
Using Framework Introspection for a Deep Integration of
Domain-Specific Models in Java Applications

Thomas Büchner and Florian Matthes
Fakultät für Informatik

Technische Universität München
{buechner,matthes}@in.tum.de

Abstract:
Domain-specific models and languages are an attractive approach to raise the level

of abstraction in software engineering. In this paper, we first analyze and categorize
the semantic dependencies that exist between domain-specific models and their gener-
ated implementations via frameworks and customization code in a target programming
language. We then demonstrate that framework introspection allows a deeper inte-
gration of domain-specific models into statically and polymorphically typed object-
oriented languages like Java. Using the example of an introspective persistence and
query framework for Java, we demonstrate how programmer productivity and software
quality can be improved substantially. Since the Java IDE captures the semantic de-
pendencies between the Java application and its embedded domain-specific model(s),
it is able to provide programmers with powerful consistency checking, navigation,
refactoring, and auto-completion support also for the domain-specific models. Our in-
trospective approach works for whitebox and blackbox frameworks and is particularly
suited for the integration of multiple domain-specific models (e.g. data model, inter-
action model, deployment model) in one application. Due to space limitations, these
benefits [2] are not covered in detail in this paper. The paper ends with a discussion of
future work on how introspective models can improve the maintenance of long-lived
business applications.

1 Introduction

To cope with the increasing complexity and constant change of business applications, new
abstractions have been developed which are intended to increase programmer productivity
and software quality: Statically and polymorphically typed object-oriented programming
languages like Java or C# provide a powerful basic abstraction. Today, they are supported
with rich IDEs that provide programmers with powerful consistency checking, navigation,
refactoring, and auto-completion support. Based on these languages and tools, frameworks
provide architectural abstraction. In order to solve a concrete problem, a framework has to
be customized. Modern software systems usually utilize several frameworks, for example
for persistence management, web-based interaction or distributed computing. Developers
of a complex system have to understand both, the frameworks and their customizations.

Model-driven development tries to raise the level of abstraction of the framework cus-
tomization process. Customizations are represented as models of a domain-specific lan-



guage. Model-driven hereby means, that there is a transformation between the models and
the concrete customization artifacts [6].

As a consequence, there exist artifacts on two different levels of abstraction (framework
core and handwritten customizations vs. models). Keeping these artifacts over the life-
time of business applications consistent is the key challenge to be met by model-driven
approaches [12]. The central question of this paper is how to better realize and integrate
domain-specific languages. We put special emphasis on the issue of integration. Anal-
ogous to the approach of Proof Carrying Code [13] we enable Java programs to provide
model information through introspection.

This paper is organized as follows: We first review related work on DSLs and roundtrip
engineering (Section 2). In Section 3 we analyze and categorize semantic dependencies
that exist between domain-specific models and their generated implementations via frame-
works and customization code in a target programming language and identify three inte-
gration requirements specific to model-driven development. Section 4 gives an overview
of our approach to introspective model-driven development (IMDD) based on framework
introspection [2] which supports introspective blackbox and whitebox frameworks. Due to
space limitations, we only explain in Section 5 how our introspective modeling framework
(IMF) provides introspection for whitebox frameworks. A specific example of whitebox
framework introspection is the persistence and query framework described in Section 6.
Using this example, we illustrate how model-core and model-code integration is achieved.
Section 7 compares our approach with popular generative model-driven approaches and
highlights its benefits in terms of programmer productivity and software quality. The pa-
per ends with a discussion of future work on how introspective models can facilitate the
realization and maintenance of long-lived business applications.

2 Related Work

Specifying the behavior of computer systems using domain-specific abstractions has a long
tradition in computer science [3]. One way to implement a DSL is to tailor an existing base
language into a DSL. These kinds of DSLs are called embedded or internal DSLs [5]. An
advantage of this approach is that the whole programming environment available to the
base language can be reused. The main disadvantage is, that mainstream statically typed
object-oriented programming languages are not designed to be syntactically extensible and
do not allow for the creation of powerful internal languages.

