
An Agent-Oriented Software Engineering
Methodology with Application of Information

Gathering Systems for LCC

Tiemei Irene Zhang 1, Elizabeth Kendall2, and Harvey Jiang 3

1 School of Network Computing, Monash University

McMahons Rd., Frankston, VIC. 3199, Australia

Irene.Zhang@infotech.monash.edu.au

2 Faculty of Information Technology, Monash University

McMahons Rd., Frankston, VIC. 3199, Australia

Kendall@infotech.monash.edu.au

3 Object Oriented Pty. Ltd., Level 11, 484 St. Kilda Rd.

Melbourne VIC. 3004, Australia

harveyj@oopl.com.au

Abstract. Life Cycle Cost (LCC) is a very important issue for organizations,
which determines the success of their businesses. However, information gather-
ing from a highly distributed heterogeneous environment with a huge number of
information sources is an obstacle to the use of the existing LCC models. To
overcome this obstacle, we took an agent-based information gathering system as
a solution. In order to develop an agent-based system in a systematic way, we
established a methodology of agent-oriented system engineering. Therefore, the
system development follows a step by step process from the stage of system
requirement to implementation. This paper presents this methodology and illus-
trates the processes of system analysis , design, and implementation by apply -
ing this methodology to information gathering for the CASA (Cost Analysis
Strategy Assessment) model. The experimental results show that the agent
technology is useful and beneficial for LCC information gathering.

1 Introduction

As cost is a key factor to determining the success of a product [6], manufacturers
attempt to reduce costs during every phase of the product’s life cycle [16]. They use
life cycle cost (LCC) models [23] to estimate the life cycle costs of their products be-
fore making decisions. A typical model is CASA that is used in many organizations,

such as the U.S. Department of Defense. The CASA model covers the entire life of a
product and employs some 82 algorithms with 190 variables. Similar to the other LCC
models, CASA requires extensive information, manually gathered from different data
sources in a highly distributed and heterogeneous environment. however, this ap-
proach cannot deal with the need to respond to global economic competition, because
this environment involves unpredictable changes and uncertainty. Further, the Inter-
net is changing today’s business environment, and this also has a large impact on the
pro blem .

Having reviewed the available literature, we determined that an agent-based infor-
mation gathering system can potentially solve our problem. This is because an agent
is autonomous, social, reactive and proactive [26], and it can also model policies and
proactive behaviours [12]. In other words, agents provide high level communication
and interaction, which can perceive the situation of the environment and respond
appropriately. Agents are different from objects, which are static and cannot change
with the environment. For example, to gather information, an agent will first search its
own knowledge base. If the information is not available, it will be able to interact with
the other agents. An agent stores the information in its knowledge base once it finds
it. If there are multiple data sources, an agent will be able to gather information in an
efficient manner. In contrast, it involves considerable difficulty and complexity to
realize the above scenario with object technology. So agent technology provides
perceived advantages over objects for solving our problem.

This paper aims to develop an agent-based system to gather information for the
CASA model. It establishes a methodology for analyzing and designing agents, and
then applies it to the CASA model [17]. We propose a conceptual model that takes
Infosleuth [19] as a reference and also we use the BDI (Belief, Desire, and Intension)
[20] agent as the agent architecture in our sys tem.

2 Literature Review

A number of methodologies have been reported to address agent-oriented software
engineering [24]. Wooldridge, Jennings and Kinny [27, 28] present the Gaia methodol-
ogy for agent-oriented analysis and design. Gaia is a general methodology that sup-
ports both the micro-level (agent structure) and macro -level (agent society and organi-
zation structure) of agent development. It requires that the inter-agent relationships
(organization) and agent abilities are known at run-time. Gaia includes analysis and
design processes. Gaia’s analysis process can find the roles in the system, and then it
models interactions between the roles that have been found. The design process
maps roles into agent types, and then creates the right number of agent instances of
each type. Next, Gaia can be employed to determine the services needed to fulfill a role
in one or several agents, and to the final step involves creating acquaintance mo dels
for the representation of communication between the agents. The Gaia methodology
emphasizes a few models that can be utilised to form the whole system. It describes

what these models are, but the processes used to develop these models are vague. In
Gaia a role is viewed to be one of the roles in an organization, and role identification
itself is ad hoc.

