

Agents, Goals, and Quality
in a Structured Requirements Engineering Framework

- a case study -

Paolo Donzelli

Presidenza del Consiglio dei Ministri
Ufficio per l’Informatica, la Telematica e la Statistica

Via della Stamperia 8, 00187 Roma, Italy
p.donzelli@governo.it

Abstract. The paper presents a process modelling-based Requirements Engineering
Framework, where advanced requirements engineering techniques are combined with
software quality modelling approaches to better assist and drive analysts and stakeholders to
an early definition and validation of the desired system functionality and quality attributes,
while supporting the redesign of the application context to better exploit the new system’s
capabilities.
As a case study, the framework is applied to support the requirements engineering process
for a Synthetic Environment. Synthetic Environments are complex software-intensive
simulation systems, which are increasingly used to support vitally important operational,
political and economic decisions, in a variety of industrial and governmental settings.

1 Introduction

As technologies advance, empowering designers to envision systems that increasingly tend to
become integral parts of the encompassing organisational processes, attention is being more and
more focused on the very early phases of Requirements Engineering (RE). The development of a
successful system relies, in fact, on a firm understanding of the of the organisational context in
which the system has to function: RE has to treat the system and its context as a larger social-
technical system, whose overall needs are the ones to be fulfilled [1].

Consequently, in RE appropriate process modelling techniques are typically advocated [2,3],
for helping understand the organisational context (as it exists), envision possible solutions (as it
could exist with the new system in place), and compare feasible alternatives.

In such a perspective, the paper introduces a process modelling-based Requirements
Engineering Framework, where requirements engineering techniques (agents and goals), and
quality modelling methods, are combined to support discovery, verification and validation of both
user-oriented and organisation-oriented system requirements [4,5], facilitating and driving
continuous dialogue and negotiation between the analysts and the stakeholders.

The remainder of this paper is organised as follows. Section 2 introduces the Framework, by
briefly describing its main characteristics. Section 3 elaborates some of the aspects introduced in
Section 2, and specifies the adopted notation, by showing some extracts from a practical case
study. Finally, Section 4 concludes by discussing some of the observed benefits and future
activities.

mailto:donzelli@governo.it

2. The Requirements Engineering Framework

The framework is designed to allow the analysts to deal with the WHAT and the HOW of the
organisational context (i.e. the tasks performed by the organisation, and the way in which they are
performed), but also to explicitly model the WHY (i.e. the underlying reasons), expressed in
terms of organisational goals. This enables the analysts and the stakeholders to focus on the
‘right’ system for a given context, to design (or re-design) the encompassing process that fully
exploits the system’s capabilities [6], and to improve their capacity to identify, justify and
validate the system requirements [2,3,7].

The framework tackles the modelling effort by breaking the activity down into more
intellectually manageable components, and by adopting a combination of different approaches, on
the basis of a common conceptual notation.

Agents are used to model the organisation [2,8]. The organisational context is modelled as a
network of interacting agents (any kind of active entity, e.g. teams, humans and machines, one of
which is the target system), collaborating or conflicting in order to achieve both individual and
organisational goals. The agent abstraction provides the analysts with a powerful modelling
mechanism, fundamental in eliciting, through an effective involvement, the intentions, the
knowledge and the behaviours the “real” organisational actors. Goals [2,3,9] are used to model
agents’ relationships, and, eventually, to link organisational needs to system requirements.
According to the nature of a goal, a distinction is made between hard goals and soft goals. A goal
is classified as hard when its achievement criterion is sharply defined (e.g. “buy a computer”); for
a soft goal, instead, it is up to the goal originator, or to an agreement between the involved agents,
to decide when the goal is considered to have been achieved (e.g. “buy a fast computer”). In
comparison to hard goals, soft goals can be highly subjective and strictly related to a particular
context; they enable the analysts to highlight quality issues (e.g. the concept of “fast computer”)
from the outset, making explicit the semantics assigned to them by the stakeholders. While a hard
goal will lead to a set of functions (functional requirements) that the software system will have to
provide, a soft goal will be refined into more precise sub-ordinate soft goals, for reducing its
initial fuzziness, until, eventually, it can be expressed as a set of hard goals and constraints upon
them (non-functional requirements).

Distinguishing goal modelling from organisational modelling, and then, further distinguishing
between hard goal modelling and soft goal modelling, helps to reduce the complexity of the
modelling effort. The proposed framework, therefore, supports three inter-related modelling
efforts (see Figure 1): the organisational modelling, the hard goal modelling and the soft goal
modelling.

During Organisation Modelling, the organisational context is analysed and the agents and
their goals identified. Any agent may generate its own goals, may operate to achieve goals on the
behalf of some other agents, may decide to collaborate with other agents for a specific goal, and
might clash on some other ones. The found goals will then be refined, through interaction with the
involved agents (i.e. the stakeholders), by hard goal and soft goal modelling.

