
Define Hybrid Class Resolving Disjointness Due to
Subsumption

http://ontologydesignpatterns.org/wiki/Submissions:Define_Hybrid_Class_Re
solving_Disjointness_due_to_Subsumption

Rim Djedidi1 and Marie-Aude Aufaure2

1 Computer Science Department, Supélec Campus de Gif
Plateau du Moulon – 3, rue Joliot Curie – 91192 Gif sur Yvette Cedex, France

rim.djedidi@supelec.fr
2 MAS Laboratory, SAP Business Object Chair –Centrale Paris

Grande Voie des Vignes, F-92295 Châtenay-Malabry Cedex, France
marie-aude.aufaure@ecp.fr

1 Introduction

The pattern “Define Hybrid Class Resolving Disjointness due to Subsumption” is
proposed as a Logical Ontology Design Pattern (Logical OP) solving a problem of
disjointness inconsistency caused by a subsumption relation. Further away from
solving design problems where the primitives of the representation language do not
directly support certain logical constructs, this pattern helps resolving a logical
inconsistency triggered by a situation of disjoint classes subsuming a common sub-
class. The solution presented by the pattern resolves the inconsistency while
preserving existing knowledge, i.e. a resolution alternative avoiding axiom deletion.

2 Pattern

In this section, we specify the problem that the pattern deals with and the
requirements covered by it; we detail the description of the solution given by this
pattern and the consequences of its application; and we illustrate the pattern by an
example problem and its corresponding solution.

2.1 Problem

The pattern “Define Hybrid Class Resolving Disjointness due to Subsumption” is
proposed to solve a problem of disjointness inconsistency caused by a subsumption
relation. When we need to define – for some modeling issues related to domain of
interest – a class as a sub-class of two disjoint classes, a disjointness inconsistency is
caused.

The problem can be illustrated by the following scenario: let’s consider a class
Sub_Class defined as a sub-class of a class Disjoint_Class 2; and a class

100

2

Disjoint_Class 1 disjoint with the Disjoint_Class 2 (Fig. 1). If we need to add a sub-
class relation between the Sub_Class and the Disjoint_Class 1, this generates a
disjointness inconsistency:
− If the extension of the Sub_Class contains individuals instantiating this sub-class,

the logical inconsistency will be extended to the knowledge base;
− If the Sub_Class is not instantiated to individuals, it will be diagnosed as an

unsatisfiable class.

Fig. 1. Graphical illustration of the problem the pattern deals with.

To solve this inconsistency, one can think about deleting the disjointness axiom.
However, this can alter the semantics expressed in the ontology, and negatively affect
consistency checking and automatic evaluation of existing individuals as explained in
[1].

This pattern tackles the questions of how to resolve the inconsistency caused by
such kind of subsumption while preserving existing knowledge.

Intent The purpose of this pattern is to support the semantics of a subsumption
defined under two disjoint classes and resolve the resulting inconsistency.

Covered Requirements The pattern solves a problem of disjointness inconsistency
caused by a subsumption relation without deleting the disjointness axiom so that
existing knowledge can be preserved.

2.2 Solution

The pattern resolves a disjointness inconsistency –due to a subsumption–by defining a
Hybrid Class based on the definition of disjoint classes implicated in the
inconsistency; and redistributing correctly sub-class relations between the sub-class,
the hybrid class, and the most specific common super-class of the disjoint classes
implicated. The definition of the Hybrid Class is the union (OR) of the definitions of
the disjoint classes.

The application of the solution can be described by the following process (Fig. 2):
1. The pattern defines a Hybrid Class as a union of the definitions of the disjoint

classes implicated in the inconsistency to be resolved;
2. The pattern defines a subsumption between the most specific common super-class

of the disjoint classes implicated in the inconsistency, and the Hybrid Class
created;

Disjoint_Class 2Disjoint_Class 1

Sub_Class

{Disjoint}

101

3

3. The pattern defines a subsumption between the Hybrid Class and the sub-class
involved in the inconsistency.

Fig. 2. Graphical representation of the proposed pattern.

Consequences The application of the pattern resolves the disjointness inconsistency
(even if the involved sub-class is instantiated by individuals) and preserves existing
knowledge. As a Logical OP, this pattern is independent from a specific domain of
interest. However, it depends on the expressivity of the logical formalism used for the
representation of the ontology. Therefore, the language of the targeted ontology
should allow expressing class union.

2.3 Example

To explain pattern application, we present in this section, an example problem and its
corresponding solution according to the pattern.

Example Problem Let’s consider the OWL ontology O defined by the following
axioms:

{Animal � Fauna-Flora, Plant � Fauna-Flora, Carnivorous-Plant
� Plant, Plant � �Animal}

If we apply a change to the ontology defining Carnivorous-Plant class as a sub-
class of the class Animal, we cause a disjointness inconsistency. The proposed pattern
resolves this kind of inconsistency.

Example Solution The application of the pattern to resolve the example above is
performed as follow:
1. The pattern defines a class Animal_Plant as a union of the definitions of the

disjoint classes Animal and Plant;
2. The pattern defines a subsumption between the most specific common super-class

of the disjoint classes Fauna-Flora and the hybrid class created Animal_Plant;

Common_Super_Class

Disjoint_Class 1

Sub_Class

Disjoint_Class 2

{Disjoint}

HybridClass

102

4

3. The pattern defines a subsumption between the defined hybrid class Animal_Plant
and the sub-class Carnivorous-Plant involved in the inconsistency.

Fig. 3. Illustration of an example of problem and its corresponding solution.

3 Pattern Usage

The proposed – Logical OP – pattern “Define Hybrid Class Resolving Disjointness
due to Subsumption” is applied as an Alternative Resolution Pattern in an ontology
evolution approach OONNTTOO--EEVVOOAALL, guided by Change Management Patterns (CMP)
[2]. CMP patterns drive and control the change management process at three key
phases: change specification, change analysis, and change resolution, by modeling
three categories of patterns: Change Patterns classifying types of changes,
Inconsistency Patterns classifying types of logical inconsistencies, and Alternative
Patterns classifying types of inconsistency resolution alternatives.

4 Summary and Future Work

The purpose of this pattern is to support the semantics of a subsumption defined under
two disjoint classes and resolve the resulting inconsistency without removing existing
knowledge. This pattern can be extended and adapted to resolve disjointness
inconsistency due to instantiation.

References

1. Völker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning Disjointness. In F., Enrico, K.,
Michael, May. Wolfgang (Eds.). Proceedings of the 4th European Semantic Web
Conference, ESWC 2007. LNCS: Vol. 4519 pp: 175-189. (2007)

2. Djedidi, R., Aufaure, M-A.: Ontology Change Management. In: A. Paschke, H. Weigand,
W. Behrendt, K. Tochtermann, T. Pellegrini (Eds.), I-Semantics 2009, Proceedings of I-
KNOW ’09 and I-SEMANTICS ’09, ISBN 978-3-85125-060-2, pp. 611--621, Verlag der
Technischen Universitt Graz. (2009).

Fauna-Flora

Animal

Carnivorous-Plant

Plant

{Disjoint}

Fauna-Flora

Animal

Carnivorous_Plant

Plant

{Disjoint}

Animal_Plant

103