Wood and DeLoach [5, 25] suggest the Multiagent Systems Engineering Method-
ology (MaSE). Simila r to Gaia, MaSE respects to generality and the application domain
supported, but in addition, MaSE goes further regarding support for automatic code
creation. It includes seven sections of capturing goals, applying use cases, refining
roles, creating agent classes, constructing conversations, assembling agent classes,
and system design. The identified roles are driven by the capturing goals. The goal of
MaSE is to lead the designer from the initial system specification to the implemented
agent system. Domain restrictions of MaSE are similar to those of Gaia’s, but in addi-
tion it requires that agent-interactions are one to one and not multicast

MAS-CommonKADS [9] is extends CommonKADS [21] for multi-agent systems. It
starts with a conceptualization phas e that is an informal phase for collecting the user
requirements. This methodology defines the models for the analysis and design of the
system, which includes the following models: agent, task, expertise, coordination,
organization, communication, and design. Although MAS-Common KADS employs
the notion of an agent's role, it does not formally define what this means. Also, the
concepts of role and class are used interchangeably [13] as the roles that used to ana-
lyze and design agents actually are the attributes of an agent class. The distinction is
important; a class stipulates the capabilities of an individual object, while a role fo-
cuses on the position and responsibilities of an entity in an overall structure or sys-
tem. In particular, MAS-CommonKADS states that a CRC card describes an agent's
class.

Although the above methodologies use the concept of a role to design agents, no
formal techniques/representations, such as role models (role patterns), are used to
identify roles. This may lead to inappropriate behavior to appear in the agents (to
which roles are mapped) because roles must be clear and unambiguous to provide
detailed descriptions. This paper describes a methodology for designing agents that
is based on the use of role models.

3 Methodology

3.1 Overview

Object-oriented (OO) methodology with use cases has been widely used in software
development, and use case analysis has proved to be useful and successful for re-
quirement specification and analysis of OO systems. It is useful to investigate the use
of OO methodologies in agent-oriented software engineering. However, an agent is
autonomous, social, reactive and proactive [26], while an object does not possess
these characteristics. Therefore, we cannot directly apply the OO methodology to
agent-oriented software engineering. Current research in role models shows promising

results for software agent analysis and design [15]. Therefore, our methodology com-
bines these two approaches to develop an agent-based information gathering system
for product life cycle cost estimation.

To describe interactions between activities, an ICOM (input, control, output and
mechanism) presentation (as shown in Figure 1) is used to clarify constraints and re-
sources pertaining to an activity. This notation is adopted from the functional model
of IDEF [2, 3] that has widely been used for modeling manufacturing process.

A c t i v i t y

I n p u t O u t p u t

C o n t r o l

M e c h a n i s m

Fig. 1. An activity model with ICOM notation

We apply the ICOM representation to depict the processes involved in our meth-
odology, as shown in Figure 2.

Agent Specification

Assign
and

Compose
Roles

Determine
Business Objects

Identify
Use Cases

Identify
Actors

Identify
Goals

Identify
Objects

RRC Cards

Identify
Roles

Role Composition

Conceptual Model Identify
Composite

Roles

Agent
Analysis and

Design

Requirements

Role Patterns

Object Specification

Role Patterns

Assign Goals
to

Responsibilitie
s

Develop Goal
Cases and

Identify Beliefs

Refine

Fig. 2. Agent-oriented software engineering process

3.2 Object-Oriented Analysis

The object-oriented analysis depicted in Figure 2 consists of four activities: “Identify
Actors”, “Identify Use Cases”, “Identify Objects” and “Determine Business Objects”.
These four activit ies use the traditional methods developed by [10] to identify actors,
use cases, and objects. Note that an actor is a user who interacts with a system or an
external system. A use case can be defined as a specific way of using the system by
performing some part of the functionality, and it includes preconditions, flow of
events, and post conditions. A use case model is closest to the requirements, and

with the least amount of detail [11]. Therefore, most business objects required by the
sys tem can be identified from the output of the “Identify Use Case” activity.

