllValuesFrom(hasParent Person)). The
latter axiom, for instance, occurs in ontology transformations from KRSS to
OWL. Negative property assertions can be either expressed as NegativeObject-
PropertyAssertion(property i1 i2) or as SubClassOf(ObjectOneOf(i1),
ObjectComplementOf(ObjectSomeValuesFrom(property ObjectOneOf(i2))))
whereas the former one has been recently introduced in OWL 2. Obviously, in
both cases, the first statement is more intuitive and convenient and even experts
seem to encounter problems in understanding the latter one. It is, of course, an
extreme case but it illustrates the problem of understanding the meaning when
users look at ontologies created by others. It is not a rocket science to trans-
fer these axioms into each other by writing some code. However, this is not an
adequate solution: the transformation is hidden in procedural knowledge. An-
other simple re-factoring example is the replacement of cyclic subclass axioms
with an equivalent-class axiom. SubClassOf(C0 C1),..., SubClassOf(Cn C0)
is equivalent to EquivalentClasses(C0,...,Cn). This is, for instance, imple-
mented in a procedural manner in Protégé. This example shows that a pattern
language needs also to support variability on axiom level: Here, the number of
subclass axioms is unknown during pattern design-time.

Ontology Lint Tools In Software Engineering lint tools perform static analysis
of source code in order to detect suspicious scopes of code wrt. language usage,
condition violations, violation of type ranges etc. that might lead to unexpected
behavior on run-time. Transferring this idea to ontologies, ontology lint tools
give hints about potential modeling defects, i. e., they scan for “anti-patterns”
that should be avoided. In our opinion, these anti-patterns do not differ from
ontology patterns and therefore they should also be expressed in a declarative
way – re-usable independent of any programming language. For instance, Pellint
[9] tries to detect modeling patterns which potentially will slow down reasoning
performance wrt. a tableaux-based reasoner, mainly optimized for the Pellet
reasoner. There is also a tentative ontology lint plugin2 for Protégé 4 providing
several default lints similar to those of Pellint. However, in both tools lints are
expressed by procedural knowledge, i. e., the analysis methods are encoded in
the program. In contrast to general ontology patterns, additional constraints are
typically needed: Pellint defines, for instance, a lint pattern that finds all classes
with more than 5 explicit asserted subclass axioms for a given class. This cannot
be expressed in MPL because neither a condition nor an arbitrary number of
axioms (greater than 5) can be expressed. To sum up, a flexible way to use
both an arbitrary number of axioms and conditions is needed. Ontology Lints
represents the missing link between finding pattern instances, monitoring as well
as instantiating them.
2 http://www.cs.man.ac.uk/~iannonel/lintRoll

181

3 A Proposal towards a Universal Axiom Pattern
Language

Inspired by the mentioned use-cases and the shortcomings of MPL we now
present building blocks of a pattern language which fulfills the discussed re-
quirements. We do not claim that those requirements are the only ones but they
are a good starting point. For the rest of this paper we refer to OWL 2, OWL
for short, and its Abstract Syntax for presentation purpose. Allowing arbitrary
class expressions as possible bindings for variables results in loosing decidability
because models of OWL ontologies, in general, are infinite. Therefore, we use the
finite set of class (property) expressions as introduced in [10]: given an ontology
O, the finite set of class (property) expressions consists of all class (property)
expressions that appear in the asserted axioms of O.

Definition 1 (Variables). Class expressions with variables are defined analo-
gously to OWL class expressions but allowing variables at positions of class ex-
pressions. The range of a variable can either be a named class, class expression,
or any subtype of it as produced by the corresponding rule in OWL. Properties,
individuals, and constants are defined analogously. A variable is either a single
variable ?x that can be bound to a single expression (according to its range), or
a multi-variable ??X which consists of a set of single variables where each of
them is referable via an index. By default, different index values denote different
single variables within the set.

