
1

Full Lifecycle Methodologies for Agent-Oriented Systems
– The Extended OPEN Process Framework

J. Debenham and B. Henderson-Sellers

University of Technology, Sydney, Australia

Abstract.

The OPEN Process Framework (OPF) is a componentized OO development methodology
underpinned by a full metamodel. Instances of each element of the metamodel are stored in
a repository. Individual selections are then made in order to create a personalized process
for software development. Originally a development methodology targetted at object
technology, the OPF has been recently extended to support agent-oriented information
systems. Here, we describe that extension by means of an extended case study. We find
that although much work has to be done to deal with ‘autonomous’ components, the scope
of the OPEN Process Framework is adequate to absorb this new work. Furthermore, there
has been no need to perturb the existing Framework in accommodating these new ideas.

Agent-oriented and Object-oriented Methodologies

Agents are beginning to enter the mainstream of software engineering [1], emerging from
the research laboratory into commercial utilization. While intelligent agents have emerged
from artificial intelligence research [2], agent-oriented methodologies have a closer
relationship to object technology and to object-oriented methodologies. Current
methodology research [3-5] is focussed on different ways to capitalize on this synergistic
merger between knowledge engineering techniques [6] and object technology for the full
lifecycle methodological support for the development of object-oriented information
systems. This synergy is underpinned by the recent proposals in [7] for extensions to the
OMG’s Unified Modeling Language [8,9] in order that that modelling language may be
considered applicable for agent modelling.

While the Gaia methodology [4] focusses on the design aspects, the extensions made to
the OPEN methodological approach [10,11] focusses on full lifecycle issues by
underpinning the methodology with a componentized metamodel. In this paper, we take the
proposals made in [5] and scrutinize them in a detailed case study environment.

2

The Extended OPEN Process Framework

The OPEN Process Framework (OPF) consists of (i) a process metamodel or framework
from which can be generated an organizationally-specific process (instance) together with
(ii) a repository and (iii) sets of construction guidelines. The metamodel can be said to be
at the M2 metalevel (Figure 1) with both the repository contents and the constructed
process instance at the M1 level. The M0 level in Figure 1 represents the execution of the
organization’s (M1) process on a single project. Each (M1) process instance is created by
choosing specific process components from the OPF Repository (Figure 1) and
constructing (using the Construction Guidelines) a specific configuration – the
“personalized OO development process”. Further minor modifications (“tailoring”) ensure
a perfect fit of the individually created development process to the needs of a particular
project.

OPF’s Metamodel

Implemented Process(es)

OPF Repository
containing Individual
Process Component

Descriptions

Constructed Process
or Process Instance

M2

M1

M0

Figure 1 Three metalevels (M2, M1, M0) which provide a framework in which the
relationship between the metamodel (M2), the repository and process instances (M1) and
the implemented process (M0) can be seen to co-exist.

The major meta-elements in the OPF metamodel are (Figure 2) Work Unit, Work Product
and Producer. Together, Work Units and Producers create Work Products and the whole
process is structured temporally by the use of Stages (phases, cycles etc. – see Figure 3).
There are three important kinds of Work Unit: Activity, Task and Technique. Activities
and Tasks say “what” is to be done and Techniques say “how” it will be accomplished.
Stages state how these Work Units (particularly the Activities) are sequenced in time.

3

Figure 2 The five major metatypes in the OPF metamodel (based on [11])

Figure 3 The metaelements in the OPF metamodel relating to large scale temporal
sequencing. These are all subtypes of the major metaelement called Stage (see Figure 2)
(after [11])

As a consequence of the modular nature of the OPEN approach to methodology, via the
notion of a repository of process components together with the application of process
engineering [12], it is relatively easy to add additional meta-elements and extremely easy to

Work
Product

Producer

Work
Unit

Stage

Language

Essential
Process

Components

produce

are
documented

using

create
evaluate

iterate
maintain

perform

provide
macro organization

to the

Guidelineshelp to

For each element (represented
by box), OPEN permits the
user to select how many and
which instances will be used.
The OPF documentation
provides a comprehensive list
of suggestions on the best
selections together with
guidelines on their best
organization.