3.3 Goal Identification

The identified use cases are fed to the activity “Identify Goals” in Figure 2 for captur-
ing goals . A goal is an objective or a desired state that can be achieved or ascertained
by an agent. A goal identifies what is to be done , and it should change less often than
more detailed processes/activities. This is because a process or activity identifies how
things are to be done . Goals are important to agent-based systems because agents are
autonomous and proactive. Agents achieve goals on the behalf of users through their
autonomous and proactive behavior. To identify goals from the use cases, we should
[14]:

• Identify the most top goal;
• Decompose it to the sub goals necessary to fulfill the top goal;
• Place the first set of sub goals as the first level goals ;
• Identify the next level of goals in a similar mode;
• Place them as the second level goals ;
• Derive all the goals in an iterative form;
• Stop when a goal cannot be structurally or temporally decomposed.

The result of goal identification is a goal hierarchy diagram where each level of
goals fulfils the goal on the level above. The identification of goals is an iterative
process because additional details may be uncovered and duplicated/unnecessary
items may be deleted, modified, or combined.

3.4 Goal Case Development and Belief Identification

Having identified goals, we next define a collection of scenarios about the agent’s
interactions in terms of the corresponding goals. Each scenario is called a goal-based
use case (in short, a goal case). This scenario describes a sequence of plans that han-
dle events that the agent init iates. An agent can start a goal case when the corre-
sponding goal is triggered. The use of goal cases also helps with traceability because
they are developed according to goals that link to the system requirements. To spec-
ify the goal cases, the followin g steps are taken:

• Determine if the goal case is a reaction to an event or an outcome to be
achieved.

• Determine what triggers the goal case.
• Elaborate the context condition of the goal case.
• Determine the activities that have to be carried out for the goal case to be sat-

isfied
• Describe the conditions on the transitions.

• Determine the input data and output results.
• Determine the performance measures that need to be collected.

Goal cases are the core of agent specification. Once goal cases are developed, we
can assign them to agents according to the goals that each agent has. In our system,
the beliefs are the knowledge that agents have. When an agent wants to achieve a
goal and carry out a set of goal cases, the agent should have the knowledge to sup-
port its actions or evaluate the results. For example, the costing formulas are the be-
liefs of the agent who does the cost estimation . The beliefs can be identified and
extracted from the goal cases in terms of the knowledge and expertise that are the basis
for performing some activities.

3.5 Role Identification

The activity “Identify Roles” in Figure 2 occurs after “Identify Use Cases”. Here a role
involves a set of activities which, taken together, carry out a particular responsibility
or set of responsibilities. A role has the resources that are necessary for it to do its
activities. Those resources might reside permanently with the role or be passed to it.
Role names should be verbs in the gerund form. Roles can be identified from the rele-
vant role models, where role models are patterns of interaction and collaboration.
Many role models may appear in a given agent application. Because they are patterns,
they can be used during analysis and design as conceptual and analytical mo dels.
The activity of identifying roles from the use cases is to [15]:

• Examine role patterns from the existing role patterns literature and docume nta-
tion. Relevant role patterns can be used to identify or recognize types of in-
teraction and collaboration.

• Partition goals to form roles if there are no relevant role patterns that the goal
can be assigned to. This includes extracting the goals in a generic way and
taking these as the responsibilities of the role. Also, the other roles that col-
laborate with this role can be taken as collaborators. (In the next section, we
describe the relationships a role can have, along with responsibilit ies and col-
laborators .

• Determine all roles for the identified interactions and collaborations.

To document role models of agent sys tems, one important method is to use role re-
sponsibility and collaborations (RRC) [13] cards (refer to Table 1). These are used to
specify responsibilities and collaborations of roles, especially in the early phase of
agent-oriented software development.