The Hard Goal Modelling seeks to determine how the agent can achieve a hard goal placed
upon it, by decomposing them into more elementary subordinate hard goals and tasks (where a
task is a well-specified activity, leaving little room for initiative). Of course, the granularity of
refinement of a hard goal into subordinate hard goals and tasks depends on the level of capability
and autonomy of the agent. So, for example, while the hard goal “buy a computer” could be clear
enough for a human agent, it might need to be translated within an organisation into a set of

actions (tasks), necessary to procure a computer: “organise a competitive tender”, “inform the
bidders”, etc.

RE
Framework

constraints
hard goals

m
apping to

organisation so
ft

go
als

hard goals

Organisational
Structure
Modelling

Hard Goal
Modelling

Soft Goal
Modelling

Development
Flow

Verification
Flow

Elicitation &
Validation

Flow

stakeholders &
analysts

Fig.1. The Requirements Engineering Framework.

The Soft Goal Modelling aims at producing the operational definitions of the soft goals that
emerged during the organisational modelling, sufficient to capture and make explicit the
semantics that are usually assigned implicitly by the involved agents [10,11,12] and to highlight
the system quality issues from the start. A soft goal is refined in terms of subordinate soft goals,
hard goals, tasks and constraints. Resulting soft goal, in turn, will have to be progressively refined
until a set of hard goals, tasks and constraints is obtained (until all the “soft” aspects are dealt
with). Constraints are associated with hard goals and tasks to specify the corresponding quality
attributes. So, for example, the soft goal “buy a fast computer”, beside spawning the hard goal
“buy a computer”, will lead also to a set of constraints (e.g. CPU speed, memory size, cache
characteristics, etc.) specifying the concept of fast computer. In other words, for each soft goal,
the resulting set of constraints represents the final and operationalised views of the involved
quality attributes, i.e. the quality measurement models that formalise the attributes for the specific
context [10,11].

As shown in Figure 1, the three discussed modelling activities do not exist in isolation, rather

they are different views of the same modelling effort. In particular, as shown by the Development
Flows, information discovered in one model may feed the others, in a continuous loop. The
analysts can in such a way handle in a controlled fashion a large amount of information, while
building a model of the organisational context at the desired level of detail. Through continuous
interaction with the stakeholders, supported by the different models, the analysts will deal first
with the high level organisational structure, then will descend step by step into the details of
application context, until the focus will be placed upon the single agents and their role within the
organisation.

The other two other kind of information flows shown in Figure 1 are the Verification and the
Elicitation & Validation Flows. Verification Flows indicate activities that attempt to guarantee
consistency between models, for example, to verify that all the hard goals emerging from the soft
goal models are properly addressed by the hard goal models, whereas Elicitation & Validation
Flows show where interaction with the stakeholders occurs.

Although strongly based upon I*, the modelling framework suggested by Eric Yu et al. [2], it
is worth noting that the Framework suggested in this paper differs from it in many respects. Apart
from leaving out some of the more sophisticated mechanisms, e.g. the distinction between agent,
role and position, the proposed Framework introduces, for example, some conceptual (and
therefore notational) changes regarding the “dependency links”. A dependency link, in fact, as
shown in the next Section, is here used to establish a connection between an active modelling
item (i.e. agent) and a passive one (i.e. soft and hard goals, tasks and resources): a dependency
between agents as described by I* can therefore be established only by combining dependency
links. This new approach guarantees more flexibility in dealing with modelling problems, for
example to represent multi-agent dependencies, to build the model through continuous refinement
and to bridge the different modelling efforts. The main difference, however, relies upon the role
played by soft goals. Soft goals, in fact, as suggested by I* can provide strong support in
reasoning between alternatives since the early stages of a project, but they can also provide a
systematic and organise way of representing and handling non-functional requirements, while
dealing with functional ones. The proposed Framework, thus, clearly recognises this capability,
making of soft goal modelling, together with organisation modelling and hard goal modelling,
one of the main enterprise modelling efforts. In particular, by exploiting methods proper of
quality modelling approaches [10,11,12], developed and normally used in isolation, soft goals are
explicitly “resolved” and translated into implementable (and agreeable upon) functionalities and
constraints (non-functional requirements), concerning both the organisation and the target
software system.

3. Applying the Requirements Engineering Framework

Synthetic Environments (SEs) are complex software-intensive systems [5], which usually
combine real equipments and real (human) operators with computer-based simulation models to
provide greater flexibility and capability in supporting various aspects of a business enterprise.
The classical application for SEs is training, where they offer potential cost and flexibility
benefits. However, they have also been exploited in a number of other application areas: from
equipment procurement (to inform the various life-cycle phases from feasibility to disposal), to
operational support, to policy and plan formulation.

SEs are becoming vitally important in a variety of industrial and government settings, as
knowledge acquisition and decision support tools, leading to a growing awareness of the need to
define and validate them adequately [4]. It is crucial, in fact, that the requirements engineering
process for a SE be able to ensure that the SE is suitable for its intended use. In other words, it is
crucial that the type, the amount, and the quality of the information provided by a SE reflect the
specific needs of the business process it supports. For such a strict interdependency with its
application context, a SE can be considered as a suitable test bed for the introduced requirements
engineering framework.