Life Cycle

Specified
Phases

Build
<<release>>

Milestone

+

+

1..*

Development
Cycle+

Selected
LifeCycle

Model

Cycle

1..*

1..*

<<is instance of>> <<is instance of>>

M 2

M 1

Build

4

add additional examples of process components to the repository (as instances of pre-
existing meta-elements). To extend this approach to support agent-oriented information
systems, Debenham and Henderson-Sellers [5] analyzed the differences between agent-
oriented and object-oriented approaches in order to be able to itemize and outline the
necessary additions to the OPEN Process Framework’s repository in the standard format
provided in [13]. The focus of this work was primarily on instances of the meta-class
WorkUnit that are useful for agent-oriented methodologies and processes – the list of
Tasks and Techniques necessarily added to the OPF repository is given in Table 1 (no
new Activities are required). These new Tasks and Techniques were identified from the
literature on agents and then checked against the case studies described later in this
paper. However, we should also note that, while new M1 process components needed to
be added to the repository, there was no need to make any changes or additions to the M2
level metamodel of the OPEN Process Framework [11].

Table 1 Tasks and Techniques added to the OPF repository to support the development of
agent-oriented information systems (* indicates Techniques not identified in [5] but
introduced here).

Tasks for AOIS Techniques likely to be useful

Identify agents’ roles Environmental evaluation*
Model the agent’s environment Environmental evaluation*
Identify system organization Environmental evaluation*
Determine agent interaction protocol
Determine delegation strategy

Contract nets
Market mechanisms

Determine agent communication protocol FIPA KIF compliant language*
Determine conceptual architecture
Determine agent reasoning

3–layer BDI model*
Deliberative reasoning: Plans
Reactive reasoning: ECA Rules

Determine control architecture Belief revision of agents
Commitment management
Activity scheduling
Task selection by agents
Control architecture

Determine system operation
Gather performance knowledge

Learning strategies for agents

Determine security policy for agents [topic of future research]
Undertake agent personalization Environmental evaluation*

User model incorporation*
Identify emergent behaviour [topic of future research]

There are clear advantages in using a componentized process model together with the
skills of process and method engineering when extensions, such as those discussed here,

5

are required or anticipated. OPEN provides a high degree of flexibility to the user
organization in creating its software development process. Part of that flexibility is clear in
the ready extension to support agent-oriented information systems developments. In
comparison, pre-constructed (M1) methodologies suffer from their inflexibility.

In the following sections, we exemplify the use of several of the newly proposed Tasks
and Techniques in the context of business processes. Two case studies are described.
The first considers a task-driven process management system and the second a goal-driven
process management system.

Case Study 1.

Business process management is a suitable area for multiagent systems [14-16]. Both of
the case studies consider the management of different types of business process. To
avoid a lengthy description, the subject of both case studies involves the processing of a
loan application by a bank. This is a typically a workflow or “task-driven” process. A
task-driven process can be associated with a, possibly conditional, sequence of activities
such that execution of the corresponding sequence of tasks “always” achieves the
process goal. The idea behind task-driven processes is that process failure will not
happen. A workflow application in a draconian organisation may be seen to be failure-
proof and so could be treated as task-driven. In practice, even production workflow
applications can fail; a clerk can “click the wrong button” for example. Each of these
activities has a goal and is associated with a task that, on its termination, “always”
achieves this goal. The same example is used for both the design of a single agent system
and the design of a multiagent system (see second case study).

