
Ontology Patterns and Beyond

Towards a Universal Pattern Language

Olaf Noppens and Thorsten Liebig

Inst. of Artificial Intelligence, Ulm University, Ulm, Germany
firstname.lastname@uni-ulm.de

Abstract. In this paper we argue for a broader view of ontology pat-
terns and therefore present different use-cases where drawbacks of the
current declarative pattern languages can be seen. We also discuss use-
cases where a declarative pattern approach can replace procedural-coded
ontology patterns. With previous work on an ontology pattern language
in mind we argue for a general pattern language.

1 Motivation

Though ontology engineers are supported by a wide range of authoring tools the
task of designing ontologies is still difficult even for experts. Several studies on
analyzing common errors in formalizing knowledge may serve as a prime example
(e. g. [1], [2]). They have shown that often modeling problems were concerned
with the act of writing down conflicting axioms, or with finding solutions for non-
obvious but common modeling challenges (e. g. n-ary relationships). Extending
the original notion of knowledge patterns [3] ontology design patterns (ODP)
provide a modeling solution to solve a recurring ontology design problem [4], [5].
There is a wide range of ODP types such as ontology content patterns (OCPs),
logical patterns, architectural patterns etc. [6].

In this paper, we would like to broaden the term ontology pattern by looking
at different ontology engineering approaches. Some of them rely on procedu-
ral knowledge. We argue that lifting them to a declarative level would enable
a (semi-)automatic handling of patterns with the aim to support the ontology
engineer during the entire ontology’s life-cycle. The instantiation of an ontology
pattern, e. g., a logical pattern, also depends on conditions that must be fulfilled.
Violating these conditions at a later stage typically results in an incorrect in-
stantiation. For that we argue that monitoring pattern instantiations is crucial.
In our opinion, there is also a duality between finding pattern instances and
instantiating patterns. For instance, finding axioms that correspond to a logical
ontology pattern without having explicitly applied that pattern could be useful
during (distributed) ontology engineering for better understanding or finding
undesired modeling issues. Only little work has been spent in guiding the ontol-
ogy engineer in finding patterns and monitoring correct instantiation of them.

179



Recently some work has been done with respect to collaborative and distributed
ontology engineering [6] as well as in the context of Protégé 4 [7].

The reminder of this paper is organized as follows: first we discuss use-cases
of the application of ontology patterns where some are hidden in procedural
knowledge. Then we present a proposal for the obtained requirements and we
will briefly discuss the integration in our language in an ontology authoring tool.

2 Use-Cases and Requirements

We will try to broaden the term ontology pattern by looking at different ontology
engineering support methods to extract commonalities that should be fulfilled by
a universal ontology pattern language in order to encode patterns in a declarative
way. These use-cases are mainly driven by our experience in ontology authoring
and therefore not intended to be exhaustive. As a starting point we take into
account a recently proposed pattern language [7] based on OPPL. We refer to
it as the Manchester Ontology Pattern Language (MPL). To the best of our
knowledge, it is the only ontology pattern language.

Ontology Design Patterns Repositories such as ontologydesignpatterns.
org provide access to pattern catalogues. Instead of encoding patterns in a
declarative way they are described by their intent, examples and diagrams. Re-
cently, the authors of MPL propose to describe patterns in a declarative way
to support a more automatic handling of patterns. In the following we observe
two shortcomings of their approach. Consider a very simple partition pattern:
a partition is a structure that is divided into several disjoint parts. Using the
Abstract Syntax of OWL 2 [8] it can be specified by the following axioms where
P is the partition class, and C1, ..., Cn are arbitrary classes or class expressions:

EquivalentClasses(P ObjectUnionOf(C1, C2, ..., Cn))
DisjointClasses (C1, C2, ..., Cn)

The first axiom can be expressed in MPL using createUnion(?x.VALUES) to
bind an arbitrary number of classes to a given variable ?x. However, MPL does
not allow to express a set of classes as needed in the second axiom 1. Moreover,
OPPL/MPL allow variables of named entities only. This limits the usage of the
language because some situations (as shown before) cannot be expressed.

To sum up a general pattern language has to deal also with an arbitrary
number of classes in conjunction with all axioms in OWL which allow a set of
classes (unions, intersections as in MPL but also disjointness, equivalences etc.).
All types of OWL objects should be used as variable parts. Otherwise, the very
simple partition example would only contain named classes.

1 We refer here to the MPL grammar available at http://www.cs.man.ac.uk/

?iannonel/oppl/grammar.html, last accessed on 20th of July, 2009, and [7].

