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Abstract

This paper investigates the possibility of adding machinery to descrip-
tion logic which allows one to define self-referential concepts. An example
of such a concept is a narcissist, someone who loves himself. With do-
mains in which the natural ontology is a graph instead of a tree, this
extra expressive power is often desired (e.g., when writing an ontology
about web pages or molecular structures). Our results show that one has
to be very careful with such additions. We add self-reference to ALC
with inverse. Then we obtain all well known difficulties of having in-
dividual concepts or nominals together with inverse relations and even
worse, checking for concept consistency becomes undecidable. Most of
this expressive power seems not to be needed and we can identify a useful
fragment whose complexity does not exceed that of ALC.

1 Introduction and Motivation

We investigate adding a form of self-reference to description logic. This form is
inspired by the downarrow operator from hybrid logic which names the “here
and now” [3]. Let us first look at the natural language definitions of the first
two concepts in the title:

narcissist: someone who loves oneself;

stepmother: a female who is married to a person who has a child which is not
hers.

An example from the web could be a “solipsistic page” —a page which only
links to pages which link back to it.

Using the notions of bisimulations for description logics developed by Kur-
tonina and de Rijke [7] one can simply show that these concepts are not definable
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in ALC and other extensions. This is due to the fact that these concepts exploit
the graph like structure of the underlying domain, while ALC concepts can only
capture (part of) the tree like aspects of it. This part of the design makes it
robustly decidable [9].

There are some domains in which the graph like nature of the relations is
important and the definition of concepts makes use of it. The web is a good
example. One has to be careful in designing languages which may speak about
the graph like nature. Once grids can be defined, undecidability is very close.

Instead of adding variables as in hybrid logic, we add here the personal
pronouns I and me to description logic with the following intended meaning:

If C is a (complex) concept and a an element of the domain, then
a belongs to I.C if a belongs to C under the assumption that all
occurrences of me in C denote the individual concept {a}.

Note that me can be seen as a kind of dynamic version of the one-of operator.
With I and me we can define the earlier mentioned concepts:

narcissist I.∃ loves me
stepmother female u I.∃ married-to∃ has-child¬∃ has-child−1 me
solipsitic web page I.∀ has-link∃ has-link me.

The definition of stepmother can graphically be represented as below. Here the
node labeled female is the stepmother.
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We can also define concepts which intrinsically need three variables, like sibling.
(This definition goes back to Schröder.)

sibling: I.∃ has-child−1 (female u
∃ has-child (¬me u

∃ has-child−1 (¬ female u
∃ has-child me))).

In the picture below, the (different) nodes a and b are both siblings.
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From DL and hybrid logic it is known that the combination of nominals or
individual concepts together with inverse roles makes reasoning much harder
(e.g., checking concept consistency for empty T-Box in ALCI with one nominal
is EXPTIME hard). With self-reference things are much worse. Consider a
T-Box {> v (1)}, with (1) the concept:

∃ has-link> u
∀ has-link¬startpage u(1)

I.∀ has-link∀ has-link−1 me.

The concept startpage can only be non empty in a model making this T-Box
true if the model is infinite. This is because I.∀ has-link∀ has-link−1 me
expresses that has-link is an injective relation.

Things get even worse with “spy pages”: a web page that has a direct link
to all pages which can be reached by following a path of links from itself. They
are defined by

I.∀ has-link∀ has-link∃ has-link−1 me.(2)

Now consider the concept (3), in which R is a new relation.

I.∀ R∀ has-link∃ R−1 me u
∃ R startpage u(3)

∀ R (1).

The previous result immediately implies that the concept defined by (3) is only
non empty on infinite models.

In the remainder of the paper we show undecidability of concept consistency
with empty T-Box for ALC with I and me added. For this result only one
relation is needed and no converse. This contradicts the decidability result from
Theorem 7.10 in [2]. The mistake in that proof lies in the given reduction to
a problem without occurrences of I. The concept (1) above showed that this
cannot be done in a finite way.

On the positive side, we also define a decidable existential version of the
language. Here we tame the power of the I–me construction by disallowing
universal quantifiers in the scope of I (as occurring in (1) and (2)).

Before we start let’s make things precise. If X denotes some description lan-
guage, let X self be the language with the added clauses:

• me is a concept;

• if C is a concept, then I.C is a concept.



Here C is called the scope of I. The concept me occurs free in C if it is not
in the scope of some I. We only consider concepts in which every occurrence of
me occurs in the scope of some I. Now we can make the meaning of the new
concepts precise.

a belongs to I.C if a belongs to C under the assumption that all free
occurrences of me in C denote the individual concept {a}.