Multi-variables allow to define an arbitrary number of expressions without loos-
ing reference to the single variable if needed. Let ??X be a multi-variable whose
range are classes. Then ObjectIntersectionOf(??X) defines an intersection of
an arbitrary number of classes. In contrast to the MPL statement createIn-
tersection(?x.VALUES), each ?X(i) is referable in other condition which have
an impact on the variable binding. For instance, one could state that ?X(i) and
?X(j) are used in SubClassOf axioms: SubClassOf(?X(i) A) and SubClas-
sOf(B ?X(j)) to define further constraints. By default, ?X(i) and ?X(j) have
different bindings if there is no constraint specifying that both should be equal.

Definition 2 (Variablized Axioms). Given an OWL ontology, axioms are
defined analogously to OWL axioms according to the axiom rules, but also allow
variables at position of class (resp. property) expressions (resp. indivduals). Ax-
ioms with variables are called variablized axioms. The semantic of using multi-
variables in axioms is the following: for each bounded ?X(i) a new re-incarnation
of the axiom is produced.

Given an ontology containing the following axioms SubClassOf(A B), SubClas-
sOf(A C), SubClassOf(A D), SubClassOf(C B), SubClassOf(B A). Let ?X be a
class variable occurring in the axiom SubClassOf(?X B). Then ?X can be bound
to either A or C and we get the bounded axioms SubClassOf(A B) or SubClas-
sOf(C B). Let ??X be a multi-variable (range bounded to classes). Given the
axiom SubClassOf(??X B), ??X would be bound to the set {A, B} and we get
the axioms SubClassOf(A B) and SubClassOf(C B).

182

Definition 3 (Constraints). Every OWL axiom and variablized axiom accord-
ing to the Definition 2 is a constraint. Let ?x and ?y be variables, and ??Z a
multi-variable. Then the following statements are also constraints: ?x != ?y,
?x = ?y (in- resp. equivalence of variable bindings), MinCount(??Z) = n, Max-
Count(??Z) = n, resp. ExactlyCount(??Z) = n (specifying a minimum, max-
imum or exact number of bounded variables ?Z(0),..., ?Z(n) in ??Z).

Definition 4 (Abstract OWL Pattern).

IRI iri
<ACTION>
LET variables
WHERE EXPLICIT constraints
WHERE IMPLICIT constraints
TYPE type
MESSAGE message
DOCUMENTATION documentation

is an abstract pattern where iri is a unique identifier, 〈ACTION〉 is an action’s
placeholder, variables is a comma-separated set of variables containing all vari-
ables that are used in the pattern, and constraints is a comma-separated set of
(conjunctively connected) constraints according to Definition 3. Axioms men-
tioned in the WHERE statement are either interpreted as explicit or implicit
axioms. type denotes the type of the pattern (as explained in the following), doc-
umentation is a human-readable documentation of the pattern, and message is
a message that can be displayed in tools.

Following the type categorization of patterns given in [4] and ontologydesignpatterns.
org we use the given types also in our OWL patterns. Therefore we extended the
meta-ontology about types with a new one for ontology lint patterns. It depends
on the pattern’s type which 〈ACTION〉 is provided. By default

ADD axioms
REMOVE axioms

where axioms is a set of axioms according to the Definition 2 are defined. For
instance, ODPs typically only use the ADD statement whereas re-factoring pat-
terns also provide a remove section, and lint patterns might inform the user only
(they do not provide any action).

Ontology patterns are often based on either entities or axioms defined in
other patterns: combining patterns or re-using patterns is a key building block
of pattern creation. We therefore introduce the following statement group

FROM iris
AS constraints

where iris is a set of comma-separated pattern identifiers (IRIs) and constraints
is a set of comma-separated constraints referring to variables in the patterns
identified by their IRI and variables of the surrounded pattern. To distinguished

183

structural equivalent variables from different patterns it is always required that
these variables are prefixed with the IRI. All axioms and variables contained in
the patterns mentioned in iris are always part of the surrounding patterns. This
allows, for instance, to combine two patterns and establish equivalence between
variables with help of the AS statement.