Figure 4. Partial statechart for loan application process

Task-driven processes can conveniently be modelled using statecharts [OPEN
Technique: State modeling]. For example, Figure 4 shows part of a statechart for a loan
application where the primitives “remove” and “enter” add and delete pointers in this way.

application
being

assessed

assessment complete[risky] /
remove from assessor and enter

on scrutiniser

application
being assessed

urgently

assessment timed out[] /
remove from assessor and enter

on supervisor

assessment complete[not risky] /
remove from assessor and enter

on loans officer

application
being

scrutinised

offer
being
made

application checked[OK] /
remove from checker and

enter on assessor

6

For a task-driven process, the completion of an activity in any state is equated to the
realisation of the activity’s goal. Thus, the only way that a process instance will not
progress is if its activity is aborted for some reason such as time constraints. In Figure 4
the event “assessment timed out” deals with such an eventuality.

The resulting statechart is implemented simply as event-condition-action state-transition
rules. Task-driven process management can be effected using a single reactive agent or
expert system containing rules of this form. If the rules in such a knowledge base are
indexed by their “from” state then the maintenance of the knowledge base is quite
manageable. For example, the “top” transition in Figure 4 is:

if in state(application being assessed) and event(assessment complete) occurs and
condition(application assessed risky) is true then perform action(remove from assessor’s

and add to scrutiniser’s “In Tray”) and enter state (application being
scrutinised). The state label can be quite complex. For example, a state label for a process
that is to be circulated amongst n people, two at a time, until some event occurs can be
represented as an n * 2 matrix.

System Objective and Environment and Organization

The system objective is to manage the processes modelled above. The environment
[OPEN Task: Model the agent’s environment] consists of users, assumed to have personal
computing equipment with a web browser. The system organization consists of a single-
agent system simply managing the (task-driven) processes.

The Conceptual Architecture, the Control Architecture and System Operation.

The conceptual architecture is a reactive architecture i.e. it does not support proactive,
feed-forward reasoning because there is no such need in task-driven processes. All that
the system has to do is to implement the event-condition-action state-transition rules
described above. The control architecture is to trigger rules in the order in which the
triggering events occur. In this simple example, there are no issues to decide for system
operation; whereas in Case Study 2 the system operation receives considerably more
attention.

Case Study 2.

A goal-driven process has a process goal, and can be associated with a, possibly
conditional, sequence of sub-goals such that achievement of this sequence “always”
achieves the process goal. Achievement of a sub-process goal is the termination
condition for that sub-process. Each of these sub-goals is associated with at least one
activity and so with at least one task. Some of these tasks may work better than others

7

and there may be no way of knowing which is which. A task for an activity may fail
outright or may be otherwise ineffective at achieving its goal. In other words,
unpredictable task failure is a feature of goal-driven processes. If a task fails, then another
way to achieve its sub-goal may be sought. Goal-driven processes [OPEN Task: Identify
agents’ goals] may be modelled as state and activity charts [17]. The primitives of that
model are activities and states. Figure 5 shows a simplified view of the management of
goal-driven processes, in which the primitives are goals and plans. Plans are state
transition diagrams in which there is one node labelled ‘start’, other nodes are labelled with
states and from them are from two to four arcs. There is an arc labelled with ‘3’, which is
followed if the state is achieved, and an arc labelled with ‘8’ which is followed if the state
is not achieved. An example of a plan is shown in Figure 6. There may be an arc labelled
with ‘A’ which is followed if the attempt to achieve the state is aborted and there may be
an arc labelled ‘?’ which is followed if it is not known whether the state is achieved. Some
goals are associated with executable activities and so with tasks. If a goal is not
associated with an activity then it should be the subject of at least one plan. Figure 5
presents a simplified view because a sub-goal of a goal-driven process goal will not
necessarily be goal-driven; aborting plans is also ignored.

An activity chart specifies the data flow between activities. An activity chart is a
directed graph in which the arcs are annotated with data items. A state chart is a
representation of a finite state machine in which the transitions annotated with event-
condition-action rules – see Figure 4. Muth et al. [17] show that the state and activity
chart representation may be decomposed to pre-empt a distributed implementation. Each
event on a state chart may be associated with a goal to achieve that event, and so a state

Figure 5. Goal-driven process management (simplified view)

Process Goal
(what we are trying
to achieve over all)

Performance
Knowledge

(knowledge of how
effective plans are)

Process Knowledge
(knowledge of how
much the instance

has/should cost etc)

Next-Goal
(what to try to
achieve next)

Plan

Initialise

New Performance Knowledge

Add to

New Process Knowledge

Add to

?not SC and
not activity

goal?

