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Abstract. The Graph k-Colorability Problem (GCP) is a well known NP-hard 

problem which consist in finding the k minimum number of colors to paint the 
vertices of a graph in such a way that any two vertices joined by an edge have 
always different colors. Many years ago, Simulated Annealing (SA) was used 
for graph coloring task obtaining good results; however SA is not a complete 
algorithm and it not always gets the optimal solution. In this paper GCP is 
transformed into the Satisfiability Problem and then it is solved using a 
algorithm that uses the Threshold Accepting algorithm (a variant of SA) and the 
Davis & Putnam algorithm. The new algorithm is a complete one and so it gets 

better quality that the classical simulated annealing algorithm.  

Keywords: graph coloring, simulated annealing, threshold accepting, davis & 
putnam. 

1   Introduction 

Let G=(V,E) be a graph where V is a set of vertices and E is a set of edges. A k-

coloring of G is a partition of V into k sets {V1, …, Vk}, such that no two vertices in 

the same set are adjacent, i.e., if v, w belong to Vi, 1  i  k, then (v, w) not belong to 
E. The sets {V1, …, Vk} are referred to as colors. The chromatic number, x(G), is 

defined as the minimum k for which G is k-colorable. The Graph k-Colorability 

Problem (GCP) can be stated as follows. Given a graph G, find x(G) and the 

corresponding coloring. GCP is a NP-hard problem [1]. 

GCP is very important because it has many applications; some of them are 

planning and scheduling problems [2][3], timetabling [4], map coloring [5] and many 
others. Since GCP is a NP-hard problem, until now there are not known deterministic 

methods that can solved it in a polynomial time [1]. So non-deterministic algorithms 

have been built to solve it; one of them is Simulated Annealing (SA) [6] that has been 

used on GCP with good results [7][8]. However, SA is not a complete algorithm and 

it not always gets the optimal solution. 
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The approach used in this paper is to transform GCP into a Satisfiability Problem 

(or SAT problem) [12] and then use the algorithm proposed in this paper. We propose 

to use iteratively the Threshold Accepting (TA) algorithm (a variant of Simulated 

Annealing) [9] and then a Davis and Putnam algorithm [10]. 

 

2   Simulated annealing and threshold accepting 

Simulated annealing (SA) [6] is a stochastic computational technique derived from 

statistical mechanics to find near global-minimum-cost solutions to large optimization 

problems. In many instances, finding the global minimum value of an objective 

function with many degrees of freedom subject to conflicting constraints is an NP-

complete problem, since the objective function will tend to have many local 
minimums. A procedure for solving optimization problems of this type should sample 

the search space in such a way that it has a high probability of finding the optimal or a 

near-optimal solution in a reasonable time. Over the past decade, SA has proven to be 

a powerful technique that meets these criteria for a wide range of problems. SA 

exploits an analogy between the way a metal cool and freezes into a minimum energy 

crystalline structure (the annealing process) and the search for a minimum in a more 

general system. SA makes a random search which not only accepts changes that 

increase its cost function f, but also some that decrease it. For this reason, SA uses a 

control parameter c, which by analogy with the original application is known as the 

“System Temperature”, c starts out high and gradually decreases. 

A deteriorating random move from solution Si to Sj is accepted with a probability 
exp-(f(S

j
)-f(S

i
))/c. If this move is not deteriorating (the new solution Sj is better than the 

previous one Si) then it is accepted and a new random move is proposed again. When 

the temperature is high, a bad move can be accepted. As c tends to zero, SA becomes 

more demanding through accept just better moves. The algorithm for minimization is 

shown below: 

 
 
Procedure SIMULATED ANNEALING 

Begin 

   INITIALIZE(Si=initial_solution,         

         c=initial_temperature) 

   k = 0 

   Repeat 

      Repeat 

         Sj = PERTURBATION(Si) 

         If COST(Sj) <= COST(Si) Then   

            Si = Sj 

         Else If exp(-INC_COST/c) > random[0,1) Then 

            Si = Sj 

      Until stochastic equilibrium 

      k = k + 1 

Ivan
108



      c = COOLING(c) 

   Until thermal equilibrium 

End 

 

 

The INITIALIZE function starts the initial solution Si and the initial temperature c. 

The PERTURBATION function makes a random perturbation from Si to generate a 
neighborhood solution Sj. The COST function gets the cost from a solution. The 

INC_COST function gets the difference in cost between Sj and Si. Finally, the 

COOLING function decreases the actual temperature parameter c. 

