
A complete algorithm to solve the graph-coloring

problem

Huberto Ayanegui and Alberto Chavez-Aragon

Facultad de Ciencias Basicas, Ingenieria y Tecnologia,

Universidad Autonoma de Tlaxcala,
Calzada de Apizaquito s/n, Apizaco, Tlaxcala, Mexico

{hayanegui, albertochz}@gmail.com

Abstract. The Graph k-Colorability Problem (GCP) is a well known NP-hard

problem which consist in finding the k minimum number of colors to paint the
vertices of a graph in such a way that any two vertices joined by an edge have
always different colors. Many years ago, Simulated Annealing (SA) was used
for graph coloring task obtaining good results; however SA is not a complete
algorithm and it not always gets the optimal solution. In this paper GCP is
transformed into the Satisfiability Problem and then it is solved using a
algorithm that uses the Threshold Accepting algorithm (a variant of SA) and the
Davis & Putnam algorithm. The new algorithm is a complete one and so it gets

better quality that the classical simulated annealing algorithm.

Keywords: graph coloring, simulated annealing, threshold accepting, davis &
putnam.

1 Introduction

Let G=(V,E) be a graph where V is a set of vertices and E is a set of edges. A k-

coloring of G is a partition of V into k sets {V1, …, Vk}, such that no two vertices in

the same set are adjacent, i.e., if v, w belong to Vi, 1 i k, then (v, w) not belong to
E. The sets {V1, …, Vk} are referred to as colors. The chromatic number, x(G), is

defined as the minimum k for which G is k-colorable. The Graph k-Colorability

Problem (GCP) can be stated as follows. Given a graph G, find x(G) and the

corresponding coloring. GCP is a NP-hard problem [1].

GCP is very important because it has many applications; some of them are

planning and scheduling problems [2][3], timetabling [4], map coloring [5] and many
others. Since GCP is a NP-hard problem, until now there are not known deterministic

methods that can solved it in a polynomial time [1]. So non-deterministic algorithms

have been built to solve it; one of them is Simulated Annealing (SA) [6] that has been

used on GCP with good results [7][8]. However, SA is not a complete algorithm and

it not always gets the optimal solution.

Ivan
107

The approach used in this paper is to transform GCP into a Satisfiability Problem

(or SAT problem) [12] and then use the algorithm proposed in this paper. We propose

to use iteratively the Threshold Accepting (TA) algorithm (a variant of Simulated

Annealing) [9] and then a Davis and Putnam algorithm [10].

2 Simulated annealing and threshold accepting

Simulated annealing (SA) [6] is a stochastic computational technique derived from

statistical mechanics to find near global-minimum-cost solutions to large optimization

problems. In many instances, finding the global minimum value of an objective

function with many degrees of freedom subject to conflicting constraints is an NP-

complete problem, since the objective function will tend to have many local
minimums. A procedure for solving optimization problems of this type should sample

the search space in such a way that it has a high probability of finding the optimal or a

near-optimal solution in a reasonable time. Over the past decade, SA has proven to be

a powerful technique that meets these criteria for a wide range of problems. SA

exploits an analogy between the way a metal cool and freezes into a minimum energy

crystalline structure (the annealing process) and the search for a minimum in a more

general system. SA makes a random search which not only accepts changes that

increase its cost function f, but also some that decrease it. For this reason, SA uses a

control parameter c, which by analogy with the original application is known as the

“System Temperature”, c starts out high and gradually decreases.

A deteriorating random move from solution Si to Sj is accepted with a probability
exp-(f(S

j
)-f(S

i
))/c. If this move is not deteriorating (the new solution Sj is better than the

previous one Si) then it is accepted and a new random move is proposed again. When

the temperature is high, a bad move can be accepted. As c tends to zero, SA becomes

more demanding through accept just better moves. The algorithm for minimization is

shown below:

Procedure SIMULATED ANNEALING

Begin

 INITIALIZE(Si=initial_solution,

 c=initial_temperature)

 k = 0

 Repeat

 Repeat

 Sj = PERTURBATION(Si)

 If COST(Sj) <= COST(Si) Then

 Si = Sj

 Else If exp(-INC_COST/c) > random[0,1) Then

 Si = Sj

 Until stochastic equilibrium

 k = k + 1

Ivan
108

 c = COOLING(c)

 Until thermal equilibrium

End

The INITIALIZE function starts the initial solution Si and the initial temperature c.

The PERTURBATION function makes a random perturbation from Si to generate a
neighborhood solution Sj. The COST function gets the cost from a solution. The

INC_COST function gets the difference in cost between Sj and Si. Finally, the

COOLING function decreases the actual temperature parameter c.

