
Agent-based Structures, Agent Ontology Preservation

and Enterprise Modeling
Cyrus. F. Nourani

projectmetaai@cs.com

ABSTRACT
Design techniques with software agents and Abstract
Intelligent Implementations are presented. Agent
morphisms are defined and applied to preservation
principles. The object level definitions for individual
modules can be automatically programmed by source
abstract syntax tree to target abstract syntax tree
morphisms. AII techniques are applied to define an
Ontology Preservation Principle for Heterogeneous KB
Design and implementation.

The stages of conceptualization, design and
implementation are defined by AI agents and Mediators.
Multiagent implementations are applied to software design
techniques, which incorporates object level
nondeterministic knowledge learning and knowledge
representation developed in [12]. Objects, message passing
actions, and implementing agents are defined by syntactic
constructs, with agents appearing as functions. By defining
specified agent activators events and activity are computed
for the AII agents. The proposed AII techniques provide a
basis for an approach to automatic implementations from
intelligent syntax trees. Interpretability is defined by
mediators implementing objects and agents

1. Abstract Modeling with Computing Agents

The paper on which the enclosed abstract is based presents
a formal basis to agent ontology modeling and ontology
preservation is specific designs. The notion of abstract
implementation defined by this author in [1,4] are either
algebraic or model-theoretic (algebraic logic) definitions.
We refer to specifications of the form <O,A,R>,
abbreviating <Objects, Actions, and Relations>, as
presentations. A design realization applies a triple I:
<I[O],I[A],I[R]> with agents with specific ontologies,
where I is an agent ontology preserving mapping.
Informally the process of design realization was defined by
the author to be that of encoding the algebraic structure of
the conceptualization of a problem with agents onto the
algebra that specified a specific system. Thus design
realization is via morphisms on agent-based algebras. A
multiagent System design might be defined as an
"enterprise" by <O,A,R> is implemented by agents that
characterize the implementation function

I: <O,A,R> → <I[O],I[A],I[R]> is to be defining a
mapping

I: <Alg[A],Alg[F]> → <Alg[I(A)],Alg[I(F)]>

We refer to Alg[A] and Alg [F] are what we call ontology
algebras. The implementation mapping I defines wrappers
to resources in a manner preserving the ontology algebra.
Ontology algebras are multi-sorted algebras defining
multiagent systems defined by formal agents, e.g. hysteretic
or knowledge level agents and agent morphisms. A formal
definition is provided. The Ontology Preservation
Principle: The AII is correct only if it preserves the
ontology algebras. It will be abbreviated by AIIOPP.
Widerhold’s domain knowledge base algebra DKB consists
of matching rules linking domain ontology. There are three
operations defined for DKB. The operations are
Intersection- creating subset ontology and keeping sharable
entries. Union- creates a joint ontology merging entries.
Difference- creates a distinct ontology and removing
shared entries. Mapping functions must be shown to
preserve ontology. Applying AIIOPP we can state specific
preservation principles as follows. The DKB Preservation
Principle- AII implementations must preserve ontology
under Intersection, Union, and Difference operations. . The
algebras Alg[A] and Alg[F] define wrappers for the
mediators as functions for interacting with resources. A
wrapper is a tool to access known resources and translate
their objects.

1.1 Agents

Starting with hysteretic agents [5], the agent has an
internal state set I, which the agent can distinguish its
membership. The agent can transit from each internal state
to another in a single step. Actions by agents are based on I
and board observations. There is an external state set S,
modulated to a set T of distinguishable subsets from the
observation viewpoint. An agent cannot distinguish states
in the same partition defined by a congruence relation. A
sensory function s :S → T maps each state to the partition it
belongs. Let A be a set of actions which can be performed
by agents. A function action can be defined to characterize
an agent activity action:T →A.
 There is also a memory update function mem: I x T → I.
To define agent at arbitrary level of activity knowledge
level agents are defined. All excess level detail is
eliminated. In this abstraction an agent’s internal state
consists entirely of a database of sentences and the agent’s
actions are viewed as inferences based on its database. The
action function for a knowledge level agent maps a
database and a state partition t into the action to be
performed by an agent in a state with database and
observed state partition t. action: Dx T→ A

The update function database maps a state and a state
partition t into a new internal database.

database: D x T → D

A knowledge-level agent is an environment is an 8-tuple
shown below. The set D in the tuple is an arbitrary set of
predicate calculus databases, S is a set of external states, T
is the set of partitions of S, A is a set of actions, see is a
function from S into T, do is a function from A S into S,
database is a function from D x T into D, and action is a
function from D x T into A.
<D,S,T,A,see,do,database,action> Knowledge level agents
are hysteretic agents.