3.1. The case study

In the following, the framework is applied to support the requirements engineering process for a
hypothetical SE, which is needed to investigate the feasibility of providing an aircraft with a
infrared pod: an infra-red camera which is normally used on aircraft and helicopters dedicated to
“search & rescue” and “anti-fire” roles to improve the air crew vision capability. Although
hypothetical, the case study is firmly based upon a real application, where SEs have been used for
a similar purpose [13]. In this paper, for brevity, the presentation is limited to a few extracts from
this example application [5].

In Figure 2, a simple organisation model, representing the initial problem, is shown. Circles
represent Agents, and dotted lines are used to bound the internal structure of complex agents; that
is, agents containing other agents. Consequently, in Figure 2, the Feasibility Study is a complex
agent, modelling the business process that has to investigate the feasibility of providing an aircraft
with the infrared pod, whereas the Project Leader is a simple agent, acting within the Feasibility
Study.

Project
Leader

evaluate
infrared pod
integration
feasibility

Feasibility
Study

perform a
quick & low cost

study

Fig. 2. The initial organisational model to perform the Feasibility Study.

Agents interact by exchanging goals and tasks. As shown in Figure 2, soft goals are
represented by clouds, whereas, as show in the next Figures, hard goals are represented by
rounded-rectangles and tasks by hexagons. Goals, tasks and agents are connected by dependency-
links, represented by arrowhead lines. An agent is linked to a goal when he needs that goal to be
achieved; a goal is linked to an agent when it depends on that agent to be achieved. Similarly, an
agent is linked to a task when it wants the task to be performed; a task is linked to an agent when
the agent has to perform the task. By combining dependency-links, we can establish a dependency
among two or more agents [2]. Thus, in Figure 2, the Project Leader, that here we have assumed
as the agent in charge of the feasibility study, receives, from the enclosing context (out of the

scope of our analysis), the soft goals “evaluate the infrared pod integration feasibility” and
“perform a quick and low cost study”. These goals can be seen as the result of the decision, made
at a higher organisational level, of developing a feasibility study to gather more information
before proceeding in the project.

Each agent works as a goal transformer. Having received a goal, an agent will operate
according to its own experience, knowledge or position within the organisation, in trying to
achieve the goal. It will decide how to achieve the goal in terms of tasks and subordinate goals,
and may choose to depend on other agents, by passing out some of these tasks and subordinate
goals. An agent’s behaviour can be analysed through and captured by goal modelling. As
example, Figure 3 shows the “evaluate infrared pod integration feasibility” soft goal model,
representing how the Project Leader will act to achieve the corresponding goal.

In particular, Figure 3 shows how the soft goal “evaluate infrared pod integration feasibility”
spawns three subordinate soft goals: “evaluate integration risks”, “evaluate final integration time
& cost”, and “evaluate technical feasibility”. These subordinate soft goals are further
decomposed. In reverse order, the last soft goal leads to further subordinate soft goals such as
“evaluate avionics integration feasibility”, and “evaluate software integration feasibility”. The
soft goal “evaluate final integration time & cost” leads to the hard goals “estimate final software
integration time & cost”, and “estimate final avionics integration time & cost”, together with the
associated constraint (a rounded-rectangle with one line) stating that a 20% error (for a feasibility
study) can be tolerated. Finally, the soft goal “evaluate integration risks” leads to the soft goal
“evaluate compatibility with other projects”, indicating the need of assessing this project in the
wider contexts of all the activities aimed at improving the aircraft.

estimate final
avionics

integration
time&cost

evaluate
infrared pod
integration
feasibility

A

evaluate
final integration

time&cost

A

A

A

evaluate
technical
feasibility

evaluate avionics
integration
feasibility

A
A

evaluate
software integration

feasibility
20% error

evaluate
integration risks

A

evaluate
compatibility

with other projects

A A

......
A

estimate final
software

integration
time&cost

Fig.3. The “evaluate infrared pod integration feasibility” Soft Goal Model.

Again, as in Figure 2, the arrowhead lines indicate dependency links. A soft goal depends on
a sub-ordinate soft goal, hard goal, task or constraint when it requires that goal, task or constraint
to be achieved, performed, or implemented in order to be achieved itself. A dependency link tells
us that some kind of dependency exists, but it does not go any further. For example, it does not
allow the modeller to specify alternative, or collaborating refinement paths. For this reason, when

necessary, a dependency link can be refined into an AND-link or into an OR-link. As shown in
Figure 3, the “A” annotation on each dependency link indicates that all the corresponding goals
and constraints must be satisfied (“AND” refinement); as it will be shown in the next Figures, the
“O” annotation on each dependency link indicates that at least one of the corresponding goals and
constraints must be satisfied (“OR” refinement).

Thus, the soft goal model in Figure 3 shows how the abstract concept of “feasibility” can be
reified, making it relevant to the specific context, captured and formalised, making it eventually
reusable in similar projects.