A variant of Simulated Annealing (SA) is the Threshold Accepting method (TA). It

was designed by Dueck & Scheuer [9] in order to get a more efficient algorithm than

Simulated Annealing. The principal difference, between SA and TA, is the

mechanism of accepting the solution randomly chosen from the set of neighbors of

the current solution. While SA uses a probabilistic model (see equation (1)), TA uses

a static model: if the difference between the cost values of the chosen solution Sj and

the current one Si is smaller than a threshold T (or temperature), TA accepts moving
to the chosen solution. Otherwise it stays at the current solution. Again, the threshold

parameter T is a positive control parameter which decreases with increasing number

of iterations and converges to value near to 0. Henceforth, in every iteration some

solution deterioration are allowed; this deterioration depends on the current threshold

T (see equation (2)); in this way only improving solutions with almost none

deterioration solution are accepted at the end of the process.

p(S1, S2) = exp(min{f(S1)-f(S2), 0}/c) (1)

 COST(Sj) < COST(Si) +T accept Sj (2)

 For SAT problems, using a good tune method Threshold Accepting yields better

results than Simulated Annealing. This could be because TA does not compute the

probabilistic function (1) and does not expend a lot of time making random decisions.

The Threshold Accepting algorithm for minimization is the following:

Procedure THRESHOLD ACCEPTING

Begin

 INITIALIZE (Si = initial_solution,

 T = initial_threshold or temperature)

 k = 0

 Repeat

 Repeat

 Sj = PERTURBATION(Si)

 E = COST(Sj) – COST(Si)
 If E < T Then

 Si = Sj

 Until stochastic equilibrium

Ivan
109

 k = k + 1

 T = DECREASE_THRESHOLD(T)

 Until Thermal Equilibrium

End

Here, the DECREASE_THRESHOLD function is equivalent to the COOLING

function in SA and the threshold T is named “temperature” in order to make more

evident that TA belongs to Simulated Annealing Like Algorithms class (SALA).

SALA uses Simulated-annealing approach with two main loops: internal loop named

Metropolis Cycle and external loop called Temperature Cycle. Number of iterations
in internal and external loop usually are tuned experimentally [6], [9]. However,

recently an analytical method using a Markov model was proposed to tune TA solving

SAT problems.

 External loop executed from a initial temperature Ti until a final temperature Tf and

the internal loop builds a Markov chain of length Lk which depends on the

temperature value Tk (k represents the sequence index in Temperature cycle). A strong

relation exists between Tk and Lk in a way that:

If Tk , Lk 0 and if Tk 0, Lk . (3)

 Due to TA is applied through a neighborhood structure, V, (PERTURBATION

function makes a random perturbation from Si to generate a neighborhood solution Sj),

the maximum number of different solutions that can be rejected from Si is the size of
its neighborhoods, |VSi|. Then the maximum length of a Markov chain in a TA

algorithm is the number of samples that must be taken in order to evaluate an

expected fraction of different solutions from VSi at the final temperature Tf, this is:

Lf = C|VSi| . (4)

where C varies from 1 C 4.6 (exploration from 63% until 99%), Lf is the length of
the Markov chain at Tf.

 From (3), Lk must be incremented in a similar but inverse way that Tk is

decremented. Then for the geometric reduction cooling function used by Kirkpartick

[6] , and Dueck and Scheuer [9],

Tk+1 = Tk. (5)

the incremental Markov chain function must be:

Lk+1 = Lk. (6)

where

 = exp((ln Lf – ln Li) / n). (7)

Here, Li is the length of the Markov chain at Ti, usually Li = 1, and n is the number of

temperature steps from Ti to Tf through (5).

Ivan
110

 Now, the maximum and minimum cost increment produced through the

neighborhood structure are:

ZVmax = Max{COST(Sj) – COST(Si)}. (8)

ZVmin = Min{COST(Sj) – COST(Si)}. (9)

for all Sj VSi, and for all Si S
 Then Ti and Tf must be calculated as:

Ti = ZVmax . (10)

Tf ZVmin . (11)

This way of determining the initial temperature enable TA to accept any possible
transition at the beginning of the process, since Ti is set as the maximum deterioration

in cost that may be produced through the neighborhood structure. Similarly, Tf

enables TA to have control of the climbing probability until the algorithm

performs a greedy local search.

3 Davis & Putnam Method

Satisfiablity Problem [12] (or SAT) is very important in complexity theory.

Let be a propositional formula like formula (12):

F = F1 & F2 & … & Fn (12)

where every Fi is a disjunction.

Every Fi is a disjunction of propositional formulas such as X1 v X2 v..v Xr. Every

Fi is a clause and every Xj is a literal. Every literal can take a truth value (0 or false, 1

or truth). In Satisfiability problem a set of values for the literals should be found, in

such a way that the evaluation of (12) be true; otherwise if (12) is not true, we say that

F is unsatisfiable. Besides we say that (12) is in Conjunctive Normal Form or CNF.