Select

Identify

Back-up Identify

?SC?
?activity

goal?

Procedure

Do it

Select

Evaluate it

8

Figure 6. Plan for assessment example illustrated in Figure 4.

chart may be converted to a plan whose nodes are labelled with such goals. Unlike task-
driven processes, the successful execution of a plan for a goal-driven process is not
necessarily related to the achievement of its goal. One reason for this is that an instance
may make progress outside the process management system — two players could go for
lunch for example. That is, when managing goal-driven processes, there may be no way of
knowing the “best” task to do next. Each high-level plan for a goal-driven process should
terminate with a check of whether its goal has been achieved. To represent goal-driven
processes, a form of plan is required that can accommodate failure.

Thus, goal-driven process management has a requirement both for a software
architecture that can cope naturally with failure and for some technique for intelligently
selecting which is the “best” task to do next [18] [OPEN Task: Determine conceptual
architecture; OPEN Technique: Task selection by agents]. Any general-purpose
architecture can achieve this first requirement but the process architecture described below
is particularly suitable.

The System Objective, Environment and Organization

In the goal-driven process management system, an agent supports each (human) user.
These agents manage their users’ work and manage the work that a user has delegated to
another user/agent pair. Sub-process delegation [OPEN Technique: Delegation analysis]
is the transfer of responsibility for a sub-process from one agent to another. A delegation
strategy decides to whom to give responsibility for doing what. Delegation strategies in
manual systems can be quite elementary; delegation is a job at which some humans are not
very good. A user of the system may specify the delegation strategy and may permit her
agent to delegate for her, or may delegate manually. In doing this, the user has

Assess_application[Application X has been dealt with in time τ]

start

Application X assessed (RESULT = X)
by time (NOW + τ – ∆)

3 8

•

RESULT = OK RESULT =
¢ OK

Acknowledgement for application
X received from Scrutiniser agent

by time (NOW + ∆)

Acknowledgement for application
X received from Loans agent

by time (NOW + ∆)

3

3

3

3

Acknowledgement for application
X received from Supervisor agent

by time (NOW + ∆)

3

38

8
/ AdU(#1)

/ AdU(#3)

8

8

/ AdU(#2)

8

8

9

considerable flexibility first in defining payoff and second in specifying the strategy itself.
A delegation strategy may attempt to balance some of the three conflicting principles:
maximising payoff, maximising opportunities for poor performers to improve and balancing
workload [19].

The objective of the system is to manage goal-driven processes with a specified
interation protocol and communication protocol [OPEN Tasks: Determine agent interaction
protocol; Determine communication protocol]. The system’s organization consists of one
agent for each (human) user; the role of each agent is that of an assistant to its user. The
user interacts with a virtual work area and a virtual diary. The work area contains three
components: the process instances awaiting the attention of the user, the process
instances for which the user has delegated responsibility to another agent and the process
instances that the agent does not understand. The diary contains the scheduled
commitments of the user. The agent manages the work area and may also interact with the
diary.