180



Refactoring/Re-engineering There are different syntactical forms to model
the same logical meaning in OWL. One reason is that syntactical sugar makes
things easier to read and to express. For instance, property range restrictions
can be expressed either as ObjectPropertyRange(hasParent Person) or using
a GCI SubClassOf(Thing ObjectAllValuesFrom(hasParent Person)). The
latter axiom, for instance, occurs in ontology transformations from KRSS to
OWL. Negative property assertions can be either expressed as NegativeObject-
PropertyAssertion(property i1 i2) or as SubClassOf(ObjectOneOf(i1),
ObjectComplementOf(ObjectSomeValuesFrom(property ObjectOneOf(i2))))
whereas the former one has been recently introduced in OWL 2. Obviously, in
both cases, the first statement is more intuitive and convenient and even experts
seem to encounter problems in understanding the latter one. It is, of course, an
extreme case but it illustrates the problem of understanding the meaning when
users look at ontologies created by others. It is not a rocket science to trans-
fer these axioms into each other by writing some code. However, this is not an
adequate solution: the transformation is hidden in procedural knowledge. An-
other simple re-factoring example is the replacement of cyclic subclass axioms
with an equivalent-class axiom. SubClassOf(C0 C1),..., SubClassOf(Cn C0)
is equivalent to EquivalentClasses(C0,...,Cn). This is, for instance, imple-
mented in a procedural manner in Protégé. This example shows that a pattern
language needs also to support variability on axiom level: Here, the number of
subclass axioms is unknown during pattern design-time.

Ontology Lint Tools In Software Engineering lint tools perform static analysis
of source code in order to detect suspicious scopes of code wrt. language usage,
condition violations, violation of type ranges etc. that might lead to unexpected
behavior on run-time. Transferring this idea to ontologies, ontology lint tools
give hints about potential modeling defects, i. e., they scan for “anti-patterns”
that should be avoided. In our opinion, these anti-patterns do not differ from
ontology patterns and therefore they should also be expressed in a declarative
way – re-usable independent of any programming language. For instance, Pellint
[9] tries to detect modeling patterns which potentially will slow down reasoning
performance wrt. a tableaux-based reasoner, mainly optimized for the Pellet
reasoner. There is also a tentative ontology lint plugin2 for Protégé 4 providing
several default lints similar to those of Pellint. However, in both tools lints are
expressed by procedural knowledge, i. e., the analysis methods are encoded in
the program. In contrast to general ontology patterns, additional constraints are
typically needed: Pellint defines, for instance, a lint pattern that finds all classes
with more than 5 explicit asserted subclass axioms for a given class. This cannot
be expressed in MPL because neither a condition nor an arbitrary number of
axioms (greater than 5) can be expressed. To sum up, a flexible way to use
both an arbitrary number of axioms and conditions is needed. Ontology Lints
represents the missing link between finding pattern instances, monitoring as well
as instantiating them.
2 http://www.cs.man.ac.uk/~iannonel/lintRoll

181



3 A Proposal towards a Universal Axiom Pattern
Language

Inspired by the mentioned use-cases and the shortcomings of MPL we now
present building blocks of a pattern language which fulfills the discussed re-
quirements. We do not claim that those requirements are the only ones but they
are a good starting point. For the rest of this paper we refer to OWL 2, OWL
for short, and its Abstract Syntax for presentation purpose. Allowing arbitrary
class expressions as possible bindings for variables results in loosing decidability
because models of OWL ontologies, in general, are infinite. Therefore, we use the
finite set of class (property) expressions as introduced in [10]: given an ontology
O, the finite set of class (property) expressions consists of all class (property)
expressions that appear in the asserted axioms of O.

Definition 1 (Variables). Class expressions with variables are defined analo-
gously to OWL class expressions but allowing variables at positions of class ex-
pressions. The range of a variable can either be a named class, class expression,
or any subtype of it as produced by the corresponding rule in OWL. Properties,
individuals, and constants are defined analogously. A variable is either a single
variable ?x that can be bound to a single expression (according to its range), or
a multi-variable ??X which consists of a set of single variables where each of
them is referable via an index. By default, different index values denote different
single variables within the set.

Multi-variables allow to define an arbitrary number of expressions without loos-
ing reference to the single variable if needed. Let ??X be a multi-variable whose
range are classes. Then ObjectIntersectionOf(??X) defines an intersection of
an arbitrary number of classes. In contrast to the MPL statement createIn-
tersection(?x.VALUES), each ?X(i) is referable in other condition which have
an impact on the variable binding. For instance, one could state that ?X(i) and
?X(j) are used in SubClassOf axioms: SubClassOf(?X(i) A) and SubClas-
sOf(B ?X(j)) to define further constraints. By default, ?X(i) and ?X(j) have
different bindings if there is no constraint specifying that both should be equal.