In Figure 3, the items in bold outline are those that the Project Leader will pass out, having
decided to depend on other agents for their achievement. For such a reason, they are not further
analysed, instead they will be refined as further agreement between the Project Leader and the
agent that will be appointed of their achievements. These may be items for which the Project
Leader thinks he better get some support, or which may be out of the scope of his responsibility.
So for example, the Project Leader can decide to ask support to an expert of avionics (e.g. to
“evaluate avionics integration feasibility”), to get help from a software expert (e.g. to “evaluate
software integration feasibility”), and to signal to the external context the necessity to “evaluate
the compatibility with other projects”.

Project
Leaderevaluate

infrared pod
integration
feasibility

Airborne
SW

Expert

Avionics
System
Expert

evaluate
avionics

integration
feasibility

Feasibility
Study

evaluate
software

integration
feasibility

............
estimate final

avionics
integration
time&cost20% error

evaluate
compatibility

with other projects

Fig.4. The enriched organisational model to perform the Feasibility Study.

The results of this analysis allow us to enrich the initial organisation model in Figure 2,
leading to the model in Figure 4, where two new agents have been introduced, the Avionics
System Expert and the Airborne SW Expert. In particular, Figure 4 shows how the Project Leader
has decided to depend upon the Avionics System Expert for the soft goal “evaluate avionics
integration feasibility” and the hard goal “estimate the final avionics integration time & cost”
(with a constraint stating that a 20% of error can be tolerated), and upon the Airborne SW Expert
for the soft goal “evaluate the software integration feasibility”. In addition, it is also shown how a
new goal is emerging from the Feasibility Study, i.e. “evaluate compatibility with other projects”,
placing new responsibilities upon the encompassing context.

At this point, the analysis can be carried on by analysing, for example, how the Avionics
System Expert will try to achieve the soft goal “evaluate avionics integration feasibility”. The
resulting soft goal model is shown Figure 5.

collocate the
infrared pod in

its avionics
environment

high realism of
the infrared pod

avionics
 environment

monitor
avionics
system

behaviour

 crew
judgement

A

observe the infrared
pod in its avionics

environment

A
A

A

A

report data
about

avionics bus
load

A A

.....

evaluate crew
workload

judgement in
operative
conditions

A A

evaluate avionics
integration feasibility

Fig.5. The “evaluate avionics integration feasibility” Soft Goal Model.

In order to achieve the received soft goal “evaluate avionics integration feasibility”, the
Avionics System Expert will need to “observe the infrared pod in its avionics environment”, and to
“evaluate the crew workload”. The first soft goal will spawn some precise goals. That is, the hard
goal “collocate the infrared pod in its avionics environment”, with the associated soft goal “high
realism of the infrared pod avionics environment”, and the hard goal “monitor avionics system
behaviour”, which leads, among the others, to the task “report data about avionics bus load”. The
second one, instead, to be achieved, will require a “crew judgment” hard goal and the soft goal
“judgment in operative conditions”.

Again, as in Figure 3, also in Figure 5, the goals and tasks in bold outline are those that the
Avionics System Expert will pass out, and they are not further refined. In particular, see Figure 6,
the agent thinks that these goals can be accomplished only through the availability of a synthetic
environment.

The results of the analysis in Figure 5 (and of a similar one performed for the Airborne SW
Expert) have been used to produce the further refined organisation model illustrated in Figure 6.
Here a new agent Synthetic Environment has been added, and it is shown how the Project Leader,
the Avionics System Expert and the Airborne Software Expert interact with each other and with
the new agent to collect the information necessary to assess the feasibility of equipping the
aircraft with the infrared pod.

At this point of the analysis, the focus turns upon the Synthetic Environment, and again, the
analysis has to start from the goals and the tasks placed upon it. In particular, in this case, it is
evident that some initial decisions about its structure can be made: the hard goal “crew
judgment”, in fact, clearly suggest that a new agent, i.e. a crew, will have to be taken into
account. It is, in fact, typical of SEs to encompass human operators who have to interact with the
simulated environment, but who are not direct stakeholders of the process that the SE is designed
to support. In this case, for example, the crew is part of the overall SE, so that the effects of the
infrared pod integration on crew performance can be determined, but it is the Project Leader who

is the primary (feasibility study) process owner. In other words, the Synthetic Environment may
be modelled as a complex agent, encompassing other two simple agents, the Flight Test Crew and
the Avionics System Rig (i.e. a particular kind of ground-based equipment, capable of simulating
the characteristics of the aircraft and of its components).

Project
Leader

evaluate
infrared pod
integration
feasibility

Airborne
SW

Expert

Avionics
System
Expert

evaluate
avionics

integration
feasibility

collocate the
infrared pod in

its avionics
environment

judgment in
operative
conditions

high realism of
the infrared pod avionics

 environment

Feasibility
Study

SE

........

crew
judgement

.....

evaluate
software

integration
feasibility

......

provide
airborne

computers
.....