Table 1. RRC card

Role model name
Role type Responsibility Collaborator

Names of Roles List all responsibilities List all collaborators

3.6 Assigning Goals to Responsibilities

After identifying RRC cards, we should assign goals as responsibilities of roles by
carrying out the activity “Assign Goals to Responsibilities”. This assignment starts at
the bottom of the goal hierarchy diagram. During this activity, a role is assigned goals
that are related to its responsibilities. Once the goals are assigned to responsibilities,
collaboration between the roles should be indicated. A RGC (Responsibility, Goal,
Collaborator) card, as shown in Table 2, is used to document relationships between
responsibilities, goals and collaborators for a role.

Table 2. RGC card

Role
Responsibilities Goals Collaborators
List of responsibilities List of goals List of collaborators

3.7 Assigning and Composing Roles

To design agents, we have to assign and compose the roles identified according to the
process in §3.5. When the roles are assigned and composed, their goals and collabo-
rators are allocated to the agents . Note that goals and collaborators are obtained from
the RGC card shown in Table 2 whilst the goal cases and the beliefs have been devel-
oped for each goal. The designated agents will carry out the roles in order to achieve
the goals. All of the agents’ actions are based on beliefs and are according to the
goal cases. To assign and compose roles for an agent, we should:

• Assign and compose roles for agent design;
• Assign roles to agents with design quality in mind, where cohesion, low cou-

pling, and minimum need for communication are essential;
• The goals form the expertise for the agents. Splitting and merging may be re-

quired.
The output of this activity is a GCB (Goals, Goal Cases, Collaborators, and Beliefs)

card (refer to Table 3) that is used to document agents . This card can directly be taken
to the implementation stages .

Table 3. Agent specification template

Agent Name:
Goal Goal Case Collaborator Belief

List all goals List all goal cases List all collaborators List all beliefs

4 Agent Analysis

Before proceeding, we present a conceptual model for an agent-based system that
focuses entirely on business problems [7]. Taking the InfoSleuth architecture [19] as a

reference, our model consists of six different layers that make the system more com-
partmentalized and modularized. Each layer provides a level of abstraction and certain
services to the layer above it, while hiding the implementation of its services from the
higher layer. Also, each layer passes both data and control information to its corre-
sponding neighbors. Figure 3 depicts such a model for gathering information for a life
cycle model.

Organizational Layer (OL)

Service Layer (SL)

Service Broker Layer (SBL)

Interface Layer (IL)

A
ut

he
nt

ic
at

io
n

L
ay

er

(A
L

)

O
nt

ol
og

y
L

ay
er

(O

N
L

)

Data files Organisational
DB

Fig.3. Conceptual model of information gathering system

This conceptual model covers many areas. First, an organization requires the abil-
ity to accurately identify a user who is making requests. In our system, the user’s
identity is verified by checking a password typed in during login. The process that
verifies and records the user’s identity is called authentication. This process is de-
signed to employ an access-control-list that contains a single entry that is authorized
to grant capabilities for other layers. In actuality, agents in every layer in an agent-
based information gathering system have to get security clearance from the authenti-
cation layer before they can request services.

The ontology layer collectively maintains a knowledge base of the different termi-
nology and concepts that are employed over the whole organization. This layer thus
describes the language that will be used for specifying and translating requests for
info rmation.

The interface layer is used to predict the user’s intentions and to request services
that are provided by the remaining modules. This layer acts on behalf of users to relay
specifications and obtain results. The broker layer models and delegates the services
of the overall organization and then provides them to users via the interface layer. The
service layer is used to provide services, which differs from the organizational layer
that controls resources. The service layer represents and provides the high level ser-
vices that can be formed by encoding expertise and by utilizing the organizational
layer. The organizational layer can be used to manage the organizational resources.
Its main task is to gather data from the various sources.

We then need to examine role models to determine their relevance and applicability
to the conceptual model. We concentrate on the organizational layer here, and these
roles, which we term organizational roles, are responsible for controlling resources.

We considered the following role models: Master/Slave [1], Manager [22], Bodyguard
[18], and Adapter [8]. An organizational role can be another form of an Adapter, as it
can reformulate requests to the different databases. However, the organizational role
is also responsible for database activation and the supervision of any security restric-
tions. The activation behavior resembles that of a Manager, while the security super-
vision facets of this role resemble those found in the Bodyguard role model. When an
organizational role acts as a Bodyguard or an Adapter, the database is the Target and
the Subject. These roles are summarized in Table 4 [29].

