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Abstract. Assuming a Knowledge Base Σ expressed by a two Conjunc-
tive Form (2-CF), we show that if the constrained graph of Σ is acyclic or
if its cyles are independent one to the other, then it is possible to count
efficiently the number of models of Σ. We determine a set of recurrence
equations which allow us to design an incremental technique for counting
models by a simple traversal of the constrained graph.
One of the advantages of such technique, furthermore that it has linear
time complexity, is that applying it backwards allows us to determine the
exact number of the logical values (the charge) that each variable has
in the set of models. The charge of each variable allow us to design an
efficient scheme of reasoning, even in the case where the formula-based
representation does not allow to do it. Indeed, we can compute the degree
of belief for new information (a literal or a binary clause) efficiently.
Keywords: #SAT Problem, Automated Reasoning, Degree of Belief.

1. Introduction

The Artificial Intelligence goal of providing a logic model of human agent capa-
bility of reasoning, in the presence of incomplete and changing information, has
proven to be very difficult to achieve. For example, to decide whether a KB Σ
implies a sentence α (denoted as K |= α) is a co-NP-Hard problem, even in the
propositional case [8]. Many other forms of reasoning which have been devel-
oped to avoid, at least partly, these computational difficulties, have also shown
to be hard to compute.

As it has been pointed out in [2, 10, 12], an important problem to explore is
the computational complexity of the reasoning methods. Although each method
is clearly intractable in the general case, a precise determination of the complex-
ity is left as an open issue. Furthermore, it is not clear under which restrictions
such methods would become tractable.

In our case, we perform reasoning as the computation of the proportion of
the number of models of Σ which remains after a new formula F is processed,
for processing here we mean to compute the degree of belief, updating or doing
belief revision.

In order to clarify a frontier between efficient and exponential-time reasoning,
we start working with a Knowledge Base (KB) Σ in two Conjunctive Form (2-
CF), and we consider queries also in 2-CF. We want to compute the degree of
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belief that an agent has in a new piece of information F based on the conditional
probability of F with respect to Σ, denoted as PF |Σ , and calculated as the
fraction of models of Σ that satisfy F .

One important goal of research is to recognize the class of formulas for Σ
and F where the degree of belief PF |Σ can be computed efficiently, and for this,
the development of smart algorithms for solving the #SAT problem is key.

#SAT consists of counting the number of models of logical formulas. #SAT is
a classical #P-complete problem, and an interesting area of research has been the
identification of restricted cases for which #SAT can be solved efficiently. #SAT
remains #P-complete even if we consider only monotone or Horn propositional
formulas [12].

We focus toward the identification of structures on the constrained graph of
formulas in 2-CF, such that these structures help us to compute #SAT efficiently.
Furthermore our interest is to design procedures which count the number of
models of a given formula in an incremental way, at the same time that we are
traversing by the constrained graph of the formula.

Given our logical structure representation of a 2-CF, we propose procedures
for determining the relative values for every element of the KB, which is an
essential problem for performing reasoning in efficient way, for example in the
area of update-belief revision, where is essential to know how to incorporate
dynamically a single or a sequence of changes into an initial Knowledge Base.

2. Preliminaries

Let X = {x1, . . . , xn} be a set of n boolean variables. A literal is either a variable
xi or a negated variable xi. As usual, for each xi ∈ X , x0

i = xi and x1
i = xi.

A clause is a disjunction of different literals (sometimes, we also consider a
clause as a set of literals). For k ∈ IN , a k-clause is a clause consisting of exactly
k literals and, a (≤ k)-clause is a clause with at most k literals. A variable x ∈ X
appears in a clause c if either x or x is an element of c.

A conjunctive form (CF) F is a conjunction of clauses (we also consider a CF
as a set of clauses). We say that F is a monotone CF if all of its variables appear
in unnegated form. A k-CF is a CF containing only k-clauses and, (≤ k)-CF
denotes a CF containing clauses with at most k literals.

We use υ(X) to express the variables involved in the object X , where X
could be a literal, a clause or a CF. For instance, for the clause c = {x1, x2},
υ(c) = {x1, x2}. Lit(F ) is the set of literals appearing in F , i.e. if X = υ(F ),
then Lit(F ) = X ∪X = {x1, x1, ..., xn, xn}. We denote {1, 2, ..., n} by [[n]].