The prevalent way of implementing a DSL using a statically typed object-oriented lan-
guage as a base language is building an external DSL [11]. As already introduced, we see
DSLs as means to specify solutions on a higher level of abstraction in combination with
frameworks [4]. Therefore, building an external DSL means building a transformation,
which generates customizations from models. This is called generative model-driven de-
velopment. In such a process a metamodel is created, which represents the extension points
of the framework to be customized. Additionally, transformation rules which control how
to transform the models, have to be created. Based on the metamodel, the framework user



creates a model which solves the problem at hand. This model will then be transformed
automatically into customization artefacts.

As already mentioned, the lower level artifacts (framework core, handwritten customiza-
tions) have to be maintained as well as the higher level models. This leads to the wish for
roundtrip engineering, which means that artifacts on both levels of abstraction should be
editable and changes to one of them should lead to an immediate synchronization of the
affected one. Realizing roundtrip engineering in a generative model-driven process is a
challenging task [9].

An approach similar to the one introduced in this paper proposes the use of Framework-
Specific Modeling Languages [14] that are defined on top of existing object-oriented frame-
works. This approach tries to facilitate roundtrip engineering by defining transformations
between the levels of abstraction in both directions.

The approach presented in this paper is based on introspective frameworks, in which the
customization points are annotated explicitly and the customizations follow a constrained
programming model. This enables the extraction of models as transient views and makes
roundtrip engineering easily achievable.

3 Integration of Domain-Specific Models

In this paper, we call two elements integrated, if there exists a semantic dependency be-
tween these two, this dependency is stated explicitly [10], and it can be inferred easily by
a tool.

Source code of a statically typed programming language is integrated, in that for example
the connection between declarations and usages of methods and fields can be inferred at
compile-time. Over the last years, the new class of post-IntelliJ-IDEs made excessive use
of this property to increase developer productivity and changed the way developers per-
ceive source code [19]. Integration enables features like navigation, search for references,
code assist, and refactoring.

As we want to realize domain-specific languages in an integrated way, we first identify
three integration requirements specific to modeling approaches. As a first requirement,
all artifacts related to the DSL should be integrated with the underlying framework core.
These frameworks are usually written in an object-oriented programming language. We
call this requirement model-core integration.

In another typical scenario, concepts defined in a model of a domain-specific language
have to be referenced in handwritten code. This occurs because in most cases it is not
possible to completely specify a complex system using a declarative DSL. In this case we
require the domain-specific language to be integrated with the code of the base language.
This is called model-code integration in the following. There are two aspects of model-
code integration, which differ regarding the location of the handwritten code. In one case,
the code which references the model is part of the customizations of the framework. In
this case, only parts of the framework can be customized declaratively using a DSL. In



another scenario the code which accesses the model belongs to customizations of another
framework. In both cases, the model artifact should be integrated with the handwritten
code to improve the consistency of the overall system.

Many problems are solved using several frameworks in cooperation. In such a case, an
additional requirement is the integration of different domain-specific languages with each
other, which we call model-model integration.

Which benefits arise from a modeling approach, which realize these three integration re-
quirements? The main benefit is the automatic checking and assurance of consistency
between the artifacts involved. Since the connection between the artifacts in an integrated
scenario is stated explicity, tools can help ensuring consistency. This improves the quality
of the overall system. Another benefit as already mentioned is tool support for productivity
enhancements like navigation, search for references, refactoring, and input assistance.

The prevailing generative model-driven approaches lack integration, since the relation-
ships between the modeling artifacts and the underlying system are not stated explicitly.
The underlying reason for this problem is the lack of symbolic integration [11] between
the artefacts involved. For instance it is not possible to navigate automatically from meta-
model artifacts to the extension points of the framework core, reflected by them. The DSL
is not integrated with the framework it is expected to customize (no model-core integra-
tion). The model-code and model-model integration requirements are not met either by
generative model-driven approaches. As a consequence of this lack of integration it takes
a lot of manual work to keep all artifacts consistent.

4 Introspective Model-Driven Development

In [1] we proposed a bottom-up approach to model-driven development, which we call
introspective model-driven development (IMDD). The main idea of IMDD is the construc-
tion of frameworks that can be analyzed in order to obtain the metamodel for customiza-
tions they define. The process in which the metamodel is retrieved is called introspection.
The term introspection stems from the latin verb introspicere: to look within. Special em-
phasis should be put on the distinction between introspection and reflection in this context.
We use both terms as they have been defined by the OMG [16] (see table 1).

In analogy to the definition of reflective, introspective describes something that supports
introspection. An introspective framework supports introspection in that its metamodel
can be examined.