Table 4. Organizational roles

Organization Role
Role type Responsibilities Collaborators
Manager (Man-
ager)

• To manage the information resource role

Slave (Mas-
ter/Slave)

• To receive the request from Master
• To perform a task and send the reply

to Master

service role

Client (Bodyguard) • To request the permission of a service authentication
role

Subject (Body-
guard)

• To accept the notific ation of a service authentication
role

Client (Adapter) • To send message to Adapter and
collaborate with the Target

ontology role

Target (Adapter) • To receive the me ssage sent by Client
• To perform a task and send a reply

ontology role

The roles in the other layers can be identified in a similar manner. However, in t he
following sections, we will only illustrate the application of our methodology for the
organizational layer.

5 Agent Design

5.1 Basic Requirements of the CASA Model

The CASA model estimates costs throughout all life cycle phases, including mainte-
nance. The maintenance of a product involves plans, labor, equipment, material, spare
parts, transportation, recurring facilities, recurring item management, software mainte-
nance, contractor services and engineering changes. The relevant information is
stored in organization databases. To estimate life cycle costs with the CASA model,

this information must be gathered. We will focus on cost estimation for maintenance
and give a brief description for a use case as below:

The user formulates a request for maintaining a product. When receiving the request,
the maintainer will ask a planner for a maintenance plan, including schedules and ac-
tions. He/she then asks an estimator to estimate costs for all components of the
product. To estimate costs, the estimator will gather the information required by the
CASA model from organizational databases. This information is related to plans, labor,
equipment, material, spare parts, and management, such as transportation, recurring
facilities, recurring item management, software maintenance, contractor services and
engineering changes. Particularly, if spare part information is not available in the or-
ganizational databases, the estimator will ask suppliers to provide it.

5.2 Goals, Goal Cases, and Beliefs.

We can identify the goals for information gathering from section 5.1. Figure 4 shows a
goal diagram that represents the goals of the system in hierarchical structure.

Obtain
Maintenance
Information

Obtain
Information

Obtain
Labor

Obtain
Management

Obtain
Material

Obtain Plan
Requirements

Obtain
Product

Obtain
Equipment

Fig. 4. Goals for searching for maintenance information

There are three levels in this figure. The top level contains “Obtain Information”
that is a general goal for obtaining information. The second level is “Obtain Mainte-
nance information”, and this is a goal for obtaining information required for mainte-
nance cost estimation. There are six goals in the third level. These goals can be used
to search information specific to the CASA model.

To illustrate how to develop a goal case, consider the “Obtain Material” goal as an
example. As we know, material information can be obtained from three data sources:
organizational databases, suppliers’ catalogues and user experiences. Therefore, the
“Obtain Material” goal can be achieved by using a goal case described below:

Obtain Material goal case (GC1)
Pre -condition:
The product information is available
Flow of events

Basic paths:
1. The goal case starts when the agent is requested to achieve the “Obtain Mate-

rial” goal.
2. The agent attempts to achieve the “Manage Material” goal for information from

an organizational database.
3. If it cannot find data from organizational database, the agent attempts to achieve

the “Manage Supplier” goal.
4. If it cannot find data from suppliers or any error occurs, the agent asks user to

enter data by posting the “Manager Manual Entry” goal.
5. The agent replies to the requested agent with the material data.

Post-condition:
The agent stores the material information.

We can identify the belief “Material” from this goal case, which is the knowledge
used to describe or present the material information.

5.3 Roles and Goal Assignment

The organizational roles in Table 4 are responsible for gathering information that is
needed by algorithms in the CASA model. This information includes the product to be
maintained, the plan and requirements to be implemented, labor and equipment to be
used, materials to be consumed and spare parts that need to be purchased from sup-
pliers. In addition, CASA also requires management information involving transporta-
tion, recurring facilities, recurring item management, software maintenance, contractor
services and engineering changes . Therefore, it is practical that each individual agent
that is assigned a role is responsible for gathering information in its specialized field.
As a result, the organizational roles can be instantiated in our application as shown as
in Table 5. After that we assign the goals to roles by using RRC cards. However, this
procedure is not discussed in this paper.