An assignment s for F is a boolean function s : υ(F ) → {0, 1}. An assignment
can be also considered as a set of non complementary pairs of literals. If l ∈ s,
being s an assignment, then s turns l true and l false. Considering a clause c
and assignment s as a set of literals, c is satisfied by s if and only if c ∩ s �= ∅,
and if for all l ∈ c, l ∈ s then s falsifies c.

If F1 ⊂ F is a formula consisting of some clauses from F , and υ(F1) ⊂ υ(F ),
an assignment over υ(F1) is a partial assignment over υ(F ). Assuming n =|
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υ(F ) | and n1 =| υ(F1) |, any assignment over υ(F1) has 2n−n1 extensions as
assignments over υ(F ).

Let F be a CF, F is satisfied by an assignment s if each clause in F is
satisfied by s. F is contradicted by s if any clause in F is contradicted by s. A
model of F is an assignment for υ(F ) that satisfies F . The SAT problem consists
of determining if F has a model. The #SAT problem consists of counting the
number of models of F defined over υ(F ). #2-SAT denotes #SAT for formulas
in 2-CF. We also denote #SAT(F ) by µυ(F )(F ) or just µ(F ) when υ(F ) is clear
from the context.

3. Logical Structure for Representing a 2-CF

Let Σ be a 2-CF, the constrained graph of Σ is the undirected graph GΣ =
(V (Σ), E(Σ)), with V (Σ) = υ(Σ) and E(Σ) = {{υ(x), υ(y)} : {x, y} ∈ Σ},
that is, the vertices of GΣ are the variables of Σ, and for each clause {x, y} in
Σ there is an edge {υ(x), υ(y)} ∈ E(Σ).

In order to compute #SAT (Σ), first we should determine the set of connected
components of GΣ and this can be done in linear time. Then, #SAT (Σ) is
translated to compute #SAT (G) for each connected component G of GΣ [2, 3,
12]. From now on, when we mention a 2-CF Σ, we assume that Σ is a connected
component graph. We say that a 2-CF Σ is a path, a cycle, a tree or a grid
if its corresponding constrained graph GΣ is a path, a cycle, a tree, or a grid,
respectively.

Each edge has associated an ordered pair (s1, s2) of signs, assigned as labels.
For example, the signs s1 and s2 for the clause {x ∨ y} are related to the signs
of the literals x and y respectively, then s1 = − and s2 = + and the edge is
denoted as: x− +y which is equivalent to the edge y+ −x.

A graph with labelled edges on a set S is a pair (G,ψ), where G = (V,E) is
a graph, and ψ is a function with domain E and range S. ψ(e) is the label of
the edge e ∈ E. Let S = {+,−} be a set of signs. Let G = (V,E, ψ) be a signed
graph with labelled edges on S × S. Let x and y be nodes in V . If e = {x, y} is
an edge and ψ(e) = (s, s′), then s (s′) is called the adjacent sign of x (y).

Let GΣ = (V,E, {+,−}) be a signed connected graph of an input formula Σ
in 2-CF. Let vr be a node of GΣ chosen to start a depth-first search. We obtain
a spanning tree TG with vr as the root node and a set of fundamental cycles
C = {C1, C2, ..., Ck}, where each back edge ci ∈ E marks the beginning and the
end of a fundamental cycle.

Given any pair of fundamental cycles Ci and Cj of C, i �= j, if Ci and Cj share
edges, we call them intersecting cycles; otherwise, they are called independent
cycles. Let AΣ be the depth-first search graph of GΣ formed by the spanning
tree TG and the set of fundamental cycles C.

We translate AG to a Directed Acyclic Graph (DAG), denoted by DΣ , as-
signing an orientation to each edge {u, v} in AΣ by directing: u → v if v is the
parent node of u in TG, see figure 2. We apply a topological sorting procedure
on DΣ, obtaining an ordered number ′o′ associated with each node in DΣ such
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that o(u) < o(v) whenever u → v. This order number indicates the order for
processing the nodes in DΣ when we compute the value #SAT(Σ) in the next
subsection.
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Fig. 1. A depth-first graph AΣ
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Fig. 2. The DAG DΣ associated with the previous constrained graph

3.1. Linear procedure for Counting the Number of Models for a
2-CF

In previous papers, we have presented a set of recurrence equations to compute
#SAT(Σ) by traversing DΣ [3, 4, 7]. We recall now these recurrence relations to
be applied according to the topological order of its nodes.