In the sequel we use C → D as an abbreviation of ¬C tD.

2 The existential fragment

In this section we tame the power of self reference by restricting the type of
concepts which can occur in the scope of I. Decidability and a matching com-
plexity bound are obtained by a translation into the guarded fragment of first
order logic with three variables [1, 6].

Note that the spy-page (2) is equivalent to the first order formula ∀y(Rxy →
∀z(Ryz → Rxz)), when R is interpreted as has-link. This formula uses three
variables in a nonreducible way and is not equivalent to a (loosely) guarded
formula.

The description logic we consider is ALCI, ALC with inverse roles. Every
ALCI concept is equivalent to one in negation normal form, that is, constructed
by u,t,∃ R ,∀ R ,∃ R−1 and ∀ R−1 from atomic concepts and their negations. We
define the existential ALCIself concepts as those constructed by u,t,∃ R ,∃ R−1

and I from atomic concepts, me, their negations and ¬∃ R me and ¬∃ R−1 me.
Thus universal quantification is not allowed, except in the form of ¬∃ R me in
which form it is just an atomic statement.

The set of ALCIself∃ concepts is the smallest set such that every atomic
concept name including me and their negations are concepts, and if C and D
are concepts, then C uD,C tD,∃ RC,∃ R−1 C,∀ RC,∀ R−1 C are also concepts.
Moreover, if C is an existential ALCIself concept, then I.C is also ALCIself∃

concept. An ALCIself∃ T–Box consists of a set of GCI’s of the form C v D,
for C,D ALCIself∃ concepts with the requirement that I does not occur in
C. Note that ALCIself∃ contains ALCI and that narcissist, stepmother and
sibling can still be defined. Also note that even if ALCIself∃ is not closed
under negation, the subsumption problem can in specific cases still be reduced
to the satisfiability problem. In particular, if ¬D is equivalent to an ALCIself∃

concept, then Σ |= C v D reduces to the satisfiability problem coverd by the
following theorem.

Theorem 1 Let Σ be an ALCIself∃ T–Box and C an ALCIself∃ concept. The
problem of checking concept consistency (Σ 6|= C

·
= ⊥) is decidable in exptime.



Proof. We translate the problem using the standard translation to the uni-
versal guarded fragment1with three variables. In this fragment only universal
formulas need to be guarded. Grädel [6] showed that the satisfiability problem
for this fragment is complete for exponential time. The ALCI concepts are
translated as usual (e.g., as in Table 2 of Borgida [5]). The new clauses are

T x(I.C) := ∃w(x = w ∧ T x(C)) T y(I.C) := ∃w(y = w ∧ T y(C))
T x( me) := x = w T y( me) := y = w.

For example, T x(I.∃ R∃ R me) is ∃w(w = x ∧ ∃y(Rxy ∧ ∃x(Ryx ∧ x = w)))
which is equivalent to ∀y(Rxy → Ryx). The restriction on the scope of the I
ensures that there are no non guarded universal quantifiers in the translation.

Because of the restriction on the form of the CGI’s in the T–box, we may
assume that they all have the form C v >, for C and ALCIself∃ concept.
Then Σ 6|= C

·
= ⊥ iff the universally guarded sentence ∀x(x = x →

∧
{T x(C) |

C v > ∈ Σ}) ∧ ∃xT x(C) is satisfiable. qed

3 Undecidability

Theorem 2 Let C be an ALCself concept containing just one relation symbol
R. The problem of checking concept concistency with empty T-Box for such C
is undecidable.

Undecidability is shown by encoding the N × N tiling problem (cf. [4]). The
main point in such a proof is to show that two commuting functions up and
right can be defined. Let Σ be a T-Box consisting of the following CGI’s:

> v ∃ up> u ∃ right ,
> v I.∀ up−1 ∀ up me u I∀ right−1 ∀ right me,
> v I.∀ up−1 ∀ right−1 ∀ up∀ right me.

(4)

If we apply the standard translation from the previous section to (4) (and sim-
plify formulas) we obtain a theory which says that for all x,

∃yRupxy ∧ ∃yRrightxy,
∀yz(Rupxy ∧Rupxz → y = z) ∧ ∀yz(Rrightxy ∧Rrightxz → y = z),
∀yz(Rupyx ∧Rrightzy → ∀w(Rupzw → Rrightwx)).

Thus I |= Σ if and only if I(up) and I(right) are commuting total functions.
Having this part it is standard to code up the tiling problem.