1.2AgentMorphisms
Let HA be a set of sextuples defining hysteretic agents.
Define HA morphims by a family of functions defined
component-wise on the sextuple above.

Definition 1.1 A HA morphism is a function F : HA →
HA’ defined component-wise by F[i]: I→ I’; F[S]: S →
S’, F[T]: T →T’, F[A]: A →A’; F[s]: S→ T’; F[d]: A’ x S’
→ S’ and F[internal]: I’ x T’→ I’. �

Definition 1.1 implies F defines new hysteretic agents
from HA by a morphism. The definition might become
further transparent in view of definitions. Component-wise
definitions for morphism might be viewed as functions on
a multi-sorted signature carrying the sextuple. Similar
morphisms can be defined for knowledge level agents.

1.3 Agents, Languages, and Models

By an intelligent language we intend a language with
syntactic constructs that allow function symbols and
corresponding objects, such that the function symbols are
implemented by computing agents in the sense defined by
this author in (Nourani 1993c, 96a). Sentential logic is the
standard formal language applied when defining basic
models. The language R is a set of sentence symbol closed
by finite application of negation and conjunction to
sentence symbols. Once quantifier logical symbols are
added to the language, the language of first order logic can
bedefined.

 A Model G for is a structure with a set A. There are
structures defined for R such that for each constant symbol
in the language there corresponds a constant in A. For each
function symbol in the language there is a function defined
on A; and for each relation symbol in the language there is
a relation defined on A. For the algebraic theories we are
defining for intelligent tree computing in the forthcoming
sections the language is defined from signatures as in the
logical language is the language of many-sorted equational
logic.

 The signature defines the language by specifying the
function symbols' arities. The model is a structure defined
on a many-sorted algebra consisting of S-indexed sets for S
a set of sorts. By an intelligent language we intend a
language with syntactic constructs that allow function
symbols and corresponding objects, such that the function

symbols are implemented by computing agents. A set of
function symbols in the language, referred to by AF, is the
set modeled in the computing world by AI Agents with
across and/or over board capability. Thus the language
defined by the signature has designated function symbols
called AF. The AF function symbols define signatures
which have specific message paths defined for carrying
context around an otherwise context free abstract syntax. A
set of function symbols in the language, referred to by AF,
are agents with nontrivial capability.

Definition 1.2 We say that a signature is intelligent iff it
has intelligent function symbols. We say that a language
has intelligent syntax if the syntax is defined on an
intelligent signature. �

Definition 1.3 A language L is said to be an intelligent
language iff L is defined from an intelligent syntax. �
The above mathematical basis might be applied to the
KQML agent language paradigms. However the author has
not had the time an occasion to explore the applications.
The example of intelligent languages [3] we could present
are composed from <O,A,R> triples as control structures.
The A's have operations that also consist of agent message
passing. The functions in AF are the agent functions
capable of message passing. The O refers to the set of
objects and R the relations defining the effect of A's on
objects. Amongst the functions in AF only some interact
by message passing. There is a new frontier for theoretical
development of the <O, A, R> algebras and that of the AII
foundations. <O,A,R> is a pair of algebras,
<Alg[A],Alg[F]>(see section 3), connected by message
passing and AII defines techniques for implementing such
systems. To define AII we define homorphisms on
intelligent signature algebras.

Definition 1.4 An I-homorphism is a homoprphism
defined on algebras with intelligent signature I. �

To define agent specific designs we apply HA-morphisms
via the following definition.

Definition 1.5 Let A and B be I-algebras with signatures
containing an agent signature HA. A HA-homomorphism
from A to B is an I-homomorphism with defined HA-
morphism properties. �

2. Agent Ontology Preservation Theorems
Let us apply the definition for HA agents and HA
morphisms to state a preservation theorem. Let A and B be
I-algebras with the signature I containing HA agents. Let
Alg[B] be an I-algebra defined from B implementing [1] a
specified functionality defined by A. An AII is an
implementation for Alg[A] by Alg[B].