......

evaluate final
avionics

integration
time&cost

20% error

report data
about

avionics bus
load

evaluate
compatibility

with other projects

Fig. 6. The even more enriched organisational model to perform the Feasibility Study.

Project
Leader

evaluate
infrared camera

integration
feasibility

Airborne
SW

Expert

Avionics
System
Expert

Avionics
System Rig

Flight Test
Crew

evaluate
avionics

integration
feasibility

collocate the
infrared pod in

its avionics
environment

judgment in
operative
conditions

try the pod in
flight conditions

high realism of
the infrared pod avionics

 environment

flight conditions
realism

Feasibility
Study

SE trained

SE

........

crew
judgement

.....

evaluate
software

integration
feasibility

......

provide
airborne

computers
.....

......

evaluate final
avionics

integration
time&cost

20% error

report data
about

avionics bus
load

evaluate
compatibility

with other projects

Fig. 7. The final organisational model to perform the Feasibility Study.

As any other agent, also the Flight Test Crew on its turn will be able to generate its own

goals. In particular, in order to be able to express its opinion, the Flight Test Crew will require the
possibility of ‘flying’ the new pod, which places two other goals on the Avionics System Rig: a
hard goal, “try the pod in flight conditions”, and a soft goal, “flight condition realism”. The
resulting, and final organisational model is shown in Figure 7.

Finally, by modelling and refining the goals imposed on the Avionics System Rig, its
requirements can be obtained. For example, by modelling the soft goals “high realism of the
infrared pod avionics environment” and “flight conditions realism”, a clear idea of the needs of
the Avionics System Expert and Flight Test Crew agents can be gained and translated into
functional and non-functional requirements.

These two goals, in particular, provide the occasion to show how soft goals can act as a useful
tool to detect and resolve clashing requirements, as discussed in the next section.

3.2. Soft goals as a mean to detect and resolved clashing requirements

During Soft Goal Modelling the analysts and the stakeholders tend to clarify very early in the
project concepts that are usually left blurred until implementation force to make some choice.
Soft goals become a knowledge representation vehicle that: 1) encourages the interaction between
the analysts and the stakeholders, and among the stakeholders themselves; 2) leads towards a
common terminology; 3) supports reasoning about trade-offs; 4) allows freezing temporary
solutions, and formalising final decisions.

Soft goal models therefore allow the analysts to early detect clashing requirements, which
usually are hidden behind generic and left-implicit assumptions, and, at the same time, provide an
operational way to resolve them, by reconciling the different stakeholders’ points of view.

As example of this capability, let’s turn to Figure 7, and analyse the soft goal “flight
conditions realism“ placed upon the Avionics System Rig by the Flight Test Crew. In other words,
we have to understand what the Flight Test Crew means by “flight conditions realism”, and to see
if this is compatible with the view of the other agents, for example the Avionics System Expert.
The answer may be found by analysing the soft goal models in Figures 8 and 9.

Figure 8 illustrates what the Flight Test Crew means when it requires realistic flight
conditions. Here, for the sake of the example, only two of the possible related aspects
(subordinate soft-goals) are taken into account: the realism of the adopted sensors and aircraft
simulation models, and the realism of the flight crew interface. For the first point, the Flight Test
Crew requires to be able to fly the complete aircraft flight envelope, and to employ quite precise
altitude sensors, being aware of the relevance of the new system in low-altitude missions. For the
second point, an extensive use of real equipments is required. For example, the crew will require
the Avionics System Rig to have “real stick, throttle and selectors” and “real displays”, to have a
“wrap-around projected display” to show the external environment and to have a motion platform.

Figure 9, instead, illustrates what the Avionics System Expert means when he/she requires a
realistic infrared pod avionics environment. In this example, only three subordinate sub-goals are
analysed. One, the “avionics systems realism”, is matter of concern of only the Avionics System
Expert, so no conflicts with the Flight Test Crew arise. The other two lead instead to problems, as
highlighted in both the figures by bold arrows.

A
A

Flight Crew
interface
realism

external
context
realism

commands &
controls
realism

A

stick, throttle
and selectors

realism displays
realism

A
A

real
stick, throttle
and selectors

real
displays

AA

A

..... wrap-around
projected display

A

A

ASR
movements

A
A

.....
A.....

flight conditions realism

A

sensors &
aircraft model

realism

A

5% error
tolerance for

altitude sensors

.....A

aircraft model to
provide complete

flight envelope

A

A

A

provide a
motion

platform
provide pilot
cockpit view

Fig.8. “Flight conditions realism” for the Flight Test Crew.

In particular, the Avionics System Expert does not assume the availability of a complete flight

envelope as relevant for the project, and thinks that a 10% error for the sensors is more than
sufficient. Furthermore, he or she is open to various implementation solutions for what concerns
the crew interface, at different levels of cost and complexity. For example, for the Avionics
System Expert, there is no difference in using a real stick or a synthetic one (e.g. a computer
joystick).