1Formulas in this fragment are constructed from atoms and their negations by conjunction,
disjunction, unrestricted existential quantification and guarded universal quantification [8].
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Figure 1: Our standard model of the grid.

Now we turn to the proof of the theorem. Because we do not want to use
inverse relations and only one relation symbol, we need some additional coding.
In Figure 1 we present how we would model the grid. In this model there is only
one relation R which is symmetric. The atomic concepts are {0, 1, 2} and {u, r}.
The nodes in the picture are given by the labels u and r and by the labels i(k,m).
These last nodes correspond to positions in the grid. For i ∈ {0, 1, 2}, define
s(i) = i+ 1 mod 3 and p(i) = i+ 2 mod 3. The idea is to model ∃ upC by (for
i ∈ {0, 1, 2})

i→ ∃ R (u u ∃ R (s(i) u C)),

and ∃ rightC by i → ∃ R (r u ∃ R (p(i) u C)). The corresponding relation up

then is

{〈x, y〉 | ∃z(xRzRy ∧ z ∈ I(u) ∧ ∃i(x ∈ I(i) ∧ y ∈ I(s(i))))}.

We now present a number of concepts (5)–(9) which force an unravelled model
to have the model from Figure 1 as a substructure in the case that each element
in the domain belongs to these concepts. The first concept (5) expresses that
the relation R is symmetric.

I.∀ R∃ R me.(5)

For i ∈ {0, 1, 2}, (6) expresses that every point has an up and a right successor.

i→ ∃ R (u u ∃ R s(i)) u ∃ R (r u ∃ R p(i)).(6)

The next two concepts express that these successors are unique and that the
relations up and right are irreflexive. For i ∈ {0, 1, 2},

s(i) → I.∀ R (u→ ∀ R (i→ (¬me u ∀ R (u→ ∀ R (s(i)→ me)))))(7)

p(i) → I.∀ R (r → ∀ R (i→ (¬me u ∀ R (r → ∀ R (p(i)→ me))))).(8)
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Figure 2: (9) expresses a confluence property.

The last concept expresses the confluence property depicted in Figure 2 (assum-
ing R is a symmetric relation). For i ∈ {0, 1, 2},

s(i)→ I.∀ R (u→ ∀ R (i→ ∀ R (r → ∀ R (p(i)→
∃ R (u u ∃ R (i u ∃ R (r u ∃ R me))))))).

(9)

Concepts (5)–(9) take care of the structural side of the encoding. Now let
T = {T1, . . . , Tk} be a set of tile types. For each type Ti, there is a corresponding
atomic concept ti. The next concept expresses that at every grid position exactly
one tile concept holds. For i ∈ {0, 1, 2},

i→
⊔

1≤n≤k

tk u
∧

1≤n6=m≤k

¬(tn u tm).(10)

The last two concepts express that the colors of the tiles match. For i ∈ {0, 1, 2}
and 1 ≤ n ≤ k,

i u tn → ∀ R (u→ ∀ R (s(i)→
⊔
{tm | top(Tn) = bottom(Tm)}))(11)

i u tn → ∀ R (r → ∀ R (p(i)→
⊔
{tm | right(Tn) = left(Tm)})).(12)

Let φT be the conjunction of all concepts (5)–(12). It is straightforward to show
that T tiles the grid if and only if the T–box {> v φT} is satisfiable. So we
showed that checking T-Box concistency is undecidable. To obtain the result
in the theorem we use the spypoint technique from [3]. Consider the following
concept

I.∀ R∀ R∃ R me u
∀ R∀ R I.∀ R∃ R me.

(13)

Applying the standard translation, the meaning becomes clearer:

∀yz(Rwy ∧Ryz → Rzw) ∧ ∀xyz(Rwy ∧Ryz ∧Rzx→ Rxz).

Together the conjuncts imply that R is transitive from w: ∀yz(Rwy ∧ Ryz →
Rwz). Thus we can use (13) to forces that every element in the model belongs
to a concept.

Putting everything together we obtain that T tiles the grid if and only if
the concept (13) u ∃ R 0 u ∀ RφT is non empty. This finishes the proof of
Theorem 2.



4 Conclusion

We showed that adding a simple form of self reference to ALC makes it very,
and indeed, too expressive: the language becomes undecidable. By restricting
the concepts to which self reference can be applied we “tamed” the expressive
power and obtained decidability. What is left is more or less the possibility of
expressing that certain loops exist; still a useful extension of ALC. I conjecture
that existing tableau based procedures for ALC can be adapted to include this
limited form of self reference. I even believe that the problem of checking for
concept consistency with empty T-Box can still be done in pspace.
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