For each variable x ∈ υ(Σ) a pair (αx, βx) called the initial charge, is used
for indicating the number of logical values: ’true’ and ’false’ respectively, that x
initially took when the value #SAT(Σ) is being computed.

When we count models over a constrained graph DΣ , we use computing
threads. A computing thread is a sequence of pairs (αi, βi), i = 1, . . . ,m used
for computing the number of models over a path of m nodes. A main thread,
denoted by Lp, is associated with the spanning tree of DΣ. This thread is al-
ways active until the process of counting finishes completely. We sketch now the
general procedure for computing #SAT(Σ).

Ivan
121



Procedure Count Models(Σ)
Input: DΣ: a constrained graph of a 2-CF Σ
Output: The charge (αy, βy) associated with the root node y, where #SAT(Σ) =
αr + βr

Each node and edge of DΣ is visited according with the topological order,
and at the same time a pair (αx, βx) is computed for each node x ∈ DΣ, in the
following way:

1. (αx, βx) = (1, 1) if x is a leaf node in DΣ .
2. When there is an unique edge between two nodes, e.g. x s1 s2→ y is an edge

with signs s1 and s2 then according with the signs (s1, s2) the pair (αy, βy)
is computed from (αx, βx) (in parallel way it is done for all computing active
thread), as:

(αy, βy) =

⎧⎪⎪⎨
⎪⎪⎩

(βx ,αx + βx) if (s1, s2) = (−,−)
(αx + βx,βx ) if (s1, s2) = (−,+)
(αx ,αx + βx) if (s1, s2) = (+,−)
(αx + βx,αx ) if (s1, s2) = (+,+)

(1)

We denote with ′ →′ the application of anyone of the four previous rules in
the recurrence (1).

3. If v is a parent node with a list of child nodes associated, i.e., u1, u2, ..., uk

are the child nodes of v, as we have already visited all child nodes, then
each pair (αui , βui) i = 1, ..., k has been determined based on recurrence (1).
And then, let αv =

∏k
j=1 αuj and βv =

∏k
j=1 βuj . We denote with 
 the

application of this multiplicative rule.
4. If the node y begins of a cycle C then a new computing thread LC is created.

The initial pair associated to the computing thread LC is (0, βy) if s1 = +,
or (αy , 0) if s1 = −, where (αy , βy) is the current pair for the node y in the
thread Lp and s1 is the sign of x in the back edge of the cycle C.

5. If y ends a cycle C, then the current pair (αyc , βyc) in the the extra-computing
thread LC is substracted to the current pair (αy, βy) of the main thread Lp,
according with the sign s2 in the back edge of the cycle C, in the following
way: if s2 = + then (αy , βy) = (αy , βy − βyc) or (αy, βy) = (αy − αyc , βy)
if s2 = −. We denote by ’ � ’ the binary operation between the two active
threads for computing the initial charge of the node which closes a cycle.

6. If y is the root node of DΣ then returns its computed charge: (αy, βy).

To illustrate this procedure, we apply it on the DAG of figure 2, assuming
a monotone 2-CF, that is, all variable appear in nonnegative way and then the
last rule of recurrence (1) is always applied, denoted by an arrow with a dotted
line in figure 3, while the operator ’ � ’ is shown by a line like an substracted
operator. For this example, the topological order is: x3 → x6;x9 → x6;x6 →
x4;x9 → x4;x4 → x5;x5 → x2;x4 → x2;x7 → x8;x8 → x2;x2 → x1;x7 → x1 .
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(46,24)

Fig. 3. Computing the initial charge of the variables

In [4], we have extended the previous algorithm in order to process, keeping
the polynomial time complexity, graphs with embedded cycles. Although for our
purposes, these classes of graphs are not considered in this article.

3.2. Computing the Charges of a 2-CF

In this section, we present a novel method for computing the charge (αi, βi), i =
1, . . . , n for all variables xi, i = 1, . . . , n of a 2-CF Σ. Once the previous algo-
rithm has been applied for computing #SAT(Σ) and the inital charges has been
computed for all variables in Σ. In fact, the initial charge (αn, βn) for xn is also
its final charge, that is, #SAT(Σ) = αn + βn.