The Conceptual Architecture

One well-documented class of hybrid architectures is the three-layer, BDI agent
architectures. One member of this class is the INTERRAP conceptual architecture [20],
which has its origins in the work of [21]. In the goal-directed process management system,
however, the agent’s conceptual architecture differs slightly from the INTERRAP
conceptual architecture; it is intended specifically for business process applications. It
consists of a three-layer BDI architecture together with a message area, managed by a
message manager. Access to the message area is given to other agents in the system who
may post messages there and, if they wish, may remove messages that they have posted.
The idea behind the message area is to establish a persistent part of the agent to which the
other agents have access. This avoids other agents tampering directly with an agent’s
beliefs and enables agents to freely remove their messages from a receiving agent’s
message board if they wish. The message area is rather like a person’s office “in-tray” into
which agents may place documents and from which they may remove those documents if
they wish. The agents’ world beliefs are derived either from reading messages received
from a user or from reading the documents involved in the process instance or from
reading messages in the message area. These activities are fundamentally different in that
documents are “passive”; they are read only when information is required. Users and
other agents send messages when they feel like it. Beliefs play two roles. First, they may
be partly or wholly responsible for activating a local or cooperative trigger that leads to the
agent committing to a goal and may thus initiate an intention (e.g. a plan to achieve what a
message asks, such as “please do xyz”). This is part of the deliberative reasoning
mechanism [OPEN Task: Determine reasoning strategy for agents]. Second, they can be
partly or wholly responsible for activating a reactive procedure trigger that, for example,
enables the execution of an active plan to progress. This is part of the reactive reasoning
mechanism.

10

Deliberative Reasoning
The form of plan used here is slightly more elaborate than the form of agent plan described
in [21] where plans are built from single-entry, triple-exit blocks. Powerful though that
approach is, it is inappropriate for process management since in this case whether a plan
has executed successfully is not necessarily related to whether that plan’s goal has been
achieved.

Consider now the management of the same process as in the first case study (Figure 4)
and consider the agent for the Assessor. That agent may have a plan similar to that shown
in Figure 6, which shows how constraints are dealt with in that formalism in which inter-
agent communication [OPEN Task: Determine communication protocol] has to be
considered. Three “fail actions” are shown in Figure AdU” is a hard-wired action that
means “advise the agent’s user” with the corresponding error message signalling that some
calamity has occurred. In this example, the three hard-wired actions indicate that no
acknowledgment was received from the three respective agents within some pre-set time ∆.
No “?” or “A” states are shown in Figure 6; for each of the four sub-goals the “7” should
be entered in lieu of an abort or unknown state.

Reactive Reasoning
Reactive reasoning play two roles in this case study: first, if a plan is aborted then its
abort action is activated; second, if a procedure trigger fires then its procedure is activated
— this includes hard wired procedure triggers that deal with urgent messages such as “the
building is on fire!”. Of these two roles, the first takes precedence over the second.

The Control Architecture

The control architecture is essentially the INTERRAP control architecture. In outline, the
deliberative reasoning mechanism employs the non-deterministic procedure:
• “on the basis of current beliefs — identify the current options,
• on the basis of current options and existing commitments — select the current

commitments (or goals),
• for each newly-committed goal choose a plan for that goal,
• from the selected plans choose a consistent set of things to do next (called the agent’s

intentions)”.

The reactive reasoning mechanism takes precedence over the deliberative reasoning
mechanism. The reactive frequency is the frequency at which an attempt is made to fire all
active reactive triggers. The reactive frequency here is thirty seconds. The deliberative
frequency is the frequency at which the deliberative reasoning mechanism is activated. To
maintain some stability in each user’s work area, the deliberative frequency is prescribed as
five minutes.

11

The System Operation

For goal-directed processes, there may be no way of knowing what the “best” thing to do
next is, and that next thing may involve delegating the responsibility for a sub-process to
another agent[22]. This raises two related issues: selection and delegation – OPEN Task:
Determine the delegation strategy [5].

In the absence of a satisfactory meaning of “best” and with only the performance
knowledge to guide the decisions, the approach taken to plan/activity selection is to ask
the user to provide a utility function defined in terms of the performance parameters. If
this utility function is a combination of (assumed) normal parameters then a reasonable
plan/activity selection strategy [OPEN Task: Identify agents’ goals] is given a goal to
choose each plan (or activity) from the available plans (activities) with the probability that
that plan (activity) has the highest expected utility value. Using this strategy even poor
plans have a chance of being selected, and, maybe, performing better than expected.
Contract nets [OPEN Technique: Contract nets] with focussed addressing are often used
to manage semi-manual or automatic delegation.