The Davis & Putnam method is widely regarded as one of the best deterministic

methods for deciding the satisfiability [12] of a set of propositional clauses [10]. It is
also a complete resolution method. This procedure calls itself after rewriting the input

formula according to a number of rules for generating a smaller formula with the

same truth value. The rules used for the Davis & Putnam method are:

Rule 1: if the input formula has no clauses, then it is satisfiable

Rule 2: if it has a clause with no literals, it is unsatisfiable

Ivan
111

Rule 3:if it has a clause with exactly one literal, then make the literal true and

rewrite the formula accordingly

Rule 4:if some variable appear only positively or negatively, then pick one such

variable and assign a value to it to make the literal true, and rewrite the

formula accordingly

If none rule could be applied, one picks up an arbitrary variable as a branching

point and two new formulas are derived by assigning 0 and 1 to this variable. If one of
the calls returns with the positive answer the input is satisfiable; otherwise, it is

unsatisfiable.

The Davis & Putnam algorithm is shown below:

Function DAVIS-PUTNAM(In formula : clauses list)

Begin

 REDUCE(formula, vreduce)

 If formula is empty Then

 Return vreduce

 Else If formula has a clause with no literals Then

 Return fail

 Else

 Choose a literal V from formula

 valuation=DAVIS-PUTNAM(SUBSTITUTION(true,V,

 formula))

 If valuation != fail Then

 Return ADD(V=true, vreduce, valuation)

 valuation=DAVIS-PUTNAM(SUBSTITUTION(false,V,

formula))

 If valuation != fail Then

 Return ADD(V=false, vreduce, valuation)

 Return fail

 Endif

End DAVIS-PUTNAM

Function SUBSTITUTION (TF, V, formula)

Begin

 For Each one clause C In formula Do

 If [C contain V and TF=true]or

 [C contain ~V and TF=false] Then

 delete C from formula

 Else If [C contain V and TF=false]or

 [C contain ~V and TF=true] Then

 delete V from C

 Endif

 Endfor

 Return formula

End_SUBSTITUTION

Ivan
112

Function REDUCE(In Out: formula, vreduce)

Begin

 vreduce = empty

 While exists clause C In formula with exactly one

 literal L

 If L is positive variable V Then

 formula = SUBSTITUTION(true, V, formula)

 vreduce = CONS(V=true, vreduce)

 Else If L is negative variable V Then

 formula = SUBSTITUTION (false, V , formula)

 vreduce = CONS(V=false, vreduce)

 Endif

 Endwhile

 Return(formula)

End_REDUCE

The DAVIS-PUTNAM function is the main function and it selects randomly a

literal to set a true a group of values in order to create unitary clauses. If that true set

values is not the correct solution the complement set of true values is tried. If the new

assignment is neither a satisfiable solution, then the formula is unsatisfiable.

The function SUBTITUTION makes the propagation of one literal over all the

clauses in formula, deleting clauses where occurs the positive literal L and its value is

1 (true). Therefore the clauses where ~L occurs can delete that literal.

The REDUCE function carries out the search of unitary clauses, so that it can be

possible propagate through the function SUBSTITUTION.

4 Graph Coloring through Accepting and Davis & Putnam

Informally coloring a graph with k colors or Graph k-Colorability Problem (GCP) is

stated as follows: Is it possible to assign one of k colors to each node of a graph

G=(V,E), such that no two adjacent nodes be assigned the same color? If answer is
positive we say that the graph is k-colorable and k is the chromatic number x(G). It is

possible to transform Graph k-Colorability Problem (GCP) into Satisfiability problem

(SAT); that means that for a given graph G=(V,E) and a number k, it is possible to

derive a CNF formula F such that F is satisfiable only in the case that G is k-

colorable. The formulation of GCP as SAT is made assigning X Boolean variables as

follow:

1) Take every node and assign a Boolean variable Xij for every node i and color

j; the disjunction of all these variables. In this way every node will have

at least one color. Therefore, in the case of figure 1, we have the clauses:

Ivan
113

 Node 1: X11 v X12 v X13 v X14

 Node 2: X21 v X22 v X23 v X24

 Node 3: X31 v X32 v X33 v X34

 Node 4: X41 v X42 v X43 v X44

2) To avoid the fact that a node has more that one color, add the formula Xij ~Xik

3) In order to be sure that two nodes (Vi,Vj) connected with an arc have different

colors, add a clause such that if Vi has color k, Vj should not be color with this color.

This clause is writing as Xik ~Xjk.

4) In order to know which nodes are connected with an edge, an adjacent matrix A of

the graph is needed; its elements are:

 1 if i is connected with j

 Aij =

 0 otherwise

Fig. 1. Graph coloring example

The reduction of a graph to the Conjunctive Normal Form (CNF) generates so

many clauses even for small graphs. For example, for a full graph with 7 nodes (42

edges), 308 clauses with 98 literals can be generated. If we use Davis & Putnam

algorithm to color a graph, we could start coloring with R colors (the graph’s degree

or from a number given). If it is not possible to color it, then we can increase R and

try again.