The whole process of introspective model-driven development is schematically shown in
Figure 1. The process is divided into the well known core development phase and the
application development phase. The first result of the core development phase is an intro-
spective framework. An introspective framework supports introspection by highlighting
all declaratively customizable extension points through annotations [17]. This enables the
extraction of the metamodel by metamodel introspection. It is important to understand,
that the metamodel is not an artifact to be created by the framework developer, but rather
can be retrieved at any point in time from the framework.



Table 1: Term Definitions
introspection A style of programming in which a

program is able to examine parts of its
own definition.

reflection A style of programming in which a
program is able to alter its own execu-
tion model. A reflective program can
create new classes and modify existing
ones in its own execution. Examples
of reflection technology are metaobject
protocols and callable compilers.

reflective Describes something that uses or sup-
ports reflection.

Figure 1: Introspective Model-Driven Software Development



The central artifact of the application development phase are the customizations to be made
by the framework user. In IMDD it is possible to analyze these artifacts and to obtain their
model representation. This is called model introspection. The model is an instance of the
retrieved metamodel and can be visualized by different viewers (i.e. visualization tools).
We implemented out of the box viewers which can visualize an introspective model in
a generic way. In some cases it is desirable to develop special viewers which visualize
the model in a specific way (e.g. as a UML model). This will be done by framework
developers in the core development phase. The manipulation of the model can be either
done by using the views or by manipulating the customization artifacts directly. In both
cases an updated customization artifact leads to an updated model and subsequently to
an updated view. As a result of this, the model and the views are always synchronized
with the actual implementation and can never “lie”. This kind of visualization is called
roundtrip visualization [15].

Generative model-driven development and IMDD differ in the direction the transforma-
tion between the model and the customization artifacts takes place. There are similarities
between our approach and that of internal DSLs. In both approaches, the models are rep-
resented in terms of the base language. The difference comes in how the user of the DSL
perceives and manipulates models. Using an internal DSL, the user directly edits state-
ments of the base language, whose syntax is tailored to the particular domain. Because
of the inflexibility of statically typed object-oriented programming languages to be tai-
lored syntactically, we have to visualize the customization artifacts on a higher level of
abstraction.

The main idea of introspective model-driven development is the direct extraction of the
model and the metamodel from the framework artifacts which represent them. There are
two categories of frameworks: blackbox frameworks and whitebox frameworks. They
differ in the way adaptation takes place. Due to space limitations we only give an overview
of how introspection of whitebox frameworks works. Introspective blackbox frameworks
are discussed in [1].

5 Whitebox Introspection

The customization of whitebox frameworks is done by providing implementations of ab-
stract classes of the framework core in the base programming language. More specifically,
the framework user specifies the desired behavior by implementing methods. These meth-
ods are called hook methods and represent the extension points of the framework [7]. Re-
garding introspective whitebox frameworks there are two kinds of hook methods – intro-
spective and non-introspective hook methods. Customization code of introspective hook
methods must use a constrained subset of the expressiveness of the base language. We
call this subset an introspective programming model. Programming using an introspective
programming model is of declarative nature and enables the extraction of the model. In
contrast, the implementation of a non-introspective hook method can use the full expres-
siveness of the imperative base language.



The main idea of whitebox introspection is to annotate introspective hook methods in the
framework core and to analyze the introspective method implementations. The analysis
of the structure of the introspective methods results in the metamodel of the framework
core, and the analysis of the method implementations leads to a model of the provided
adaptations.

The conceptual idea of whitebox introspection described so far is very generic. To ver-
ify the idea, we identified important introspective methods and programming models. In
[1], we introduced some basic introspective methods and their programming models. They
form a meta-metamodel of whitebox introspection, in that they enable a concrete whitebox
framework to draw on these methods. We also implemented generic tool support, which
creates an introspective model for introspective whitebox frameworks. Our tools are based
on the Eclipse IDE, which is available under an Open Source license and is easily ex-
tensible because of its plugin architecture. Specifically, we rely heavily on the Eclipse
JDT subproject [20], which provides access to an abstract syntax tree representation of the
source code.