The selection of a plan to achieve a next goal typically involves deciding what to do
and selecting who to ask to assist in doing it. The selection of what to do and who to do it
can not be subdivided because one person may be good and one form of task and bad at
others. So the “what” and the “who” are considered together. The system provides
assistance in making this decision.

There are two basic modes in which the selection of “who” to ask is done. First the
authoritarian mode in which an individual is told to do something. Second the
negotiation mode in which individuals are asked to express an interest in doing something,
a mode implemented using contract nets with focussed addressing [23]. When contact net
bids are received, the successful bidder has to be identified. The use of a multi-agent
system to manage processes expands the range of feasible strategies for delegation from
the authoritarian strategies described above to strategies based on negotiation between
individuals. Negotiation-based strategies that involve negotiation for each process
instance are not feasible in manual systems for everyday tasks due to the cost of
negotiation. If the agents in an agent-based system are responsible for this negotiation
then the cost of negotiation may be negligible.

If the agent making a bid to perform a task has a plan for achieving that task, then the
user may permit the agent to construct the bid automatically. A bid consists of the five
pairs of real numbers (Constraint, Allocate, Success, Cost, Time). The pair constraint is an
estimate of the earliest time that the individual could address the task (i.e. ignoring other
non-urgent things to be done) and an estimate of the time that the individual would
normally address the task if it “took its place in the in-tray”. The pairs Allocate, Success,
Cost and Time are estimates of the mean and standard deviation of the corresponding
parameters as described above.

A delegation strategy is a strategy for deciding who to give responsibility to for doing
what. A user specifies the delegation strategy that is used by the user’s agent to evaluate
bids. In doing this the user has considerable flexibility first in defining payoff and second
in specifying the strategy itself. Practical strategies in manual systems can be quite

12

elementary; delegation is a job which some humans are not very good at. A delegation
strategy may attempt to balance some of the three conflicting principles: maximising payoff,
maximising opportunities for poor performers to improve and balancing workload. Payoff is
defined by the user and could be some combination of the expected value added to the
process, the expected time and/or cost to deal with the process, and the expected likelihood
of the process leading to a satisfactory conclusion [24].

Assessment

The applications built are distributed multiagent systems. This enables the management of
complex tasks to be handled as each node is individually responsible for the way in which
it goes about its business. That is, the plan in each agent only has to deal with the goals
that that agent has to achieve. For example, Figure 6 shows a complete high-level plan for
an Assessor agent. This simplifies the design of plans for the agents. As a system built
from autonomous components, each node in the goal-driven system has to cope with the
unexpected failure of other nodes. This complicates the design of the plans.

In the delegation strategy, an over-riding principle is to determine how delegation is to
be dealt with no matter what parameters are used to support it. For example, if A delegates
the responsibility for a sub-process to B who, in turn, delegates the same sub-process to C
then should B advise A of this second delegation — thus removing B from the
responsibility chain — or should B remain in the responsibility chain?

Distributed, goal-driven systems are considerably more expensive (approximately four
times the programming effort) to build than task-driven systems. Having made this
investment, dividends flow from the comparative ease by which new processes are
included, in that only those agents involved in a process need to develop plans to cope
with that process. There is also a negative here. The system has grown around a principle
of personalisation i.e. each individual is responsible for deciding how their agent operates.
This means that similar plans may be constructed at a number of nodes by the users at
those nodes to deal with the same sub-process. One way of managing this is to publish
solutions as they are constructed, but that has not been considered.

Evaluation

To illustrate the differences between the four strategies best, prob, random and circulate
they are are evaluated in a laboratory experiment.