Let A1, . . . , An be the sequence of initial charges obtained during the appli-
cation of the procedure Count Models. Given such sequence, we build a new se-
quence of pairs which represent the final charges (or just the charges) Bn, . . . , B1

where Bi is the charge for the variable xi ∈ υ(Σ), which is computed as:

Bn = An

Bn−i = balance(An−i, Bn−i+1), i = 1, ..., n− 1 (2)

where balance(A,B) is a binary operator between two pairs, e.g if the edge
x

s1 s2→ y exists, then A = (a, a′) is the initial charge of the variable x and B is
the charge of the variable y, then balance produces a new pair (αx, βx) which is
the final charge for x, that is, #SAT(Σ) = αx + βx.

Let P1 = a
a+a′ and P0 = a′

a+a′ be the proportion of the number of 1’s and
0’s in the initial charge of the variable x. Let µy = αy + βy. Then the charge
(αx, βx) is computed, as:

αx = αy · P1 + βy; βx = µy − αx if (s1, s2) = (+,+)
βx = βy · P0 + αy ; αx = µy − βx if (s1, s2) = (−,−)
βx = βy · P0 + αy ; αx = µy − βx if (s1, s2) = (+,−)
αx = αy · P1 + βy; βx = µy − αx if (s1, s2) = (−,+)

(3)

Note that the essence of the recurrence balance consists in applying the in-
verse of the operation used at each step of the computation of #SAT(Σ), and
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following the inverse order used in the construction of the sequence A1, . . . , An.
Thus, it follows an inverse topological order on the nodes of DΣ .

Futhermore, in the case of the bifurcation from a father node to a list of child
nodes (operation 
), the same equation remains valid since each branch has its
respective pair of signs. The unique new operation to consider is the case where
a cycle was processed, that is, when a back edge is found when computing the
charges.

Notice that the computation of the charges of a 2-CF Σ has the same com-
plexity order that the one used for computing #SAT(Σ). Thus, if the constrained
graph of Σ does not contain intersecting cycles, then we compute all the charges
in Σ in polynomial time.

4. Propositional Reasoning Based on the Number of
Models

An important result is that we can apply the inverse action realized in each step
of the procedure Count Models in order to propagate the final charge of the last
visited variable to all other variables. Then, our polynomial procedures permit
us also to know the number of models for the KB Σ and its inverse procedures
allow us to propagate that final charge (the number of 1’s and 0’s into the set
of models) associated with all variable in the KB.

Knowing the charge of each variable is potentially useful in the area of propo-
sitional reasoning. For example in the field of model-based diagnosis, where is
essential to determine all single assumptions (literals or clauses) that resolve an
inconsistency, the evaluation order and the charges in Σ are useful for determin-
ing the best order in which the test of flaws in the digital circuits for consistency
checking can be done [11].

Other line of applications is in belief revision and updating knowledge bases.
For example, consider an initial KB containing the clauses: {x} and {x, y}. One
obvious implication of those clauses is the fact {y}. If a new information {y}
has been observed by an intelligent agent, contradicting the assumption that y
is true, so we will have to give up some (or all) of our previous beliefs, or it will
lead to an inconsistent KB.

Even in the previous trivial example, it is not clear which approach should
be taken. Usually, extra-logical factors should be taken into account, like the
source and reliability of each piece of information or some kind of bias towards
or against updates. For example, some methods for revision are based on some
implicit bias, namely an a priori probability that each element of the domain
theory requires revision [9].

Contrary to assign the probabilities to each element of the theory Σ by an
expert or simply chosen by default, the charges of the variables provide a degree
of their reliability inΣ. Furthermore, the dynamic updating of our representation
of the KB gives the additional advantages that the relative values of the element
of Σ can be adjusted automatically, in response to newly-obtained information.
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For example, if a 2-CF Σ codify the KB of an intelligent agent which has to
take decision according with a set of options Q = {C1, . . . , Ck}. In order to take
the best decision, the intelligent agent has to recognize which option maintain the
maximum of consistency with his KB. In other words, it is essential to compute
the degree of belief that the agent has over each option and to select the option
assuring the maximum degree of belief.

In the rest of this paper, we present only one of the applications in which
to built logical structure and the charges of a 2-CF are useful. We adresse here
the problem of computing the degree of belief of an intelligent agent on new
information.