Definition 2.6 Let A and B be I-algebras with intelligent
signature I containing agents. An I-ontology is an I-algebra
with axioms for the agents and functions on the signature.
�

Theorem 2.1 Let A and B be I-algebras with the signature
I containing HA agents. The AII with HA morphisms

defined from A to B preserve I-ontology algebras iff
defined by HA-homorphisms. �

Theorem 2.2 Let A and B be I-algebras with the signature
I containing KL agents. The AII with KL morphisms
preserve I-ontology algebras iff defined by KL-
homomorphisms. �

DKB mappings are specific AII's were the ontology
algebra operations are the same at source and target. the
DKB mappings are proved AIIOPP consistent.

3. Meditors and Ontologies
A mediator is a software module that exploits encoded
knowledge about certain sets or subsets of data to create
information for a higher layer of applications. and the
definition goes on to state `It should be small and simple,
so that it can be maintained by one expert or, at most, a
small and coherent group of experts' Mediator instantiation
is to populate a domain-independent service or tool with
domain-specific knowledge. We define Mediator
Specifications with agent ontologies consisting of a tuple
engine agent-based computing system <A,F> :=
<Design_Agents,CoAgents>, consisting of Design_Agents
:= <O,A,RNA> and CoAgents;= <O,F,RFA>. The design is
depicted by the following figure. RNA are normal actions
and RFA the faults, exceptions, and remedial functions.

Figure 1-The pairs <Ai,Fi> are modules composed to
define <A,F>.

The modules are defined from multiple objects. Actions
could be in form of operations or message communication
from one object to another. A set of computing agents
forms Design_Agents and a dual set forms CoAgents.
CoAgents are agents running parallel checking faults and
unplanned events presenting alternatives. The algebras
Alg[A] and Alg[F] define wrappers for the mediators as
functions for interacting with resources. A wrapper is a
tool to access known resources and translate their objects.
The Design_Agents corresponds to an algebra Alg[A] of
Normal Activities and CoAgents to an algebra Alg[F] for
unplanned events, computing faults recovery.

References

[1] Abstract Implementation Techniques for A.I. By
Computing Agents,: A Conceptual Overview, Technical
Report, March 3, 1993, Proc. SERF-93, Orlando, Florida,
November 1993. Published by the University of West
Florida Software Engineering Research Forum, Melbourne,

FL.
[2]G.Wiederhold: "Interoperation, Mediation and
Ontologies''; Proc.Int.Symp. on Fifth Generation Comp
Systems, ICOT, Tokyo, Japan, Vol.W3, Dec.1994, pages
33-48.
[3] Nourani, C.F.," Intelligent Languages- A Preliminary
Syntactic Theory," May 15, 1995, Mathematical
Foundations of Computer Science;1998, 23rd International
Symposium, MFCS'98, Brno, Czech Republic, August
1998, Jozef Gruska, and Jiri Zlatuskanbsp;(Eds.): Lecture
Notes in Computer Science;1450, Springer, 1998, ISBN 3-
540-64827-5, 846 pages.
[4] Nourani, C.F.” AII and Heterogenous Software Design,
May 10, 1995, MAAMAW'97, Eighth European Workshop
on MODELLING AUTONOMOUS AGENTS IN A
MULTI-AGENT WORLD May 1997, University of
Karlskrona/Ronneby, Dept of Computer Science and
Business Administration Ronneby, SWEDEN. Specific
track on WWW announced papers only.
[5] Genesereth, M.R. and Nilsson, N.J., Logical
Foundations of Artificial Intelligence,"Morgan-
Kaufmann,1987.
[6] Nourani, C.F.," Slalom Tree Computing," 1994, AI
Communications, December 1996, IOS Press, Amsterdam.
[7]ADJ- Goguen, J.A., J.W. Thatcher, and E.G. Wagner
“An Initial Algebra Approach To Specification,
Correctness and Implementation of Abstract Data Types, in
Current Trends in Programming Methodology, Vol IV,
1978, R. Yeh, editor, Prentice-Hall, Englewood-Cliffs, NJ,
pages80-149.
AffilationsAcademia USA last appointment UCSB

ScientificURL
http://members.fortunecity.com/crisfn/metaai.html.doc

Fax 415-430-2167 x1342

Telephone 310-754-6000 x3036

.