Definition 2 (Variablized Axioms). Given an OWL ontology, axioms are
defined analogously to OWL axioms according to the axiom rules, but also allow
variables at position of class (resp. property) expressions (resp. indivduals). Ax-
ioms with variables are called variablized axioms. The semantic of using multi-
variables in axioms is the following: for each bounded ?X(i) a new re-incarnation
of the axiom is produced.

Given an ontology containing the following axioms SubClassOf(A B), SubClas-
sOf(A C), SubClassOf(A D), SubClassOf(C B), SubClassOf(B A). Let ?X be a
class variable occurring in the axiom SubClassOf(?X B). Then ?X can be bound
to either A or C and we get the bounded axioms SubClassOf(A B) or SubClas-
sOf(C B). Let ??X be a multi-variable (range bounded to classes). Given the
axiom SubClassOf(??X B), ??X would be bound to the set {A, B} and we get
the axioms SubClassOf(A B) and SubClassOf(C B).

182



Definition 3 (Constraints). Every OWL axiom and variablized axiom accord-
ing to the Definition 2 is a constraint. Let ?x and ?y be variables, and ??Z a
multi-variable. Then the following statements are also constraints: ?x != ?y,
?x = ?y (in- resp. equivalence of variable bindings), MinCount(??Z) = n, Max-
Count(??Z) = n, resp. ExactlyCount(??Z) = n (specifying a minimum, max-
imum or exact number of bounded variables ?Z(0),..., ?Z(n) in ??Z).

Definition 4 (Abstract OWL Pattern).

IRI iri
<ACTION>
LET variables
WHERE EXPLICIT constraints
WHERE IMPLICIT constraints
TYPE type
MESSAGE message
DOCUMENTATION documentation

is an abstract pattern where iri is a unique identifier, 〈ACTION〉 is an action’s
placeholder, variables is a comma-separated set of variables containing all vari-
ables that are used in the pattern, and constraints is a comma-separated set of
(conjunctively connected) constraints according to Definition 3. Axioms men-
tioned in the WHERE statement are either interpreted as explicit or implicit
axioms. type denotes the type of the pattern (as explained in the following), doc-
umentation is a human-readable documentation of the pattern, and message is
a message that can be displayed in tools.

Following the type categorization of patterns given in [4] and ontologydesignpatterns.
org we use the given types also in our OWL patterns. Therefore we extended the
meta-ontology about types with a new one for ontology lint patterns. It depends
on the pattern’s type which 〈ACTION〉 is provided. By default

ADD axioms
REMOVE axioms

where axioms is a set of axioms according to the Definition 2 are defined. For
instance, ODPs typically only use the ADD statement whereas re-factoring pat-
terns also provide a remove section, and lint patterns might inform the user only
(they do not provide any action).

Ontology patterns are often based on either entities or axioms defined in
other patterns: combining patterns or re-using patterns is a key building block
of pattern creation. We therefore introduce the following statement group

FROM iris
AS constraints

where iris is a set of comma-separated pattern identifiers (IRIs) and constraints
is a set of comma-separated constraints referring to variables in the patterns
identified by their IRI and variables of the surrounded pattern. To distinguished

183



structural equivalent variables from different patterns it is always required that
these variables are prefixed with the IRI. All axioms and variables contained in
the patterns mentioned in iris are always part of the surrounding patterns. This
allows, for instance, to combine two patterns and establish equivalence between
variables with help of the AS statement.

In the following some very short examples of using our additional language
constructs are given. An ontology lint pattern that finds redundant transitive
property axioms because of the transitivity of the super-property can be formu-
lated as follows:

IRI http://www.derivo.de/patterns/WOP2009/RedundantTransitiveAxiom
LET ?X - ObjectProperty, ?Y - ObjectProperty
REMOVE TransitiveObjectProperty(?X)
WHERE EXPLICIT SubObjectProperty(?X ?Y),

TransitveObjectProperty(?X),
TransitiveObjectProperty(?Y)

A cyclic class definition can easily be defined by using variablized class ex-
pressions as follows:

IRI http://www.derivo.de/patterns/WOP2009/CyclicExplicitClasses
ADD EquivalentClasses ??X
REMOVE SubClassOf (??X ??Y) - ?X(i) = ?Y(i+1), ?X(0) = ?Y(n)
LET ?X - ClassExpression
WHERE EXPLICIT SubClassOf(??X ??Y) - ?X(i) = ?Y(i+1), ?X(0) = ?Y(n)
DOCUMENTATION Cyclic class definitions are replaced
by an EquivalentClassAxiom

An ontology lint patterns discovering at least 5 super-classes (borrowed from
Pellint’s lint collection) can be expressed as follows:

IRI http://www.derivo.de/patterns/WOP2009/AtLeastFiveSuperClasses
LET ?X - ClassExpression, ?Y - ClassExpression
WHERE EXPLICIT SubClassOf(?X ??Y), MinCount(??Y) = 5