In the following some very short examples of using our additional language
constructs are given. An ontology lint pattern that finds redundant transitive
property axioms because of the transitivity of the super-property can be formu-
lated as follows:

IRI http://www.derivo.de/patterns/WOP2009/RedundantTransitiveAxiom
LET ?X - ObjectProperty, ?Y - ObjectProperty
REMOVE TransitiveObjectProperty(?X)
WHERE EXPLICIT SubObjectProperty(?X ?Y),

TransitveObjectProperty(?X),
TransitiveObjectProperty(?Y)

A cyclic class definition can easily be defined by using variablized class ex-
pressions as follows:

IRI http://www.derivo.de/patterns/WOP2009/CyclicExplicitClasses
ADD EquivalentClasses ??X
REMOVE SubClassOf (??X ??Y) - ?X(i) = ?Y(i+1), ?X(0) = ?Y(n)
LET ?X - ClassExpression
WHERE EXPLICIT SubClassOf(??X ??Y) - ?X(i) = ?Y(i+1), ?X(0) = ?Y(n)
DOCUMENTATION Cyclic class definitions are replaced
by an EquivalentClassAxiom

An ontology lint patterns discovering at least 5 super-classes (borrowed from
Pellint’s lint collection) can be expressed as follows:

IRI http://www.derivo.de/patterns/WOP2009/AtLeastFiveSuperClasses
LET ?X - ClassExpression, ?Y - ClassExpression
WHERE EXPLICIT SubClassOf(?X ??Y), MinCount(??Y) = 5

4 Implementation

We have integrated the proposed language constructs in a pattern language as
a supplement to the OWL API [11]. In order to apply constraints on variable
bindings (esp. in the case of multi-variables) we implemented methods known
from CSP. For a pro-actively user-support during ontology engineering we have
integrated the language within the successor of our graphical-based ontology
authoring framework OntoTrack [12]. Here, the user can instantiate patterns
by selecting them from catalogues and filling variables either by selecting cor-
responding OWL object or by drag-’n-drop them to the bound variable. Con-
straints of a pattern instantiation will be immediately checked and monitored

184

during ontology engineering in order to avoid undesired constraint violations.
For instance, Figure 4 shows a screen capture of the graphical ontology view
within our application presenting the hierarchy of classes and properties in a
geographical domain. Here, a class labeled Partition has been introduced by

Fig. 1. Screen capture showing class hierarchy with pattern instantiation warnings in
our OntoTrack-based ontology authoring framework.

applying the partition pattern. After removing the DisjointClasses axioms the
user’s intention of defining a partition is violated and therefore our framework
immediately presents a hint to the user as shown as symbol in the right upper
corner of the class box. Hovering over the class with the mouse pointer displays
which pattern has been violated. Moreover, when clicking on the symbol one
gets further information about the reason(s) for the violation.

Since ontology lint are handled in the same way as ODPs the same mechanism
is used to monitor the ontology in order to find lints as a background task. As
shown in the upper part of Figure 4, a redundant transitive axiom for a property
that is a sub-property of a transitive property has been found.

185

5 Conclusion and Future Work

In this paper we presented some shortcomings of ontology pattern languages such
as the OPPL-based ontology language and motivated to broaden the term ontol-
ogy pattern by looking at ontology analysis methods which encode ontology pat-
terns in program structures. A declarative pattern approach could benefit from
automatic detection of pattern instantiations, monitoring of patterns violations
as well as interoperability of patterns. To overcome the presented limitations we
briefly introduced the building blocks of a universal pattern language and gave
an overview of the implementation and integration in an ontology authoring
environment. Future work will be concerned with further analysis of ontology
patterns related areas such as ontology lints as well as ontology extractions to
include language constructs to better support these patterns in order to get to
our aim to build a universal pattern language.