A world has been designed in which the relative performance of these four strategies
are simulated. There are always three individuals in this world. If individuals die (i.e. they
become unavailable) then they are replaced with new individuals. At each cycle—i.e. a
discrete time unit—one delegation is made. There is a natural death rate of 5% for each
individual for each cycle. The payoff of each individual commences at 0 and improves by
10% of “what there is still to learn” on each occasion that an individual is delegated

13

responsibility. So an individual’s recorded payoff is progressively: 0, 0.1, 0.19, 0.271,
0.3439, and so on, tending to 1.0 in the long term. The mean and standard deviation
estimates of expected payoff are calculated as described above using a value of α = 0.6. In
addition, the individuals have a strength of belief of the extent to which they are being
given more work than the other two individuals in the experiment. This strength of belief is
multiplied by a “rebel” factor and is added to the base death rate of 5%. So if work is
repeatedly delegated to one individual then the probability of that individual dying
increases up to a limit of the rebel factor plus 5%. A triple duplication occurs when work
is delegated to the same individual three cycles running. The proportion of triple
duplications is used as a measure of the lack of perceived recent equity in the allocation of
responsibility. The payoff and proportion of triple duplications for the four strategies are
shown against the rebel factor on the top and bottom graphs respectively in Figure 7. The
simulation run for each value is 2 000 cycles. The lack of smoothness of the graphs is
partially due to the pseudo-random number generator used. When the rebel factor is 0.15
(i.e. three times the natural death rate) all four strategies deliver approximately the same
payoff. The two graphs indicate that the prob strategy does a reasonable job at
maximising payoff while keeping triple duplications reasonably low for a rebel factor of
< 0.15. However, prob may only be used when the chosen definition of payoff is normally
distributed. The strategy best also assumes normality; its definition may be changed to
“such that the expected payoff is greatest” when payoff is not normal.

Figure 7. Payoff (left figure) and triple duplications (right figure) against the rebel factor
for a learning rate = 0.1, death factor = 0.05, and α = 0.6.

Summary and Further Work

The application of the extended OPEN Process Framework has been exemplified only in
terms of its support for particular Tasks and Techniques, mostly at the design level. This
worked well. While no changes to the metamodel were found necessary, further details
need to be researched for the process components (particularly Tasks and Techniques)
related to the detailed design of agents; for example, to describe autonomy, intelligence,
social abilities and perhaps mobility. While the initial methdological extensions are
promising, there is still much methodology refinement that is necessary before full

0

0.2

0.4

0.6

0.8

1

0

0.
01

25

0.
02

5

0.
05

0.
07

5

0
.1

0.
15 0
.2

0
.3

0
.4

Best

Prob

Rand
Circ

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0

0.
01

25

0.
02

5

0.
05

0.
07

5

0
.1

0.
15 0
.2

0
.3

0
.4

Best
Prob

Rand

Circ

14

methodological support for agent-oriented software development becomes commercially
available. Proposed extensions (new Tasks and Techniques for OPEN) have been
illustrated in two case studies of business processes. The selection of tasks and
delegation of responsibility amongst the agents were also considered. Future evaluations
need to create a full lifecycle development process, which will include not only technical
but management issues including a well-specified lifecycle model, such as the Contract-
Driven Lifecycle (CDLC) model generally advocated for use in OPEN process instances.
The CDLC (or other) lifecycle model adds concepts such as stages, phases, builds,
milestones as project management focussed sequencing superimposed upon the technical
Activity/Task interfacing and sequencing discussed here.

Acknowledgements

This is Contribution number 02/08 of the Centre for Object Technology Applications and
Research (COTAR) of the University of Technology, Sydney

References

1. Jennings, N. (2001). Agent of change. Application Development Advisor, 5(3), 6.
2. Wooldridge, M. (1997). Agent-based software engineering, IEE Procs Software Eng.,

144, 26-37.
3. Jennings, N.R. and Wooldridge, M. (2001). Agent-oriented software engineering. In J.

Bradshaw (ed.), Handbook of agent technology (in the press). Cambridge, MA,
USA: AAAI/MIT Press.

4. Wooldridge, M., Jennings, N.R. and Kinny, D. (2000). The Gaia methodology for agent-
oriented analysis and design. J. Autonomous Agents and Multi-Agent Systems, 3,
285-312.