 

A variant of Simulated Annealing (SA) is the Threshold Accepting method (TA). It 

was designed by Dueck & Scheuer [9] in order to get a more efficient algorithm than 

Simulated Annealing. The principal difference, between SA and TA, is the 

mechanism of accepting the solution randomly chosen from the set of neighbors of 

the current solution. While SA uses a probabilistic model (see equation (1)), TA uses 

a static model: if the difference between the cost values of the chosen solution Sj and 

the current one Si is smaller than a threshold T (or temperature), TA accepts moving 
to the chosen solution. Otherwise it stays at the current solution. Again, the threshold 

parameter T is a positive control parameter which decreases with increasing number 

of iterations and converges to value near to 0. Henceforth, in every iteration some 

solution deterioration are allowed; this deterioration depends on the current threshold 

T (see equation (2)); in this way only improving solutions with almost none 

deterioration solution are accepted at the end of the process. 

 

p(S1, S2) = exp(min{f(S1)-f(S2), 0}/c)        (1) 

 

  COST(Sj) < COST(Si) +T  accept Sj          (2) 

  

     For SAT problems, using a good tune method Threshold Accepting yields better 

results than Simulated Annealing. This could be because TA does not compute the 

probabilistic function (1) and does not expend a lot of time making random decisions. 

The Threshold Accepting algorithm for minimization is the following: 

 

 
Procedure THRESHOLD ACCEPTING 

Begin 

   INITIALIZE (Si = initial_solution, 

                T = initial_threshold or temperature) 

    k = 0 

   Repeat 

         Repeat 

     Sj = PERTURBATION(Si) 

          E = COST(Sj) – COST(Si) 
          If E < T Then 

              Si = Sj 

    Until stochastic equilibrium 
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    k = k + 1 

    T = DECREASE_THRESHOLD(T) 

  Until Thermal Equilibrium 

End 

 

Here, the DECREASE_THRESHOLD function is equivalent to the COOLING 

function in SA and the threshold T is named “temperature” in order to make more 

evident that TA belongs to Simulated Annealing Like Algorithms class (SALA). 

SALA uses Simulated-annealing approach with two main loops: internal loop named 

Metropolis Cycle and external loop called Temperature Cycle. Number of iterations 
in internal and external loop usually are tuned experimentally [6], [9]. However, 

recently an analytical method using a Markov model was proposed to tune TA solving 

SAT problems. 

     External loop executed from a initial temperature Ti until a final temperature Tf and 

the internal loop builds a Markov chain of length Lk which depends on the 

temperature value Tk (k represents the sequence index in Temperature cycle). A strong 

relation exists between Tk and Lk in a way that: 

 

If  Tk  , Lk  0  and if  Tk  0, Lk   .                                    (3) 
 

     Due to TA is applied through a neighborhood structure, V, (PERTURBATION 

function makes a random perturbation from Si to generate a neighborhood solution Sj), 

the maximum number of different solutions that can be rejected from Si is the size of 
its neighborhoods, |VSi|. Then the maximum length of a Markov chain in a TA 

algorithm is the number of samples that must be taken in order to evaluate an 

expected fraction of different solutions from VSi at the final temperature Tf, this is: 

 

Lf = C|VSi| .                        (4) 

 

where C varies from 1  C  4.6 (exploration from 63% until 99%), Lf is the length of 
the Markov chain at Tf. 

     From (3), Lk must be incremented in a similar but inverse way that Tk is 

decremented. Then for the geometric reduction cooling function used by Kirkpartick 

[6] , and Dueck and Scheuer [9], 

 

Tk+1 = Tk.                                                (5) 
 
the incremental Markov chain function must be: 

 

Lk+1 = Lk.                                             (6) 
 

where 

 

 = exp((ln Lf – ln Li) / n).                                   (7) 
 

Here, Li is the length of the Markov chain at Ti, usually Li = 1, and n is the number of 

temperature steps from Ti to Tf through (5). 
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     Now, the maximum and minimum cost increment produced through the 

neighborhood structure are: 

 

ZVmax = Max{COST(Sj) – COST(Si)}.                                    (8) 
 

ZVmin = Min{COST(Sj) – COST(Si)}.                                    (9) 
 

 

for all Sj VSi, and for all Si  S 
     Then Ti and Tf must be calculated as: 

 

Ti = ZVmax .                         (10) 
 

Tf  ZVmin .                          (11) 
 

This way of determining the initial temperature enable TA to accept any possible 
transition at the beginning of the process, since Ti is set as the maximum deterioration 

in cost that may be produced through the neighborhood structure. Similarly, Tf 

enables TA to have control of the climbing probability until the algorithm 

performs a greedy local search. 