A

Flight Crew
interface
realism

realism of
commands &

controls

A

stick, throttle
and selectors

realism

displays
realism

A A

real
stick, throttle
and selectors

O O

synthetic
stick, throttle
and selectors

real
displays

O O

external context
realism

A

high realism of
the infrared pod avionics

environment

sensors &
aircraft model

realism
avionics system

realism

AA

.....A

A

.....
A

A

..... Areal
on-board

computers

10% error
tolerance for

sensors
A.....

A

aircraft model to
provide only

basic flight envelope

A

A

real
on-board
data-links

A

synthetic
displays

no external
view

conflict with
Flight Test Crew co

nflic
t w

ith

Flig
ht

Te
st

Crew

Fig.9. “High realism of the infrared pod avionics environment” for the Flight Test Crew.

In this situation, it is therefore clear how soft goals models may help in identifying possible
conflicts, by highlighting similar problems, issues or concepts that different agents intend to
tackle in different ways. In addition, soft goals models also provide a pragmatic way of reasoning
about trade-offs [14], and formalising results. The “resolved avionics environment realism” soft
goal model is illustrated in Figure 10.

So, for example, for what concerns the crew interface, we can assume that, due to cost

limitations (see the initial “perform a quick and lost cost study” soft goal of Figure 2) an interface
less complex than the one required by the Flight Test Crew would be implemented: to employ
real displays only when they are strictly related with the use of the infrared pod, to use a flat-
screen (rather than a wrap-around projected one) to show the external environment, and to avoid
proving a motion platform. This choice, although saving on the equipment, would lead to the need
of employing only crews specially trained in the use of SEs. Such a need is captured by the soft
goal “SE trained” that appears in Figure 7. By further refining this goal, specific constraints and
sub-ordinate goals defining the necessary crew skill can be obtained.

A

resolved
avionics environment

realism

avionics system
realism

A

A

.....
A

real
on-board

computers

A

real
on-board
data-links

A

sensors &
aircraft model

realism

A

5% error tolerance
for altitude sensors

A

aircraft model to
provide basic flight

envelope

A

10% error tolerance
for no altitude

sensors

A
.....

aircraft model to
provide low-altitude

flight capability

A

A

flight crew
interface
realism

realisms of
commands &

controls

A

stick, throttle
and selectors

realism displays
realism

A

A

real
stick, throttle
and selectors

A A

real displays
(when related to the

infrared pod)

external context
realism

.....
A

pilot view
on flat screen

A

degrees of freedom of
the

avionics system rig

A

provide
no movement

A

A

A

.....

provide pilot
cockpit view

Fig.10. The Resolved “Avionics System Rig Realism” Soft Goal Model.

For what concerns the realism of the sensors and of the aircraft model, instead, the
importance of performing low-altitude flights expressed by the Flight Test Crew has been
recognised by the Avionics System Expert, yielding, for example, to a stricter constraint for
altitude sensors (5% error tolerance).

3.3. Further development of the Avionics System Rig

The Framework allows the analysts to model the application context at a social-technical level, by
providing a systematic approach to deal with agents, soft goals, hard goals, and their incremental
refinement. Starting with the high-level organisational goals, through enterprise modelling, the
main requirements for the target software system, the Avionics System Rig, can be obtained,

expressed as a collection of hard goals, tasks, and constraints placed upon it by other agents of the
organisation. Collectively, these hard goals, tasks and constraints form the final result of the
analysis process. As example, some of the hard goals and constraints emerged during the analysis
in the previous Sections are reported in Figure 11.

real
on-board

computers

real on-board
data-links

aircraft model to
provide basic flight

envelope

real
stick, throttle
and selectors

real displays
(when related to

the infrared
camera)

pilot view
on flat screen

provide
no movement

Avionics
System
Expert

Avionics
System Rig

Flight Test
Crew

collocate the
infrared pod in

its avionics
environment

try the pod in flight
conditions

10% error
tolerance for no
altitude sensors

aircraft model to
provide low-
altitude flight

capability

5% error tolerance
for altitude
sensors

derived from the
"resolved avionics environment realism" soft goal

Hard Goals & Constraints

report data
about

avionics bus
load

.......provide pilot
cockpit view

.......

Fig.11. The RE Framework outcome: a Set of Hard Goals, Task and Constraints.

At this point, the analysts have to deal with a purely technical system: the Avionics System
Rig agent. Although it would be possible to carry forward the Framework social-technical
modelling approach within it, which would eventually result in a network of agents performing a
set of tasks, the possibility of incorporating techniques more suitable for dealing with the final,
and purely technical, system requirements has been investigated.

Initial results show in fact that the Framework can be usefully applied as a forerunner to
UML-based [15] approaches. The Framework output, in fact, as set of hard goals and constraints
placed upon the target software system by well-defined agents, not only results to be entirely
consistent with “use-case modelling” (i.e. the front-end activity of any UML-based approach), but
also addresses the need, clearly recognised by both the research community and the business
world, that use-case analysis can benefit substantially from supporting methods, that help to
identify both the actors, which interact with the system, and their motivating goals.