Table 5. Instances of the organizational role

Composite Role Instantiated Roles Goal
Labour manager Obtain Labour
Equipment manager Obtain Equipment
Material manager Obtain Material

Manage Material
Manage Supplier
Manage Manual Entry

Management manager Obtain Management
Project manager Obtain Product

Organizational Role

Plan & Requirement manager Obtain Plan & Requirement

5.4 Agent Specification

According to Table 5 and the goals that we have identified, we assign and compose
roles to agents, as shown as in Table 6. It is worth mentioning that this approach
allows organizations to create their new assignments when organizational changes
occur.

Table 6. Organizational Agent identification

Composite
Roles

Instantiated Roles Potential agents used

Project manager,
Plan & requirement ma nager

Project agent

Labor manager

Equipment manager
Resource agent

Material manager

Supplier manager.
Inventory agent

Organizational
Role

Management ma nager Management agent

To document agents, consider the Inventory agent as an example. Table 7 shows a
GCB card for specifying this agent. The rest of agents can be documented in a similar
manner.

Table 7. Simplified Inventory Agent specification

Inventory Agent
Goal Goal Case Collaborator Belief

Obtain Material GC1 Estimator Material
Manage Material GC2* Organization Database Material
Manage Supplier GC3* Supplier Database Material
Manage Manual Entry GC4* User Material
* Goal cases are not specified in this paper

6 Experimental Evaluation

To realize our system, we used the JACK framework [4] that provides four main class-
level constructs: Agent, Database, Event, and Plan for a BDI agent. Note that the
Agent construct includes what type of messages and events an agent responds to,
and which plan it uses to achieve its goals. It not only has methods and data members
just like objects, but it also contains database relations that an agent can use to store
beliefs, descriptions of events that the agent can handle, and plans that the agent uses

to handle the events. Table 8 shows rules that can be used to map a GCB card to
JACK constructs

Table 8. Mapping from a GCB card to JACK agent

GCB card Goal Goal case Collaborator Belief
JACK agent constructs Event Plan Agent Database

By applying the above mapping, we have implemented our agents to gather infor-
mation for the CASA model. Figure 5 shows a screen shot from our system that is able
to estimate a life cycle cost for a computer system.

Fig. 5. Results

In this figure, the left side pane shows a tree structure that represents the product
of computer system in the form of assembly. For estimating cost for the whole product
or a subsystem, just click the manual. The right side pane lists the results, which d e-
scribes the event, plan and agent tasks in time order.

7 Summary

In this paper, we have presented a methodology of AOSE for identification of goals
and goal cases based on an organizational view and roles. We have applied this meth-
odology to an information gathering system for LCC. This methodology is a system-
atic approach that uses goals and roles. It generates results from the initial system
requirement to the implemented agent-based system. Furthermore, this methodology
can be applied to other agent-based information systems.

8 References

[1] Aridor, Y., and Lange, D.B.: Agent Design Patters: Elements of Agent Application Design.
Autonomous Agents (Agents’98), Minneapolis, (1998), 108-115

[2] Bravoco, R. R., and Yadav, S. B.: Requirements Definition Architecture –An Overview.
Computers in Industry, 6, (1985), 237-251.

[3] Bravoco, R. R., and Yadav S. B.: A Methodology to Model the Functional Structure of an
Organisation. Computers in Industry, 6, (1985), 345-361.

[4] Busetta, P., Ronnquist, R., Hodgson, A., and Lucas, A.: Light-Weight Intelligent Software
Agents in Simulation. SimTech 99, Melbourne, Australia, (1999).

[5] DeLoach S. A.: Multiagent Systems Engineering A Methodology and Language for Design-
ing agent Systems. In Proceedings of Agent Oriented Information Systems, (1999), 45-57.

[6] Fabrycky, W.J., and Blanchard B.: Life-Cycle Cost and Economic Analysis. Prentice-Hall,
Inc., New Jersey, USA, (1991).

[7] Flower, M.: Analysis Patterns – Reusable Object Models, Addison Wesley, (1997).