References

1. Fiedland, N., Allen, P., Witbrock, M., Matthews, G., Salay, N., Miraglia, P., An-
gele, J., Stab, S., Israel, D., Chaudhri, V., Porter, B., Barker, K., Clark, P.: Towards
a Quantitative, Plattform-Independent Analysis of Knowledge Systems. In: Proc.
of the 9th KR Conference, Whistler, BC, Canada (2004) 507–514

2. Rector, A.L., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-
DL: Common Errors & Common Patterns. In: Proc. of the 14th Int. Conf. on
Engineering Knowledge (EKAW). (2004) 63–81

3. Clark, P., Thompson, J., Porter, B.W.: Knowledge Patterns. In: Handbook on
Ontologies. (2004) 191–208

4. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Proc. of
4th Int. Semantic Web Conference (ISWC 2005). (2005) 262–276

5. Presutti, V., Gangemi, A.: Content Ontology Design Patterns as Practical Building
Blocks for Web Ontologies. In: Proc. of the 27th Int. Conf. on Conceptual Modeling
(ER). (2008) 128–141

6. Presutti, V., Gangemi, A., del Carmen Suarez-Figueroa, M.: Library of Design Pat-
terns for Collaborative Development of Networked Ontologies. Deliverable D.2.5.1
NeOn project (2007)

7. Iannone, L., Rector, A.L., Stevens, R.: Embedding Knowledge Patterns into OWL.
In: Proc. of the 6th European Semantic Web Conference (ESWC 2009). 218–232

8. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Structural Specification and
Functional-Style Syntax. W3C Candidate Recommendation 11 June 2009

9. Lin, H., Sirin, E.: Pellint – A Performance Lint Tool for Pellet. In: Proc. of the
5th OWLED Workshop on OWL: Experiences and Directions. (2008)

10. Kubias, A., Schenk, S., Staab, S., Pan, J.Z.: OWL SAIQL – An OWL DL Query
Language for Ontology Extraction. In: Proc. of the OWLED 2007 Workshop on
OWL: Experiences and Directions (OWLED’07). (2007)

11. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 Touch Paper: The
OWL API. In: Proc. of the OWLED 2007 Workshop on OWL: Experiences and
Directions (OWLED’07). (2007)

12. Liebig, T., Noppens, O.: OntoTrack: A Semantic Approach for Ontology Au-
thoring. Journal of Web Semantics 3(2) (2005)

186

The newsEvents Ontology�

An Ontology for Describing Business Events

Uta Lösch and Nadejda Nikitina

AIFB, Universität Karlsruhe, Germany
{uhe,nani}@aifb.uni-karlsruhe.de

Abstract. In the broader context of the development of an ontology-
based new event detection system, we are developing the newsEvents

ontology which allows modeling business events, the affected entities and
relations between them. This paper presents requirements for and a first
version of this ontology. A pattern-based approach to the design of the
ontology was taken. Thereby a new useful pattern - the EventRole pat-
tern - was identified and specified.

1 Introduction

The analysis of news and the estimation of their market impact is an important
issue for traders in financial markets. As the amount of news that is made avail-
able is huge, at least a partial automation of the analysis process is desirable.
The goal is to filter relevant news, to provide an aggreggated view on their con-
tent and to thus enable the users to only read those news that are really relevant
for them. The relevance of a piece of news depends on their relevance for the
traders’ interests (i.e. is it about an entity that the trader is interested in) and
its novelty. These two aspects are rather independent of each other and can thus
be approached separately.

The idea of our work is to study which benefits ontologies may offer for
the two described aspects. In order to study this problem, an ontology is needed
which allows to describe relevant entities and events in the business news context.
To the best of our knowledge no such ontology exists. We therefore decided to
build one for the use in the kind of system we have described above. In this
paper, the newsEvents ontology, which was developed for that purpose, will be
presented.

In the task of relating news to a user’s interest ontology-based annotations
may provide a condensed representation of a text’s content. A query on these
annotations can be used to describe the user’s information need. A similar system
has been described by [4].

� This work has been supported by the Deutsche Forschungsgemeinschaft in the scope
of the graduate school of Information Management and Market Engineering and
by the EU through in the IST project NeOn (IST-2006-027595, http://www.neon-
project.org/.