4.1. Computing the Degree of Belief of an Intelligent Agent

We assume an equal degree of belief to all ’basic situations’ that appear in a
knowledge base Σ of an intelligent agent, then we can compute the probability
that Σ can be satisfied. If Σ involves n variables, the probability to satisfy Σ,
is: PΣ = Prob(Σ ≡ �) = #SAT (Σ)

2n , where � stands for the logical value true
and Prob is used to denote the probability [12].

We are interested in the complexity of the computation of the degree of belief
of a query (propositional formula) F with respect to Σ, which is considered as
the fraction of models of Σ that are consistent with F , that is, the conditional
probability of F with respect to Σ, denoted by PF |Σ and computed as: PF |Σ =
Prob((Σ ∧ F ) ≡ �|Σ ≡ �) = #SAT (Σ∧F )

#SAT (Σ) .
We start assuming that the KB Σ is a satisfiable 2-CF, then #SAT(Σ) > 0

and PF |Σ = #SAT (Σ∧F )
#SAT (Σ) is well-defined. One important goal of research is to

recognize the class of formulas for Σ and F where the computation of PF |Σ can
be done efficiently, and for this, we need an appropriate representation of the
knowledge base, as well as smart algorithms for solving #SAT.

Let Σ be a KB in 2-CF and let F be a query which is a unitary or binary
clause, We assume that Σ has been processed by the procedures of the previous
section and the charges of all variables in Σ have been stored in the array
vars pairs.

Suppose that an agent A has to take an action according to a set of options
Q = {l1, . . . , lk}. The classic deduction method suggests to choose the literals
l ∈ Q which are consistent with Σ, that is, checking the satisfiability of (Σ ∪ l)
for each l ∈ Q, recognizing equal value to all literals satisfiable with Σ.

But Pl|Σ provides more information than knowing that (Σ ∪ l) is satisfiable.
Pl|Σ gives the proportion of the original models of Σ that remains models for
(Σ ∪ l). This class of information is crucial when the agent A has to take an
action depending on the strategic value of each alternative l ∈ Q. Indeed, A can
decide its action according to the option l ∈ Q which maximizes its degree of
belief. Then, we show now how to compute Pl|Σ and for this, we have two cases:

1. l ∈ Lit(Σ): As every variable xi ∈ υ(Σ) has associated its respective charge
(αi, βi), we use v(l) as a pointer for the array vars pairs in order to recover
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(αυ(l), βυ(l)). Then, PF |Σ = βυ(l)

µ(Σ) if l is a negated variable or Pl|Σ = αυ(l)

µ(Σ)

otherwise.
2. l /∈ Lit(Σ): Then we have new information not considered before and the

original probability space for computing the conditional probability PF |Σ
has to be extended.
When new pieces of information that did not originally appear in the sample
space have to be considered, then we introduce in the area of updating the
degree of belief by doing an extension of the original probability space [5].
Let consider here, a more general case.
Let F = (

∧k
j=1 lj) be a conjunction of literals such that every variable of

F does not appear in υ(Σ). Let | υ(Σ) |= n. There are 2n assignments
defined over υ(Σ) and 2n+k assignments defined over υ(Σ) ∪ υ(F ), then
we update the domain of the probability space for computing PF |Σ , as:

PF |Σ = Prob(Σ∧F )

ProbΣ
=

µ(Σ∧F )
2n+k

µ(Σ)
2n

= µ(Σ∧F )
2k·µ(Σ)

. As GF and GΣ are two indepen-

dent connected components and µ(
∧

l∈F l) =
∏

l∈F µ(l) = 1, then:

PF |Σ =
µ(Σ) · µ(F )
2k · µ(Σ)

=
µ(Σ)

2k · µ(Σ)
=

1
2k

(4)

Indeed, for the case k = 1, an agentA believes in new information not related
with its knowledge base with a reliability of 0.5. Since we extend the models
of Σ for considering a new variable υ(l), half of those extension assignments
have υ(l) true and the other half have υ(l) false. We have that the fraction
of models of Σ which are consistent with {l} is 1/2 and the other half is
consistent with {l}.
Note that in the first case, Pl|Σ is computed by one pointer access, one

comparison and one division, then it has a constant time complexity. In general,
the maximum of the time for computing Pl|Σ is spent for determining the position
of υ(l) in the array vars pairs which can be done in a constant time.