On top of Eclipse we built a framework which supports introspection in a general way.
This framework is called Introspective Modeling Framework – IMF and provides basic
abstractions for analyzing source code, representing the models, and visualizing them.
Based on IMF there are tools which support blackbox and whitebox introspection with
generic visualization. As previously mentioned, it is sometimes desirable to customize the
way the introspective model is created and visualized (see Figure 1). This can be done
easily, using the existing generic tools as a starting point.

6 An Introspective Persistence and Query Framework

A core requirement of information systems is persistent storage and efficient querying
of business objects. Usually this is implemented using a relational database. There is a
conceptual gap between relational data and object-oriented modeling of business objects.
A persistence framework is used to bridge this gap with an object-relational mapping [18].

In this section we explain how to use an introspective whitebox framework for this purpose.
The principal idea of our introspective whitebox framework is to explicitly represent the
metamodel as introspective Java code. The framework provides abstract classes for all
metamodel concepts, which have to be implemented and instantiated to model concrete
business objects. For instance, there are abstract classes which can be used to specify
persistent properties and persistent relationships between business objects. These abstract
classes are introspective, because they have introspective methods. For example, these are
value-methods which restrict the implementation to return a value literal or a reference to
a final variable [1].

The schema of Person objects with a firstName property and a one-to-many relation-
ship to Group objects is defined using inner classes that override (generic) framework
classes.



Figure 2: Visualization of the Data Model in a Tree View

public class Person extends Asset {
final StringProperty firstName = new StringProperty() {

@Override
int getMaxLength() {

return 100;
}};

final ManyRole<Group> groups = new ManyRole<Group>() {
@Override
Role otherRole() {
return Group.SCHEMA.prototype().members;

}};
...

Because this is introspective code, the model can be analyzed and visualized. Figure 2
visualizes the model using a tree view. It is possible to edit the model in this view. On the
other hand it is always possible to navigate to the corresponding code, which represents
the model attribute. A graphical visualization as a UML class diagram is given in Figure 3.
More complex models used in industrial projects based on our IMF are presented in [2].

The following subsections use this example to explain the benefits of our introspective
approach in terms of integration.

6.1 Model-Core Integration

The way models are represented in the proposed introspective persistence framework ful-
fills the requirement of model-core integration as introduced in section 3. This means,



Figure 3: Visualization in UML Class Diagram Notation

that there is an explicit connection between the model attributes and the corresponding
hooks of the customized framework. In the example presented above, the persistent model
property firstName specifies its maximal length to be 100. This is done by overriding
a method which is defined in the abstract super class StringProperty, which belongs
to the framework core. The Java compiler knows about this relationship and additionally
it is stated explicity through the use of the Override annotation. Therefore, the Java
compiler already checks consistency constraints. On the other hand it is easily possible to
navigate into the framework core and to find out in which context the attribute maximal
length will be used. A post-IntelliJ-IDE like Eclipse can provide programmers with a list
of available model attributes .

Another advantage of this model representation is the direct use of the refactoring capa-
bilities of Eclipse to execute refactorings on both the framework and the models in one
step.

6.2 Model-Code Integration

Now we can specify and analyze types of business objects at a higher level of abstraction.
But how does the programming model look like? Accessing business objects is done using
the explicitly represented model. Setting the first name of a person is done as follows:

person.firstName.set("Thomas");

Another important aspect concerning the programming model is navigation, also known
as “traversal”. This means moving from one business object to another along existing as-
sociation relationships. As already shown, in our persistence framework relationships are
defined by instantiating metamodel classes. In particular, this is done specifying the as-
sociation ends by instantiating objects of type OneRole or ManyRole. The instantiated
model instances are used to navigate relationships in a type-safe way. Accessing all groups
a person has a member association with is expressed like this:

Iterator<Group> groups = person.groups.getAssets();

Another aspect of a persistence framework is querying business objects for certain criteria.
In our introspective persistence framework there is a query API to serve that purpose. The



following query retrieves all persons with the first name “Thomas”:

Query q = new QueryEquals
(Person.SCHEMA.prototype().firstName, "Thomas");

Iterator<Person> persons = Person.SCHEMA.queryAssets(q);

These examples of the programming model show, that the handwritten customization code
is integrated with the data model since it directly refers to the model definition. Also in
this case type consistency is checked by the Java compiler and the IDE even for complex
nested and join queries.