5. Debenham, J. and Henderson-Sellers, B. (2002). Designing agent-based process systems
– extending the OPEN Process Framework, in Intelligent Agent Software
Engineering (ed. V. Plekhanova), Idea Group Publishing (in press)

6. Wooldridge, M. and Ciancarini, P. (2001). Agent-oriented software engineering: the state
of the art. In Agent-oriented software engineering. P. Ciancarini and M. Wooldridge
(eds.) (pp. 1-28). Berlin, Germany: Springer Verlag.

7. Odell, J., Van Dyke Parunak, H. and Bauer, B. (2000). Extending UML for agents. In G.
Wagner, Y. Lesperance and E. Yu (eds.), Procs. Agent-Oriented Information
Systems Workshop, 17th National Conference on Artificial Intelligence (pp. 3-17).
Austin, TX, USA.

8. OMG (1999). “OMG Unified Modeling Language Specification”, Version 1.3, June 1999,
OMG document ad/99-06-09 [released to the general public as OMG document
formal/00-03-01 in March 2000]. Available at http://www.omg.org

15

9. OMG (2001). OMG Unified Modeling Language Specification, Version 1.4, September
2001, OMG document formal/01-09-68 through 80 (13 documents) [Online].
Available http://www.omg.org

10. Graham, I., Henderson-Sellers, B. and Younessi, H. (1997). The OPEN Process
Specification. Harlow, UK: Addison-Wesley.

11. Firesmith, D.G. and Henderson-Sellers, B. (2002). The OPEN Process Framework. An
Introduction. Harlow, UK: Addison-Wesley.

12. Rupprecht, C., Fünffinger, M., Knublauch, H. and Rose, T. (2000). Capture and
dissemination of experience about the construction of engineering processes, Procs
CaiSE 2000, LNCS 1789, 294-308

13. Henderson-Sellers, B., Simons, A.J.H. and Younessi, H. (1998). The OPEN Toolbox of
Techniques. Harlow, UK: Addison-Wesley.

14. Jennings, N.R., Sycara, K. and Wooldridge, M. (1998). A roadmap of agent research
and development. Int. Journal of Autonomous Agents and Multi-Agent Systems, 1
(1), 7-38.

15. Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P. and Odgers, B. (2000).
Autonomous agents for business process management. Int. J. Applied Artificial
Intelligence, 14 (2), 145-189.

16. Koudouridis , G., Corley, S., Dennis, M., Ouzounis , V., Van Laenen, F., Garijo, F. and
Reynolds, H. (2001). Communications management process integration using
software agents: a specification of a framework for agent oriented workflow
management systems. EURESCOM Project P815.
http://www.eurescom.de/public/projectresults/P800-series/815d1.htm

17. Muth, P., Wodtke, D., Weißenfels , J., Kotz D.A. and Weikum, G. (1998). From
centralized workflow specification to distributed workflow execution. J. Intelligent
Information Systems, 10 (2), 159-184.

18. Debenham, J.K. (2000). Supporting strategic process. In Proceedings Fifth
International Conference on The Practical Application of Intelligent Agents and
Multi-Agents (pp. 237-256). Manchester, UK.

19. Wooldridge, M. and Jennings, N.R. (1998). Pitfalls of agent-oriented development. In
Procs. 2nd Int. Conf. on Autonomous Agents (pp. 385-391). Minneapolis/St. Paul,
MN, USA.

20. Müller, J.P. (1996). The design of intelligent agents. Berlin, Germany: Springer-Verlag.
21. Rao, A.S. and Georgeff, M.P. (1995). BDI agents: from theory to practice. In Procs. First

International Conference on Multi-Agent Systems (pp. 312-319). San Francisco, CA,
USA.

22. Lind, J. (2001). Iterative software engineering for multiagent systems: the Massive
method. Berlin, German: Springer Verlag.

23. Weiss, G. (Ed). (1999). Multi-agent systems. Cambridge, MA, USA: The MIT Press.
24. Koriche, F. (1998), Approximate reasoning about combined knowledge. In Intelligent

Agents IV, Singh M.P, Rao, A. and Wooldridge, M.J. (Eds.), Springer Verlag.