187

For the task of discovering new events, to which we refer as the new event
detection problem, the annotation of texts with ontology entities allows for as-
sessing their content and relating news to each other based on these annotations.
The introduction of additional features that are based on annotations in the clus-
tering task seems promising as it allows a more specific analysis of the content
and as it enables a better distinction between similar events.

More precisely, annotations will be obtained from a state-of-the-art tool
(OpenCalais1 has been chosen for this task). To include the annotations in the
clustering task a similarity measure that takes into account the similarity be-
tween annotations will be introduced. However, the provided annotations do not
offer much structure, only a list of annotation types and some properties for
each type are defined. A taxonomy on the annotation types is not defined. The
newsEvents ontology will allow for the description of the current state of the
domain and of events as reported in news. The ontology provides a formalisa-
tion of this kind of information that includes more background knowledge than
OpenCalais’ annotations.

The rest of the paper is structured as follows: Section 2 describes related
work, section 3 describes our requirements for the ontology, section 4 describes
the ontology we built, section 5 describes the newly defined EventRole pattern,
before we conclude in section 6.

2 Related Work

While to the best of our knowledge no ontology exists which aims at describing
companies, their relations among each other and the most important events,
there is a number of models which address part of the scope of the intended
ontology.

OpenCalais has defined a schema which is used for the annotation of news
texts, in which events and entities are annotated. While the scope is quite similar
to the scope of the newsEvents ontology, it only defines a list of annotation types
and, for the complex annotations, the slots that have to be filled. The goal when
defining the newsEvents ontology was to provide a model of the domain that
provides more background knowledge on event and entity types and that is able
to relate different annotations to each other.

The classification of news according to their content is very important for
news providers. Therefore, various annotation languages have been defined for
this purpose: while IIM2 is today only used for annotating photos, its successors
NITF3 and NewsML4 are still in use. However, their primary concern is to have
a standardized format for providing and exchanging news.

1 http://www.opencalais.com
2 The Information Interchange Model, http://www.iptc.org/IIM/
3 The News Industry Text Format, http://www.nitf.org
4 The News Meta Language, http://www.newsml.org

188

The most important entity types (and also some events) are also defined in
top-level ontologies such as Cyc5 or Proton6. However, these ontologies are not
detailed enough for our use case.

There is a number of ontologies in the finance domain. The LSDIS Finance
ontology7 and the dip Ontology [1] both describe actors and products in the stock
markets. However, these ontologies do not include any description of events.

3 Competency questions

As described above, the newsEvents8 ontology shall be used for describing events
which are relevant in a business context and for assessing similarity between
different events. It will also be used for modeling the current information that
is available about the economy and for determining whether a user might be
interested in a new event that is reported. In the future, it may also be considered
whether there are recurring patterns of series of events where the next events
may be anticipated. It may also be useful for studying the impact of events on
financial markets.

As the latter use cases may only be interesting in the future and are not the
main motivation for developing the ontology, no special attention has been paid
to them when developing the first version of the ontology. It will however be
extended accordingly in the future.

When developing the ontology, the goal was to have as little modeling efforts
as possible. Therefore, a pattern-based approach to its design was taken.

The first step in the development of the ontology was the definition of a set
of competency questions. Competency questions are questions that the ontology
should be able to answer. Ideally, the ontology should be able to answer all and
only the competency questions - no superfluous additional information should be
included in the model. For a more detailed discussion of competency questions
see [3]. The following questions were defined:

– Related to the history of an event
• Is there any information on a specific event already available? This ques-

tion serves to determine whether a specific event has already been re-
ported on. If this is not the case, the event is definitely new - information
about it has to be integrated into the knowledge base. Additionally, its
novelty will be high.

• In which order and in which timeframe was information on a specific
event published? The purpose of this question is to determine the devel-
opment of the information that is made available on an event. This will
help to study the development of the history of a single event. It may

5 The Cyc knowledge base, http://www.cyc.com
6 The proton ontology, http://proton.semanticweb.org
7 http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/LSDIS FInance.owl
8 The ontology is available at
http://www.aifb.uni-karlsruhe.de/WBS/uhe/ontologies/newsEvents.owl

189

however also help to determine patterns of how event histories look like
and thus to anticipate new information.