Although details can be found in [5,16], two main points about the suggested approach are
worth of being noticed here. First, UML use-cases offer a systematic and intuitive means of
capturing functional-requirements, so UML use-case modelling results a very effective hard goals
refining strategy, to translate hard goals placed upon the system into functionalities it has to
provide. A hard goal can in fact lead to one or more use-cases, where a use-case is a collection of
possible sequences of interactions (scenarios) between the actor and the system. Importantly, the
possibility of delaying hard goal refinement at the Framework stage, through use-cases at this
level, helps to reduce the detail that must be captured at the social-technical level, thereby
providing greater clarity and abstraction. Second, the constraints emerging from the Framework
allow to enrich and complete use cases, by providing not only a systematic and intuitive means of

capturing and formalising non-functional requirements, but also a very effective means for
combining them with functional requirements. Enriched with constraints and clearly linked to
goals and their originators, UML use-cases models result therefore into conceptual models
suitable to combine functional and non-functional system aspects, and to better support
subsequent development stages.

Some extracts from the Avionics System Rig use-case diagram, developed by using the
SELECT CASE tool, are illustrated in Figure 12, where only the Avionics System Expert agent
and his or her related goals and constraints have been taken into account. Here, by super-
imposing the Framework notation (dotted lines) on to the UML notation, we can illustrate how
use-cases are related to hard goals and constraints. In particular, dotted boxes are used to group
together use-cases contributing to the same hard goal (linked by a ‘spark’), dotted arrows are used
to link constraints to use-cases within which they should be dealt with, and tasks are simply put
close to the use cases that will take their place.

.....
real

on-board
data links

connect pod to avionics system

perform pod on-ground
operations

Avionics System
 Expert

(down)-load
internal software

perform built-in
test procedures

uses

uses

basic flight envelope

track object on ground

object on ground position
acquisition

acquisition supported by
radar altimeter

acquisition supported by
GPS

extends

extends

collocate the
pod in its
avionics

environment

real
on-board

computers

perform pod in-flight
operations

uses

uses

uses

.....
extends

report data
about

avionics bus
load

collect data

aircraft model to
provide low-altitude

flight capability

.....

real displays
(pod related)

aircraft model to
provide basic flight

envelope real
stick, throttle
and selectors

Constraints
derived from

Soft Goal Modelling

pilot view
on flat screen

Hard Goal
derived from

Soft Goal Modelling

provide pilot
cockpit view

Fig.12. The Use-case Diagram for the Avionics System Expert.

First, Figure 12 shows how the whole set of use-cases “connect pod to the avionics sub-
systems”, “perform pod on-ground operations”, and “perform pod in-flight operations” contribute
to the achievement of the Avionics System Expert hard goal “collocate the pod in its avionics
environment”. Then, how the use-case “perform pod in-flight operations”, on its own, aims to
achieve the hard goal “provide pilot cockpit view”, and how the use-case “collect data” is simply
another view of the task “report data about avionics bus load”. Finally, Figure 12 illustrates how
the constraints are associated with the various use-cases. For example, the constraints “real on-
board computers” and “real on-board data links” will affect the way in which the use-case
“connect pod to avionics system” will be performed.

Use-cases may be described in a tabular form [15]. For example, Table 1 gives the
descriptions for one of the use-cases introduced in Figure 12. The rows with a dark background
contain the basic use-case information; that is, the use-case name, the actor, the description, and

the specific intent behind it. Here, for the sake of brevity, only very short descriptions have been
given. The other rows represent additional information, including a specification of the hard goal
that the use-case contributes to achieving, and the non-functional requirements derived from the
constraints.

Table 1. Tabular Description of the Use-case “connect pod to avionics system”.

Use Case Feature Feature Description

Name Connect pod to avionics system
Actor Avionics System Expert

Description
• Connect power cable
• Connect discrete-signal links
• Connect bus-data link

Intent To connect the pod to the avionics system
High-level Goal Collocate the Pod in its avionics environment

Pre-condition Pod available
Post-condition Pod connected to avionics system
Non-functional
Requirements

• ASR to employ real on-board computers
• ASR to employ real data/power cables
• <…..>

The further system development according to UML is outside the scope of this work.
However more details on how UML can be used as a modelling technique to produce a
conceptual (analysis) model of the Avionics System Rig are in [16]

4. Conclusions and Future Work

The described application example demonstrates the feasibility of the suggested approach, and the
benefits it offers during the early phases of requirements engineering, when the analysts and the
stakeholders have to cooperate to understand and reason about the organisational context within
which the new system has to function, in order to identify and formalise not only the system
requirements, but also the organisational setting that better exploits the new system’s capabilities.