 Due to find a large chromatic number x(G) is a very hard task for a complete

method as Davis & Putnam (it demands many resources), we need an incomplete
method to help in this task. For this reason we have chosen the Threshold Accepting

Ivan
114

method. TA will search the chromatic number, but as it is known TA not always get

the optimal solution. By this reason, the number found by TA is send to a Davis &

Putnam procedure, and this one will get the optimal solution. The complete process is

shown in the figure 2.

Fig.2. Description of the coloring process

Any graph can be colored with Gmax+1 colors, where Gmax represents the

graph degree. For this reason, TA will try coloring with Gmax colors. If TA gets a
success, then TA will try to color with Gmax-1, and so on. When TA finishes, it sends

to the output the minimum k of colors founded. In other case, when TA can not color

with Gmax colors, then it will send k=Gmax+1 to Davis & Putnam procedure.

Ivan
115

Fig.3. Binary partitions

Davis & Putnam will attempt to decrease the value of k through binary

partitions. The first attempt, Davis & Putnam will choose the number of colors given

by (1+k)/2. If the coloring is right, it will color with (1+(1+k)/2)/2 colors, i.e., the left

half. Otherwise, the algorithm will color with ((1+k)/2+k)/2 colors, the right half. This

process continues until Davis & Putnam cannot decrease k. So, the chromatic number

was found. This situation is shown in figure 2.

 The figure 3 shows an example where TA found the number nine as its
better solution and it is send to Davis & Putnam procedure. When Davis &

Putnam takes the last TA solution, using binary partitions and other rules the

optimal solution is waited. For example in the case of the figure 3, if Davis &
Putnam can not color with five colors, it moves to other alternative, trying

with seven colors. Finally, in the last partition, i.e. (7+9)/2, can not color the

graph and so the result is a chromatic number equal to nine.

5 Conclusion

In this paper we presented an algorithm based on Threshold Accepting and Davis &
Putnam, to solve the Graph k-Colorability Problem. Because this problem is an NP-

hard problem there is not a known deterministic efficient (polinomial) method. Non-

deterministic methods are in general more efficient but an optimal solution is not

guarantee. This method is a new alternative that promises to be more efficient that the

Ivan
116

previous ones. The main contributions of this paper are enumerated below. 1) We

proposed a way to transform the graph k-colorability problem into a satisfiability

problem. 2) In order to solve the former problem we proposed a new approach which

makes use of the threshold accepting and Davis & Putnam algorithms. 3) The

resulting algorithm is complete and using it we can get better results that the well-

known simulated annealing algorithm.

References

1. Garey, M. R. and Johnson, D. S., Computers and Interactability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

2. Stecke, K., Design Planning, Scheduling and Control Problems of Flexible Manufacturing,
Annals of Operations Research, Vol. 3, 1985, pp. 3-12.

3. Leighton, F. T., A Graph Coloring Algorithm for Large Scheduling Problems, J. Res. Nat.
Bur. Standard, Vol. 84, No. 6, 1979, pp. 489-506.

4. Wood, D. C., A Technique for Coloring a Graph Applicable to Large Scale Timetable
Problems, Computer Journal, Vol. 12, 1969, pp. 317-322.

5. Brelez, D., New Methods to Color Vertices of a Graph, Comm. ACM, Vol. 22, 1979, pp.
251-256.

6. Kirkpatrick, S, Gelatt, C.D., Vecchi, M.P., Optimization by Simulated Annealing, Science,
No. 220, 1983, pp. 671-680.

7. Chams, M., A. Hertz and D. de Werra, Some Experiments with Simulated Annealing for
Coloring Graphs, European Journal of Operational Research, Vol. 32, 1987, pp. 260-266.

8. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C., Optimization by Simulated
Annealing: An Experimental Evaluation; Part II: Graph Coloring and Number Partitioning,

Oper. Res., No. 39, 1991, pp. 378-406.
9. Dueck Gunter, Scheuer Tobias, Threshold Accepting: A General Purpose Optimization

Algorithm Appearing Superior to Simulated Annealing. Journal of Computational Physics,
No. 90, 1990, pp.161-175.

10. M. Davis and H. Putnam, A Computing Procedure for Quantification Theory. Journal of the
Association for Computing Machinery, Vol. 7, No. 1, 1960, pp. 201-215.

12. Science and Technology Center in Discrete Mathematics and Theoretical Computer
Science, “Satisfiability Problem: Theory and Applications”, Dimacs Series in Discrete

Mathematics and Theoretical Computer Science, Editors: Jun Gu, Panos Pardalos, Ding-
Zhu.

Ivan
117