– Related to the assessment of similarity
• How similar are two entities? The similarity of two entities may be de-

fined through their properties, like entity type, name, position, location,
industry, etc. The assessment of entity similarity is needed for the as-
sessment of event similarity, but it will also help to identify entities on
which similar events may have similar impact, entities which may have
a similar history, or entities that may be interesting for a user based on
the interests he has stated explicitely.

• How similar are two events? The similarity of two events is needed for
deciding whether two events are in fact the same. Furthermore, if two
events are very similar, they may be interesting for the same users and
the history of one event may allow for anticipating future developments
concerning the other event.

– Related to relations between entities
– Which products does a company produce? Which industry does a company

belong to? Where is a company located? Although these questions may seem
very heterogenuous at first sight, they all serve for finding entities and events
that are related to a user’s interests. For example, if he is interested in cars,
he may be interested in all news that relate to car manufacturing companies.

4 The newsEvents ontology

Based on the requirements presented in the previous section, we have developed
a first version of the newsEvents ontology. It describes various entity types that
are relevant in business news as well as important events, in which described
entities may be involved.

For the development of the ontology we tried to follow a pattern-based ap-
proach. Especially, we found the use of content design patterns helpful. These
are small ontologies - typically consisting of two to ten classes and relations
among them, which describe typical modeling problems arising in different do-
mains. These patterns were proposed by Gangemi and Presutti [2] [6]. The goal
is facilitate the design of the ontology by providing building blocks which can be
composed, specialized or instantiated and thus be adapted to a specific domain.

As OpenCalais is used for obtaining annotations, the annotation types Open-
Calais defines were taken as a starting point for the definition of the concepts
that should be represented in the ontology.

After the most important concept types were chosen, the next step consisted
in identifying the patterns that could be reused for defining the newsEvents
ontology. Using the patterns described below, the description of most of the
event and entity types turned out to be rather straight forward. As the whole
ontology is quite big and complex, we only show parts of it to illustrate the use
of design patterns:

190

– TimeIndexedParticipation. This pattern describes the involvement of ob-
jects in an event at a certain point in time. This pattern can be reused
for the description of events like Acquisition, Merger, IPO, etc. The vari-
ous event types could be described as specialisations of the concept Event,
its participants could be defined through the use of specialisations of the
hasParticipant property and of the Participant class, which are defined
in the Participation pattern. The association of an event with the time at
which it is happening is possible through the TimeIndexedParticipation
concept, which relates events and their participants to a time component.

– Situation. This very general pattern can be used for the description of com-
plex relations, like CompanyTicker. The latter describes a company which
is traded at a specific stock exchange and has a specific ticker symbol there.
This could be modeled by defining the concept CompanyTicker as subcon-
cept of Situation.

– Place. This pattern defines how places and locations should be described in
an ontology. The newsEvents ontology describes various concepts, especially
event types, that happen at a certain location. The place pattern allows to
model these locations and relations among them.

– ObjectRole. This pattern allows to describe the different roles an entity of
a specific type may play. This pattern is useful for defining the different
roles an entity may play in an event or in a relation among entities. For
example, an Acquisition describes the event of one company acquiring
another one. Obviously, there are two entities of the same type, i.e. two
companies involved. One company is the acquiring company, the other one
the acquired company - the companies thus play different roles in the event.
To address the problem of roles in events we have defined the EventRole
pattern, which will be described in section 5.

A taxonomy of event and entity types has been defined, which is needed to
allow for the calculation of similarities between different event types.

To distinguish between the different type of events, we introduced additional
classes for describing events that have a similar meaning. For this purpose classes
like CompanyCollaboration, LegalIssue, or StockEvent were introduced. None
of these classes defines concrete events. It is merely used as a grouping element.
For example, the class CompanyCollaboration has the subclasses Alliance,
BusinessRelation, JointVenture, and Merger. Each of these events describes
a way in which two companies may choose to collaborate.