3   Davis & Putnam Method 

Satisfiablity Problem [12] (or SAT) is very important in complexity theory.  

 

Let be a propositional formula like formula (12): 

 
F = F1 & F2 & … & Fn              (12) 

 

where every Fi is a disjunction. 

 

Every Fi is a disjunction of propositional formulas such as X1 v X2 v..v Xr. Every 

Fi is a clause and every Xj is a literal. Every literal can take a truth value (0 or false, 1 

or truth). In Satisfiability problem a set of values for the literals should be found, in 

such a way that the evaluation of (12) be true; otherwise if (12) is not true, we say that 

F is unsatisfiable. Besides we say that (12) is in Conjunctive Normal Form or CNF.  

The Davis & Putnam method is widely regarded as one of the best deterministic 

methods for deciding the satisfiability [12] of a set of propositional clauses [10]. It is 
also a complete resolution method. This procedure calls itself after rewriting the input 

formula according to a number of rules for generating a smaller formula with the 

same truth value. The rules used for the Davis & Putnam method are: 

 

Rule 1: if the input formula has no clauses, then it is satisfiable 

Rule 2: if it has a clause with no literals, it is unsatisfiable 
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Rule 3:if it has a clause with exactly one literal, then make the literal true and 

rewrite the formula accordingly 

Rule 4:if some variable appear only positively or negatively, then pick one such 

variable and assign a value to it to make the literal true, and rewrite the 

formula accordingly 

 

If none rule could be applied, one picks up an arbitrary variable as a branching 

point and two new formulas are derived by assigning 0 and 1 to this variable. If one of 
the calls returns with the positive answer the input is satisfiable; otherwise, it is 

unsatisfiable. 

 

The Davis & Putnam algorithm is shown below: 

    
Function DAVIS-PUTNAM(In formula : clauses list) 

Begin 

   REDUCE(formula, vreduce) 

   If formula is empty Then 

      Return vreduce 

   Else If formula has a clause with no literals Then 

      Return fail 

    Else 

      Choose a literal V from formula 

       valuation=DAVIS-PUTNAM(SUBSTITUTION(true,V, 

 formula)) 

       If valuation != fail Then 

         Return ADD(V=true, vreduce, valuation) 

       valuation=DAVIS-PUTNAM(SUBSTITUTION(false,V,  

formula)) 

       If valuation != fail Then 

         Return ADD(V=false, vreduce, valuation) 

      Return fail 

    Endif 

End DAVIS-PUTNAM 

 

 

Function SUBSTITUTION (TF, V, formula) 

Begin 

   For Each one clause C In formula Do 

       If [C contain V and TF=true]or 

          [C contain ~V and TF=false] Then 

          delete C from formula 

       Else If [C contain V and TF=false]or  

                  [C contain ~V and TF=true] Then 

         delete V from C 

      Endif 

   Endfor 

   Return formula 

End_SUBSTITUTION 
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Function REDUCE(In Out: formula, vreduce) 

Begin 

   vreduce = empty 

   While exists clause C In formula with exactly one 

              literal L 

      If L is positive variable V Then 

         formula = SUBSTITUTION(true, V, formula) 

        vreduce = CONS(V=true, vreduce) 

      Else If L is negative variable V Then 

         formula = SUBSTITUTION (false, V , formula) 

        vreduce = CONS(V=false, vreduce) 

      Endif 

   Endwhile 

   Return(formula) 

End_REDUCE 

    
 

The DAVIS-PUTNAM function is the main function and it selects randomly a 

literal to set a true a group of values in order to create unitary clauses. If that true set 

values is not the correct solution the complement set of true values is tried. If the new 

assignment is neither a satisfiable solution, then the formula is unsatisfiable.  

The function SUBTITUTION makes the propagation of one literal over all the 

clauses in formula, deleting clauses where occurs the positive literal L and its value is 

1 (true). Therefore the clauses where ~L occurs can delete that literal. 

The REDUCE function carries out the search of unitary clauses, so that it can be 

possible propagate through the function SUBSTITUTION.  