In particular, benefits can be observed in terms of requirements discovery and early
validation. Discovery and validation are improved because of the visibility of decisions made by
the stakeholders, resulting from explicit organisation and goal modelling. Each type of the
framework model provides in fact a specific knowledge representation vehicle that the analyst can
use to interact with the stakeholders, in order to capture requirements, reason about them and,
eventually, reach an accepted formulation. In other terms, soft goal models force the stakeholders
to reason about their own concepts of quality (for example, the concept of “realism” as in Figure
10), hard goal models allow the stakeholders to understand and validate their role within the
organisation, whereas organisation models provide the management with a clear view of how the
business process will be changed, or affected, by the introduction of the new system (see Figure
7). The resulting models also suggest that the Framework offers potential benefits in the post-
deployment phase. The clear links established between organisational goals and system
requirements, in fact, allow the analysts to quickly identify the influence of organisational
changes on the final system requirements, supporting both system maintenance and re-use in
different application contexts.

Finally, the general principles upon which the Framework is based allow it to be deployed for
a larger class of computer-based information systems, beyond SEs. For example, in [17], it has
been applied to define the requirements for a workflow-based document management system,
whereas in [18] it has been adopted to analyse the organisational impact and advantages of

introducing a corporate smart card as enabling platform for accessing and using different e-
services delivered by the organisational IT system (e.g. digital signature, certified e-mail,
documents management systems, etc.).

References

1. Fickas, S., Helm, B.R. “Knowledge Representation and Reasoning in the Design of Composite
Systems”, IEEE Transactions on Software Engineering, Vol. 18, N. 6, June 1992.

2. Yu, E. “Why Agent-Oriented Requirements Engineering” Proceedings of 3rd Workshop on
Requirements Engineering For Software Quality, Barcelona, Catalonia, June 1997.

3. Loucopulos, P., Karakostas, V. System Requirements Engineering. McGraw Hill, UK, (1995).
4. Donzelli, P., Moulding M.R. “Developments in Application Domain Modelling for the Verification and

Validation of Synthetic Environments: A Formal Requirements Engineering Framework”, Proceedings
of the Spring 99 Simulation Interoperability Workshop, Orlando, FL, March 1999.

5. Donzelli, P., Moulding M.R. “A Unified Approach to the Verification, Validation and Accreditation of
Synthetic Environments: A Requirements Engineering Framework”, Cranfield University Technical
Report SE027E/TR1 Version 1, December 1999.

6. Hammer, M., Champy, J. “Reengineering the Corporation: A Manifesto for Business Revolution”,
Nicholas Brealey Publishing, London, (1995).

7. Dardenne, A., Van Lamsweerde, A., Fickas, S. “Goal-Directed Requirements Acquisition” Science of
Computer Programming, Vol. 20, North Holland, 1993.

8. D'Inverno M., Luck, M. “Development and Application of an Agent Based Framework” Proceedings of
the First IEEE International Conference on Formal Engineering Methods, Hiroshima, Japan, 1997.

9. Dardenne, A., Van Lamsweerde, A., Fickas, S. “Goal-Directed Requirements Acquisition” Science of
Computer Programming, Vol. 20, North Holland, (1993).

10. Basili, V. R., Caldiera, G., and Rombach, H. D., “The Goal Question Metric Approach”, Encyclopedia
of Software Engineering, Wiley&Sons Inc., 1994.

11. Cantone, G., Donzelli P. “Goal-oriented Software Measurement Models”, European Software Control
and Metrics Conference, Herstmonceux Castle, East Sussex, UK, April 1999.

12. Chung, L., Nixon, B., Yu, E., Mylopoulos, J. Non-Functional Requirements in Software Engineering,
Kluwer Academic Publishers, (2000).

13. Donzelli, P., Marozza R. “Laser Designation Pod on the Italian Air Force AMX aircraft: a prototype
integration”, Proceedings of the NATO/RTO SCI Joint Symposium on Advances in Vehicle Systems
Concepts and Integration, Ankara, Turkey, April 1999.

14. Van Lamsweerde, A., Darimont, R., Letier, E. “Managing Conflicts in Goal-Driven Requirements
Engineering”, IEEE Transactions on Software Engineering, Vol. 24, N. 11, November 1998.

15. Rumbaugh, J., Jacobson I., Booch, G. The Unified Modelling Language Reference Manual. Rational
Software Corporation, Addison Wesley, UK, 1999.

16. Donzelli, P., Moulding M.R. “Application Domain Modelling for the Verification and Validation of
Synthetic Environments: from Requirements Engineering to Conceptual Modelling”, Proceedings of the
Spring 2000 Simulation Interoperability Workshop, Orlando, FL, March 2000.

17. Antonelli, C., P. Donzelli, Mastroianni, R. Setola, S. Vinti, S. Tucci A Web-based Workflow Solution to
support the Italian Government Agenda Definition Process, Proceedings of the Italian Automatic
Computation Association (AICA) 2000 Conference - Le Tecnologie dell’Informazione e della
Comunicazione come motore di sviluppo del Paese, Taormina, Italy, 27-30 September 2000.

18. Donzelli P., Setola R., “Putting the customer at the center of the IT system – a case study” ,
Proceedings of the EuroWeb 2001 Conference – The Web in the Public Administration, Pisa, Italy, 18-
20 December 2001.