7 A Comparison with Model-driven Generation of POJOs

To help the reader to better understand the benefits of our approach, we now compare
the introspective persistence and query framework with the prevailing approach to object-
relational mapping using POJOs [8] (Plain Old Java Objects). Similar benefits arise in
other modeling situations (e.g. interaction models and configuration models) as discussed
in [2].

This is not exactly an adequate comparison, since representing persistent business objects
using POJOs is not a model-driven approach. The model cannot be easily extracted and
looked upon on a high level of abstraction. But most generative model-driven approaches
using Java technologies generate POJOs [21] [22] and therefore inherit the lack of integra-
tion which we will show is inherent to this approach.

In a POJO-based approach persistent business objects are represented as JavaBeans. Prop-
erties are represented as private fields with a getter and setter method. Associations are
represented using collection fields and getter and setter methods. In both cases, additional
metainformation might be provided with annotations or through an external configuration
file. The introduced business object Person will be represented as follows:

public class Person {
private String firstName;
@Column(length=100)
String getFirstName() { return firstName; }
void setFirstName(String s) { this.firstName = s; }

private Set<Group> groups;
Set<Group> getGroups() { return groups; }
void setGroups(Set<Group> s) { this.groups = s; }
...

First lets have a look at model-core integration. Model attributes are represented here
using annotations [17]. Java annotations are syntactically elegant but only provide very



limited automatic consistency checking capabilities. The scope of an annotation only can
be restricted to very generic Java constructs as fields, types, methods, and constructors.
The Column annotation used in the example could also be applied to the setGroups
method, which would be an inconsistent modeling. This inconsistency cannot be checked
by the Java compiler. Post-IntelliJ-IDEs cannot provide help answering questions about
which modeling attributes are available in a specific situation.

Now lets focus on model-code integration. The programming model for accessing proper-
ties and navigating associations is straight forward and uses the getter and setter methods.
Apart from aesthetic arguments of taste and style both programming models are equivalent
and integrated, in that they provide a type-safe way of accessing properties and navigating
associations.

But accessing fields and navigating associations is only one part of the overall usage sce-
narios. Another one is querying, as already introduced. In our introspective persistence
framework, the metamodel instances can be referenced integrated to specify queries. This
is not possible with a POJO-based persistence framework, because the metamodel in-
stances are represented through Java fields and methods, which are not referenceable. This
leads to an unsafe way of defining queries:

Criteria crit = session.createCriteria(Person.class);
crit.add(Expression.eq("firstName", "Thomas"));
List<Person> result = crit.list();

Unsafe means hereby, that the properties are identified using strings. This is an implicit
binding which is not accessible for the compiler and the IDE. Renaming a property or
association with a simple refactoring may lead to broken queries, which cannot be found
automatically. This is not an issue with our introspective persistence framework.

Another advantage of our introspective modeling approach is, that it is very easy to access
metadata at runtime. This enables generic services on business objects, e.g. generic visu-
alization and manipulation. An asset can be asked directly for the model instances which
define its schema, which in turn provide access to all available metadata. In a POJO-based
persistence framework accessing metadata at runtime has to be done using Java reflection,
which is cumbersome. Accessing more sophisticated metadata, like length restrictions as
applied via annotations in our example, is even more complicated.

For the sake of completeness, we want to mention the high level modeling and visualiza-
tion capabilities of our introspective persistence framework again. They come out of the
box as an integral part of our framework. For POJO-based frameworks the same kind of
tool support is theoretically possible, but the development of the framework core and the
tooling do not go hand in hand.

The points mentioned so far concern the experience of the framework user. We believe,
that also the framework developer benefits from introspection, because all metadata is
directly accessible to the framework core.



8 Conclusions and Future Research

Integration of domain-specific models with the underlying system is a desirable goal in
model-driven development because it improves consistency and enables productivity fea-
tures developers are used to nowadays. Existing generative approaches lack integration
because of their character as an external DSL. We have shown, that the proposed approach
of introspective model-driven development using whitebox frameworks integrates domain-
specific models with the framework core and with handwritten customization code. Refer-
ring to the integration requirements proposed in section 3, we have shown that introspec-
tive whitebox frameworks enable model-core and model-code integration and solve a key
maintenance problem in model-driven software engineering [12].

Furthermore, an introspective software engineering approach increases the maintainability
of long-lived business application by explicitely stating adaptations in the system. These
adaptations are made on a high level of abstraction using a domain specific language and
a programming model that provides abstractions tailored to the problem domain.