 

4   Graph Coloring through Accepting and Davis & Putnam 

Informally coloring a graph with k colors or Graph k-Colorability Problem (GCP) is 

stated as follows: Is it possible to assign one of k colors to each node of a graph 

G=(V,E), such that no two adjacent nodes be assigned the same color? If answer is 
positive we say that the graph is k-colorable and k is the chromatic number x(G). It is 

possible to transform Graph k-Colorability Problem (GCP) into Satisfiability problem 

(SAT); that means that for a given graph G=(V,E) and a number k, it is possible to 

derive a CNF formula F such that F is satisfiable only in the case that G is k-

colorable. The formulation of  GCP as SAT is made assigning X Boolean variables as 

follow: 

 

1) Take every node and assign a Boolean variable Xij for every node i and color 

j; the disjunction of all these variables. In this way every node will have 

at least one color. Therefore, in the case of figure 1, we have the clauses: 
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  Node 1: X11 v X12 v X13 v X14 

      Node 2: X21 v X22 v X23 v X24 

      Node 3: X31 v X32 v X33 v X34 

      Node 4: X41 v X42 v X43 v X44 

 

2)  To avoid the fact that a node has more that one color, add the formula Xij ~Xik  

 
3)  In order to be sure that two nodes (Vi,Vj) connected with an arc have different 

colors, add a clause such that if Vi has color k, Vj should not be color with this color. 

This clause is writing as Xik ~Xjk.  

 

4)  In order to know which nodes are connected with an edge, an adjacent matrix A of 

the graph is needed; its elements are: 

 

   1  if i is connected with j 

            Aij = 

   0  otherwise 

 

 
 

 
 

Fig. 1. Graph coloring example 

 
 

 

 

The reduction of a graph to the Conjunctive Normal Form (CNF) generates so 

many clauses even for small graphs. For example, for a full graph with 7 nodes (42 

edges), 308 clauses with 98 literals can be generated. If we use Davis & Putnam 

algorithm to color a graph, we could start coloring with R colors (the graph’s degree 

or from a number given). If it is not possible to color it, then we can increase R and 

try again.  

      Due to find a large chromatic number x(G) is a very hard task for a complete 

method as Davis & Putnam (it demands many resources), we need an incomplete 
method to help in this task. For this reason we have chosen the Threshold Accepting 
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method. TA will search the chromatic number, but as it is known TA not always get 

the optimal solution. By this reason, the number found by TA is send to a Davis & 

Putnam procedure, and this one will get the optimal solution. The complete process is 

shown in the figure 2. 

 

 

Fig.2. Description of the coloring process 

 

Any graph can be colored with Gmax+1 colors, where Gmax represents the 

graph degree. For this reason, TA will try coloring with Gmax colors. If TA gets a 
success, then TA will try to color with Gmax-1, and so on. When TA finishes, it sends 

to the output the minimum k of colors founded. In other case, when TA can not color 

with Gmax colors, then it will send k=Gmax+1 to Davis & Putnam procedure. 
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Fig.3. Binary partitions 

 

Davis & Putnam will attempt to decrease the value of k through binary 

partitions. The first attempt, Davis & Putnam will choose the number of colors given 

by (1+k)/2. If the coloring is right, it will color with (1+(1+k)/2)/2 colors, i.e., the left 

half. Otherwise, the algorithm will color with ((1+k)/2+k)/2 colors, the right half. This 

process continues until Davis & Putnam cannot decrease k. So, the chromatic number 

was found. This situation is shown in figure 2.  

       The figure 3 shows an example where TA found the number nine as its 
better solution and it is send to Davis & Putnam procedure. When Davis & 

Putnam takes the last TA solution, using binary partitions and other rules the 

optimal solution is waited. For example in the case of the figure 3, if Davis & 
Putnam can not color with five colors, it moves to other alternative, trying 

with seven colors. Finally, in the last partition, i.e. (7+9)/2, can not color the 

graph and so the result is a chromatic number equal to nine. 

5   Conclusion 

In this paper we presented an algorithm based on Threshold Accepting and Davis & 
Putnam, to solve the Graph k-Colorability Problem. Because this problem is an NP-

hard problem there is not a known deterministic efficient (polinomial) method. Non-

deterministic methods are in general more efficient but an optimal solution is not 

guarantee. This method is a new alternative that promises to be more efficient that the 
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previous ones. The main contributions of this paper are enumerated below. 1) We 

proposed a way to transform the graph k-colorability problem into a satisfiability 

problem. 2) In order to solve the former problem we proposed a new approach which 

makes use of the threshold accepting and Davis & Putnam algorithms. 3) The 

resulting algorithm is complete and using it we can get better results that the well-

known simulated annealing algorithm. 
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