Consider now the case when the set of options Q = {c1, . . . , ck} is a set of
binary clauses and the agent A has to determine its future action based on the
options codified by each clause. For example, A chooses its future action based
on the clause c ∈ Q that maximizes its degree of belief with respect to the KB.
Let c = {x, y} be any clause of Q, we have four cases for computing Pc|Σ:

1. x /∈ Σ and y /∈ Σ: There are three models out of the four assignments
of υ(c) and, as the constrained graphs GΣ and Gc are independent, then
Pc|Σ = µ(Σ)·µ(c)

µ(Σ)·22 = 3/4, since we extend the probability space with the new
two variables: υ(x) and υ(y). This case is computed in constant time.

2. x ∈ Lit(Σ) and y /∈ Lit(Σ): Then υ(x) is searched on the array vars pairs
in order to retrieve (αυ(x), βυ(x)). According to the sign of x ∈ c we have
that µ(Σ ∧ c) = 2 · αυ(x) + βυ(x) if x appears as unnegated variable in c,
otherwise µ(Σ ∧ c) = 2 · βυ(x) + αυ(x). Then;

Pc|Σ =

{
2·αυ(x)+βυ(x)

µ(Σ) if x appears as unnegated variable,
2·βυ(x)+αυ(x)

µ(Σ) otherwise
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3. x ∈ Lit(Σ), y ∈ Lit(Σ) and c ∈ Σ: since c has been already computed in
µ(Σ), µ(Σ ∧ c) = µ(Σ) and then Pc|Σ = 1. This case obtains the maximum
possible value for Pc|Σ , so any alternative of action of the agent will take
this option.

4. x ∈ Lit(Σ), y ∈ Lit(Σ) and c /∈ Σ: Let consider for this option a more
general situation, explained at once.

Let F = (
∨k

j=1 lj) be a clause with k literals. Considering F as a set of
literals, let A = {l ∈ F |υ(l) /∈ υ(Σ)} be the literals in F whose variables do not
appear in υ(Σ) and let F ′ = F −A be the literals in F whose variables appear
in υ(Σ), let t =| A |.

We compute µ(Σ ∧ F ) by extending the models of Σ with the new variables
υ(A) and eliminating from this extended assignments those which falsify (Σ∧F ),

that is, µ(Σ ∧ F ) = µ(Σ) · 2t − µ(Σ ∧ F ), where F = (
∨k

j=1 lj) = (
∧k

j=1 lj).
As GA is a connected component independent of GΣ∪F ′ , then F = A ∪ F ′

and µ(Σ ∧ F ) = µ(Σ ∧ F ′) · µ(A) = µ(Σ ∧ F ′) since µ(A) = 1, then:

PF |Σ =
µ(Σ ∧ F )
2t · µ(Σ)

=
µ(Σ) · 2t − µ(Σ ∧ F ′)

2t · µ(Σ)
= 1 − µ(Σ ∧ F ′)

2t · µ(Σ)
(5)

We can consider F ′ as a partial assignment on the number of variables in
(Σ∧F ) since it consists of a set of literals. Let s = (

∧k
j=1 lj) be an initial partial

assignment defined over υ(Σ) ∪ υ(F ) which consists of 2n+t assignments. We
can consider s as a partial assignment and try to extend it in order to count the
total number of satisfying assignments for (Σ ∧ F ). If we consider s as a set of
unitary clauses then s could be used in a unit reduction process with Σ, in order
to build extended satisfying assignment s′ for (Σ ∧ F ′

).
We call the reduction of Σ by a literal l ∈ Lit(Σ) (also called forcing l) and

denoted by Σ[l] to the set of clauses generated from Σ by
1) removing all clause containing l (called subsumption rule),
2) removing l from all the remaining clauses (called unit resolution rule).

The unit reduction on a formula Σ consists of, given a unitary clause (l),
performing a reduction of Σ for the literal of the unitary clause, that is, Σ[l].
Given the partial assignment s = (

∧k
j=1 lj), we define the reduction of Σ by

s, as: Σ[s] = Σ[l1][l2] . . . [lk]. For short, we write Σ[l1, l2, . . . , lk] instead of
Σ[l1][l2] . . . [lk]. We denote with Σ′ the resulting formula of applying unit re-
duction on Σ and s, that is, Σ′ = Σ[s].