Entities were also grouped in a hierarchy. Here, grouping was chosen accord-
ing to which roles an entity may play in events. Most importantly, we created
a class LegalEntity which describes both legal and natural persons, i.e. every
entity that may be an actor in an event.

5 The EventRole pattern

When building the ontology, design patterns could be used to address most of the
modeling problems that were encountered. However, no obvious solution seemed

191

to be available for the case where two entities of the same type are involved
in the same event. This is however a recurring situation. Examples in our use
case are acquired and acquiring company, provider and customer, plaintiff and
suedEntity, etc. The occurrence of this kind of situation is not restricted to the
business domain: an obvious example in an everyday context is a visit, where
there is a visitor and a person that is visited.

The problem can be solved by composing the patterns Participation and
ObjectRole. The idea is that the participants in an event are not described by
their entity type, but by the role they are taking in the event. The resulting
pattern is depicted in figure 1.

A new class EventRole has been introduced which serves as connector be-
tween the two original patterns. The EventRole class is used to describe the role
that an entity plays in an event. Therefore, it is a specialization of the Role and
the Object class. For each role an entity can play in an event, this class should
be specialized. Additionally, the property hasParticipant should be specialized
for each of the entity’s roles and the thus defined properties should be declared
disjoint. Thus, each object can only have one role in a given event.

To show how the pattern can be adapted to a specific use case, consider the
definition of an acquisition event. An acquisition is the event of one company, the
acquiring company, buying another one, the acquired company. Two companies
are involved in this event, but it makes a huge difference for company A if it is
acquired by company B or whether it acquires company B. Therefore, the event
roles AcquiringCompany and AcquiredCompany have been defined. They both
are roles of Company. The class Acquisition is then defined as a subclass of
Event. Additionally, we defined the restriction that each acquisition has at least
one acquiring company and at least one acquired company, but at most 2 par-
ticipants. The properties hasAcquiringCompany and hasAcquiredCompany were
specified as subproperties of the hasParticipant property. The two properties
are defined as being disjoint.

6 Conclusion

The paper presented an ontology which can be used to describe events and
entities in a business news context. Patterns have proven to be very useful for
the design of the ontology as they directly solve many of the modeling issues
that were encountered in the engineering process.

One of the recurring problems encountered while modeling the ontology was
the description of the roles entities take in an event. The EventRole pattern has
been proposed in order to solve this issue.

In the future, the proposed ontology will be refined and extended such that
relations between events (especially causal relationships) may be included in the
ontology.

Additionally, procedural knowledge (following our proposal in [5]) will be
associated with the ontology, such that automatic updates of an entity’s state
after being affected by an event become possible. The ontology, which can then

192

Fig. 1. The role event pattern and its adaptation for modeling acquisitions

automatically adapt to changes in the domain, will then be ready to be used in
the new event detection process.

References

1. S. L. Alonso, J. L. Bas, S. Bellido, J. Contreras, R. Benjamins, and J. M. Gomez.
Deliverable 10.7 - financial ontology. Technical report.

2. A. Gangemi. Ontology design patterns for semantic web content. The Semantic
Web ISWC 2005, pages 262–276, 2005.

3. M. Gruninger and M. Fox. The role of competency questions in enterprise engineer-
ing, 1994.

4. C. Halaschek-Wiener and J. Hendler. Toward expressive syndication on the web. In
Proc. of the 16 th International World Wide Web Conference(WWW 2007), 2007.

5. U. Lösch, S. Rudolph, D. Vrandecic, and R. Studer. Tempus fugit - towards an
ontology update language. In 6th European Semantic Web Conference (ESWC 09).
Springer-Verlag, 2009.

6. V. Presutti and A. Gangemi. Content ontology design patterns as practical building
blocks for web ontologies. In ER ’08: Proceedings of the 27th International Con-
ference on Conceptual Modeling, pages 128–141, Berlin, Heidelberg, 2008. Springer-
Verlag.

193