In the future, we plan to continue our research on introspective models and address the
following issues:

• How can introspective models be enriched to capture more business logic, for exam-
ple through cascading deletes, derived attributes, declarative constraints on classes
and relationships, temporal constraints, security constraints and other business rules?

• How can domain-specific models be visualized and navigated including their links
with implementation artifacts?

• How can introspective models be accessed by standard tools used in industry, like
configuration management databases (CMDBs), enterprise architecture management
tools?

References

[1] Thomas Büchner and Florian Matthes, Introspective Model-Driven Development. In Proc. of
Third European Workshop on Software Architectures (EWSA 2006), pages 33-49, LNCS 4344,
Springer, Nantes, France, 2006.

[2] Thomas Büchner, Introspektive modellgetriebene Softwareentwicklung. Dissertation, TU-
München, Lehrstuhl für Informatik 19, August 2007

[3] Arie van Deursen, Paul Klint, and Joost Visser Domain-specific languages: An Annotated
Bibliography. ACM SIGPLAN Notices, vol. 35, pp. 26–36, 2000.

[4] Arie van Deursen Domain-specific languages versus object-oriented frameworks: A financial
engineering case study.. In Smalltalk and Java in Industry and Academia, STJA’97, pages 35-39.
Ilmenau Technical University, 1997.

[5] Paul Hudak Building Domain-Specific Embedded Languages. ACM Computing Surveys, vol.
28, pp. 196, 1996.



[6] Markus Völter and Thomas Stahl, Model-Driven Software Development. John Wiley & Sons,
2006.

[7] Wolfgang Pree, Essential Framework Design Patterns. Object Magazine, vol. 7, pp. 34-37,
1997.

[8] Chris Richardson, Untangling Enterprise Java. ACM Queue, vol. 4, pp. 36 - 44, 2006.

[9] Shane Sendall and Jochen Küster, Taming Model Round-Trip Engineering. Proceedings of
Workshop on Best Practices for Model-Driven Software Development (part of 19th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications), Vancou-
ver, Canada, 2004.

[10] Martin Fowler, To Be Explicit. IEEE Software, vol. 16, pp. 10-15, 2001.

[11] Martin Fowler, Language Workbenches: The Killer-App for Domain Specific Languages?
http://www.martinfowler.com/ articles/languageWorkbench.html

[12] Gregor Engels, Michael Goedicke, Ursula Goltz, Andreas Rausch, Ralf Reussner, Design for
Future - Legacy-Probleme von morgen vermeidbar? Informatik-Spektrum, Springer Verlag 2009,
DOI 10.1007/s00287-009-0356-3

[13] George C. Necula, Proof-carrying code: design and implementation PPDP’00: Proceedings
of the 2nd ACM SIGPLAN international conference on Principles and practice of declarative
programming, ACM 2000, New York, pp 175-177

[14] Michal Antkiewicz, Round-Trip Engineering of Framework-Based Software using Framework-
Specific Modeling Languages. Proceedings of the 21st IEEE International Conference on Auto-
mated Software Engineering (ASE’06), 2006.

[15] Stuart M. Charters, Nigel Thomas, and Malcolm Munro, The end of the line for Software
Visualization?. VISSOFT 2003: 2nd Annual “DESIGNFEST” on Visualizing Software for Un-
derstanding and Analysis, Amsterdam, September 2003.

[16] OMG – Object Management Group, Common Warehouse Metamodel (CWM), v1.1 – Glossary.
http://www.omg.org/docs /formal/03-03-44.pdf

[17] Joshua Bloch, JSR 175: A Metadata Facility for the Java Programming Language.
http://www.jcp.org/en/jsr/detail?id=175

[18] Wolfgang Keller, Mapping Objects to Tables - A Pattern Language. Conference on Pattern
Languages of Programming (EuroPLoP), Irsee, Germany, 1997

[19] Gail C. Murphy, Mik Kersten, and Leah Findlater, How Are Java Software Developers Using
the Eclipse IDE?. IEEE Software, vol. 23, pp. 76-83, 2006.

[20] Eclipse Foundation, Eclipse Java Development Tools (JDT) Subproject.
http://www.eclipse.org/jdt/

[21] Witchcraft, http://witchcraft.sourceforge.net

[22] AndroMDA, http://www.andromda.org