4 Implementation

We have integrated the proposed language constructs in a pattern language as
a supplement to the OWL API [11]. In order to apply constraints on variable
bindings (esp. in the case of multi-variables) we implemented methods known
from CSP. For a pro-actively user-support during ontology engineering we have
integrated the language within the successor of our graphical-based ontology
authoring framework OntoTrack [12]. Here, the user can instantiate patterns
by selecting them from catalogues and filling variables either by selecting cor-
responding OWL object or by drag-’n-drop them to the bound variable. Con-
straints of a pattern instantiation will be immediately checked and monitored

184



during ontology engineering in order to avoid undesired constraint violations.
For instance, Figure 4 shows a screen capture of the graphical ontology view
within our application presenting the hierarchy of classes and properties in a
geographical domain. Here, a class labeled Partition has been introduced by

Fig. 1. Screen capture showing class hierarchy with pattern instantiation warnings in
our OntoTrack-based ontology authoring framework.

applying the partition pattern. After removing the DisjointClasses axioms the
user’s intention of defining a partition is violated and therefore our framework
immediately presents a hint to the user as shown as symbol in the right upper
corner of the class box. Hovering over the class with the mouse pointer displays
which pattern has been violated. Moreover, when clicking on the symbol one
gets further information about the reason(s) for the violation.

Since ontology lint are handled in the same way as ODPs the same mechanism
is used to monitor the ontology in order to find lints as a background task. As
shown in the upper part of Figure 4, a redundant transitive axiom for a property
that is a sub-property of a transitive property has been found.

185



5 Conclusion and Future Work

In this paper we presented some shortcomings of ontology pattern languages such
as the OPPL-based ontology language and motivated to broaden the term ontol-
ogy pattern by looking at ontology analysis methods which encode ontology pat-
terns in program structures. A declarative pattern approach could benefit from
automatic detection of pattern instantiations, monitoring of patterns violations
as well as interoperability of patterns. To overcome the presented limitations we
briefly introduced the building blocks of a universal pattern language and gave
an overview of the implementation and integration in an ontology authoring
environment. Future work will be concerned with further analysis of ontology
patterns related areas such as ontology lints as well as ontology extractions to
include language constructs to better support these patterns in order to get to
our aim to build a universal pattern language.

References

1. Fiedland, N., Allen, P., Witbrock, M., Matthews, G., Salay, N., Miraglia, P., An-
gele, J., Stab, S., Israel, D., Chaudhri, V., Porter, B., Barker, K., Clark, P.: Towards
a Quantitative, Plattform-Independent Analysis of Knowledge Systems. In: Proc.
of the 9th KR Conference, Whistler, BC, Canada (2004) 507–514

2. Rector, A.L., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-
DL: Common Errors & Common Patterns. In: Proc. of the 14th Int. Conf. on
Engineering Knowledge (EKAW). (2004) 63–81

3. Clark, P., Thompson, J., Porter, B.W.: Knowledge Patterns. In: Handbook on
Ontologies. (2004) 191–208

4. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Proc. of
4th Int. Semantic Web Conference (ISWC 2005). (2005) 262–276

5. Presutti, V., Gangemi, A.: Content Ontology Design Patterns as Practical Building
Blocks for Web Ontologies. In: Proc. of the 27th Int. Conf. on Conceptual Modeling
(ER). (2008) 128–141

6. Presutti, V., Gangemi, A., del Carmen Suarez-Figueroa, M.: Library of Design Pat-
terns for Collaborative Development of Networked Ontologies. Deliverable D.2.5.1
NeOn project (2007)

7. Iannone, L., Rector, A.L., Stevens, R.: Embedding Knowledge Patterns into OWL.
In: Proc. of the 6th European Semantic Web Conference (ESWC 2009). 218–232

8. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Structural Specification and
Functional-Style Syntax. W3C Candidate Recommendation 11 June 2009

9. Lin, H., Sirin, E.: Pellint – A Performance Lint Tool for Pellet. In: Proc. of the
5th OWLED Workshop on OWL: Experiences and Directions. (2008)

10. Kubias, A., Schenk, S., Staab, S., Pan, J.Z.: OWL SAIQL – An OWL DL Query
Language for Ontology Extraction. In: Proc. of the OWLED 2007 Workshop on
OWL: Experiences and Directions (OWLED’07). (2007)

11. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 Touch Paper: The
OWL API. In: Proc. of the OWLED 2007 Workshop on OWL: Experiences and
Directions (OWLED’07). (2007)

12. Liebig, T., Noppens, O.: OntoTrack: A Semantic Approach for Ontology Au-
thoring. Journal of Web Semantics 3(2) (2005)

186




