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Abstract. Warping can be used to reduce interindividual structural variations 
of 3D image datasets of brains by generating a standard brain and subsequent 
matching of individual datasets to this reference system. Point-based warping 
uses structural information (landmarks) to construct the spatial correspondence 
between the datasets. For this we compare the performance of three landmark 
detection algorithms. The first two approaches use a threshold-based definition 
of landmarks, the third spatial derivations of voxels.  The warping is based on 
a distance-weighted method with an exponential weighting function. All 
methods tested are able to reduce structural variations, best results are ob-
tained by the derivation approach. 

1 Introduction 

The analysis of image datasets obtained from different animals requires the reduction 
of interindividual variations. Nonlinear geometric transformations, so called warping 
[1], can be used to reduce these variations by transforming the individual datasets to 
a reference system, e.g. a "standard brain". The warping process consists of two main 
steps: First, the spatial correspondence between the datasets and the reference system 
has to be determined. Second, using this correspondence information the individual 
datasets are transformed to the reference system. According to the determination of 
the spatial correspondence, warping algorithms can be divided in two classes: Inten-
sity-based warping methods maximize local gray value distribution to match the 
source dataset to the target [2]. Model-based warping approaches use high-level 
information such as surfaces of anatomical structures [3] or single points [4] on 
prominent morphological sites. In datasets, which are obtained by functional imag-
ing techniques, the different spatial gray value distribution is of biological or medical 
interest. Therefore, the spatial gray value distribution cannot be used to construct the 
spatial correspondence between these datasets. In this study, the datasets were ob-
tained by functional labeling of gerbil brains, so that we investigate model-based 
warping strategies, i.e. point-based warping. For point-based warping methods at 



first corresponding points (=landmarks) between all the datasets have to be defined. 
Setting of a small number of landmarks between 2D images can be done by hand, but 
definition of a greater number of landmarks between large 3D image datasets by a 
human expert is highly time-consuming and subjective. Consequently, we developed 
automatic procedures for landmark definition. Furthermore, we try to adjust already 
published landmark detection methods to our datasets. 

2 Image Preprocessing 

Six gerbils (Meriones unguiculatus) were acoustically stimulated after injecting the 
radioactive 2-fluoro-deoxyglucose (2FDG). This method visualizes brain activity by 
accumulation of the non-metabolisable sugar 2FDG in certain brain areas propor-
tional to their electrical activity. After 45 min exposure time the animals were scari-
fied and the brains were removed. The brains were sectioned and the single slices 
were exposed on an X-ray film. After exposure, the films were developed and the 
autoradiographed slices were digitized with a camera (768 * 512 * 49 slices, 256 
gray values). 

In order to reconstruct the original 3D object, each slice is aligned by means of 
translating and rotating. We used a fully automatic computational method of princi-
pal axes alignment followed by a cross-correlation method. The last step is to align 
the 3D datasets to each other. 

3 Landmark detection 

The first 3D landmark detection method uses Monte-Carlo techniques to realize the 
search of edges within the dataset. Initially a multiscale 3D grid is placed on each 
dataset to define non-overlapping subvolumes. Next edges are searched with random 
movements of a single point within each of subvolume. An edge is defined if the 
search point detects a gray value difference between two neighboring voxel, which 
exceeds a constant threshold. If an edge is detected, the procedure stops within this 
subvolume and the position of the search point is stored. This procedure is iterated 
for all subvolumes and for all grid-scaling levels in all datasets. To get a reliable 
spatial definition the whole process is repeated 10 times. The final position of each 
selected point (1 per subvolume) is the average across these repetitions. Only if an 
edge in a given subvolume is found in all datasets, this individual point is taken as a 
landmark [5]. 

In the second approach the searching points move along rays, which have the 
origins at the centers of gravity of substructures. These origins are defined in one 
brain for the whole group. To ensure correspondence, the origins have identical 
locations in all datasets and the angles between the rays are similar in all datasets. 
The points move along the rays and stop if an edge is found. As in the first approach, 
an edge is defined as a gray value transition, which is greater than a given threshold. 
If on the corresponding ray of all datasets an edge is found the position of the search-
ing point for each dataset defines the landmark.  



The third approach uses 3D differential operators e.g. the quotient of the deter-
minant and the trace of a matrix of first partial derivatives of image values around a 
given position [6]. The 3D reference points are defined by searching for local 
maxima of operator values, which are greater than a preset threshold value. To en-
sure correct correspondence of the reference points again a 3D grid approach is used, 
as in the case of the Monte-Carlo method. Only if a sub-volume contains a reference 
point in all datasets, these reference points are determined as landmarks [7]. 

The correct correspondence of the found landmarks has not been verified, since 
our approach was to compare the different landmark generators regarding the quality 
of the subsequent warping. Anatomical verifications of the found landmarks were not 
taken into account. 

4 Warping 

The standard brain, i.e. the reference template for warping, is generated by averag-
ing the positions of the corresponding individual landmarks across the datasets. The 
warping method used here is based on a distance-weighted method [8]. The dis-
placement is determined by the weighted sum of all displacement vectors. The expo-
nential weighting function consists of a global weighting factor and the distance of a 
given voxel to a certain landmark. 

5 Results 

The Monte-Carlo method found 360 landmarks in approx. 39,000 s (SGI Origin 
200). The ray-based method found 1,285 landmarks in 120 s and the 3D-operator 
approach found 180 landmarks in approx. 10,800 s. Fig. 1 illustrates as an example 
a surface view of a manually segmented gerbil brain dataset together with the land-
marks found with each method. The left figure shows the landmarks, which are 
determined by the Monte-Carlo method, in the middle the landmarks obtained by the 
ray method and the right figure the landmarks obtained by the 3D operator method. 
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Fig.1 Surface views of a 3D brain dataset together with the generated landmarks. The outer 
surface of the brain and four structures were segmented manually and then surface rendered 
by the visualization software Amira (Indeed GmbH). a) Landmarks after application of 
Monte-Carlo method, b) after application of the ray method and c) after application of the 3D 
operator approach. SE septum, ST striatum, TH thalamus, HF hippocampal formation. 



The qualit y of warping is quantified by applying 2 similarity functions before and 
after warping (linear cross-correlation coeff icient, cc; volume overlap index, oi). 
Following average values were obtained (increase after warping): Monte-Carlo 
method: cc: +1.29 %, oi: +1.67 %; ray-based method: cc: +1.79 %, oi: +3.00 %; and 
3D operator approach: cc: +2.25 %, oi: +2.27 %. 

6 Discussion 

In this study, we investigated 3 different, full y automatic procedures to detect land-
marks for distance-weighted warping. The landmarks are successfull y used for gen-
erating a reference template and the similarity of the individual datasets increases 
after warping in all cases tested. The qualit y of warping, as indicated by the similar-
ity functions used, varies between the different landmark generators. The best cross-
correlation coeff icient is achieved by the 3D operator approach, whereas application 
of the ray-based method results in the best volume overlap index. The reason for this 
is that the ray-based method generates relatively more landmarks at the outer brain 
contour as compared to the other methods. Consequently, the outer edges are regis-
tered with a higher precision. For biological questions demanding quantitative 
evaluation of gray values, the cross-correlation coeff icient gives more information 
about the qualit y of the warping procedure than pure geometric overlap indices. 
Therefore, the 3D operator method proved to be the most suitable tool in this study to 
make complex biological structures inter-individually better comparable and there-
fore facilit ate a quantitative group comparison in functional autoradiographic brain 
imaging studies. 
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