Note that a unit resolution rule can generate new unitary clauses. Further-
more, it allows to extend the partial assignment s by the new unitary clauses
appearing in this process, that is, s = s ∪ {u} where u is obtained by unit reso-
lution rule in Σ[s]. If a pair of contradictory unitary clauses are obtained during
this process then µ(Σ ∧ F ) = 0.

Unit Propagation UP (Σ, s) is the iterative process of doing unit reduction
applying a set of unitary clauses (in our case s) over Σ until there are no more
applications of unit reductions on the resulting formulas Σ′.
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When a subsumption rule is applied, we have to consider the set of variables
in Σ which can be eliminated from Σ. For example, if we apply a subsumption
rule on (x) ∧ (x ∨ y), both clauses are eliminated from Σ but if y has only one
occurrence in Σ, then the subsumption rule eliminate y, but the total number of
models for Σ′ has to consider that y can take any logical value. We introduce a
new set Elim vars containing the eliminated variables by the application of the
subsumption rule. Elim vars is checked in each application of the subsumption
rule.

Then, the partial assignment s is applied onΣ in order to simplify the original
KB by a more simple KB Σ′, that is, Σ′ = UP (Σ, s) and then µ(Σ ∧ F ) =
µ(Σ′) ∗ 2|Elim vars|.

If UP (Σ, c) generates the nil clause, then µ(Σ ∧ c) = 0 and this means
that the initial clause c is logically deduced from Σ (Σ |= c), and then Pc|Σ =
1− µ(Σ∧c)

µ(Σ) = 1. Furthermore, the generation of the nil clause in UP (Σ, c) takes a
linear time on the number of clauses of Σ. Then, if we have the logical structure
representation of Σ, the logical deduction task of proving Σ |= c for c a unitary
or binary clause is solved in linear time.

Of course, if Σ � c and υ(c) ⊂ υ(Σ) then there are cases where the com-
putation of µ(Σ ∧ c) could require almost the same time that computing µ(Σ).
However, as the resulting formula Σ′ of UP (Σ, s) is a subset of Σ, then GΣ′

is a subgraph of GΣ . In fact GΣ′ is formed by substructures of GΣ which are
already computed during the computation of µ(Σ) and then, it is not neces-
sary to re-compute such substructures. Thus, we only have to re-compute on the
trajectories from x to y (the variables in c) what is modified from GΣ to GΣ′ .

Example 1 Let Σ1 = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x4}, {x3, x5},
{x2, x6}} be an initial KB and the clause c = {x2, x5}. We want to compute
Pc|Σ1 . We know that µ(Σ1) = 15. F = (x2) ∧ (x5) and the partial assign-
ment to start the computation of µ(Σ1 ∧ F

′
) is s = F . Σ′

1 = Σ1[x2, x5] =
{{x3, x4}, {x4}, {x1, x4}, {x3}}, the clauses c1, c2 and c7 from Σ1 were subsumed
and then Elim vars = {x1, x6} are the eliminated variables in this iteration.
The new unitary clauses {x4} and {x3} are generated, extending the partial
assignment as s = (x2, x5, x4, x3) and such new unitary clauses are used in
the Unit Propagation procedure, then Σ′

2 = Σ′
1[x4, x3] = ∅. Then µ(Σ ∧ F ) =

µ(Σ′
2) · 2|Elim vars| = 1 · 22 = 4. And according to equation (5), we have that

Pc|Σ1 = 1 − 4
15 = 11

15 .

5. Conclusions

We have designed an appropriate logical structural representation of a 2-CF
knowledge base. Our model-based reasoning system includes cases where the
formula-based approach does not support efficient reasoning. We show that using
our logical structural representation, we can compute the degree of belief PF |Σ
efficiently, when F is a query composed by literals or a binary clause which
includes variables not appearing before in Σ. Indeed, for this case, we provide
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an efficient scheme of reasoning for an intelligent agent who has its knowledge
base represented by a 2-CF.

Exploiting this logical structural representation of a 2-CF, we also propose
a way to determine the relative value for all elements in the KB, which is an
essential problem in some applications of deductive reasoning. Furthermore, the
dynamic updating of our logical representation of the KB provides the addi-
tional advantage that the relative value of the elements of Σ could be adjusted
automatically in response to newly-obtained information.
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