[8] Gamma, E. R., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Elements of Re-
usable Object-Oriented Software. Addison-Wesley, (1994), 139-150.

[9] Iglesias, C. A., Garijo, M., Gonz ález, J. C., and Velasco, J. R.: Analysis and design of
multiagent systems using MAS-CommonKADS. In: Singh, M. P, Rao, A., and Wooldridge,
M. J. (eds.): Intelligent Agents IV (LNAI volume 1365). Springer-Verlag: Berlin Germany ,
(1998), 313-326.

[10] Jacobson, I., Christerson M., and Jonsson P., and Overgaard J.: Object -Oriented Software
Engineering – A Use Case Driven Approach, Addison-Wesley, (1992).

[11] Jacobson, I., Griss M., and Jonsson P. Software Reuse - Architecture. Process and Organi-
zation for Business Success, ACM Press, (1997).

[12] Kendall, E.A., Malkoun, M. and Jiang C.: A Methodology for Developing Agent Based
Systems for Enterprise Integration. EI’95, IFIP TC5 SIG Working Conference on Model-
ing and Methodologies for Enterprise Integration. Heron Island, Queensland, Australia,
(1995).

[13] Kendall, E. A.: Agent Roles and Role Models: New Abstractions for Multi-agent System
Analysis and Design. International Workshop on Intelligent Agents in Information and
Process Management. German Conference on Artificial Intelligence, Bremen, Germany,
September, (1998)..

[14] Kendall, E. A., Krishna M., Pathak C. V., and Suresh C. B.: Patterns of Intelligent and
Mobile Agents. Agents '98, May, (1998).

[15] Kendall, E. A.: Role models, aspect oriented programming and agent engineering. Technical
report, British Telecom, (1999).

[16] Li, Y., Huang B., and Wu C.: Virtual Enterprise Information System. In Proceedings of the
1st Asia-Pacific Conference on IAT’ (Intelligent Agent Technology), (1999), 493-497.

[17] Manary, J.M .: DSMC’s CASA Model Still Going Strong. Article in PM: Jan.-Feb.,
(1996).

[18] Neves, F.D., Garrido, A.: Bodyguard. In Marting, R, Riehle, D, Buschmann, F (eds.):
Pattern Languages of Program Design 3. Addison Wesley, (1998), 231-243.

[19] Nodine, M., Perry B., and Unruh A.: Experience with the InfoSleuth Agent Architecture in
Proceedings of AAAI-98 Workshop on Software Tools for Developing Agents, (1998).

[20] Rao, A. S., and Georgeff M. P.: BDI Agents: From Theory to Practice. In Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95), San Francisco,
USA, June, (1995).

[21] Schreiber, A., Wielinga, B. J., Akkermans, J. M., and Van de Velde W.: CommonKADS: A
comprehensive methodology for KBS development. Deliverabel DM1.2a KADS-
II/M1RR/UvA/70/1.1, University of Amsterdam, Netherlands Energy Research Founda-
tion ECN and Free University of Brusels, (1994).

[22] Sommerlad, P.: Manager. In Marting, R. Riehle, D., Buschmann, F. (eds.): Pattern Lan-
guages of Program Design 3. Addison Wesley , (1998), 19-28

[23] Sterling, J.C., Analysis of Life Cycle Cost Models for DOD & Industry Use in ‘Design-to-
LCC’, (1996), http://nissd.com/sdes/papers/deslcc.htr.

[24] Tveit, A.: A survey of Agent-Oriented Software Engineering. NTNU Computer Science
Graduate Student Conference. Norwegian University of Science and Technology, May
(2001).

[25] Wood M. F. and DeLoach S. A.: An Overview of the Multiagent Systems Engineering
Methodology. The First International Workshop on Agent-Oriented software Engineering
(AOSE-2000), (2000).

[26] Wooldridge, M., and Jennings, N. R.: Intelligent agents: theory and practice. The Know l-
edge Engineering Review, 10(2), (1995), 115-152.

[27] Wooldridge M. J., Jenning N. R. and Kinny D.: A methodology for agent-oriented analysis
and design. In Proceedings of the third international conference on Autonomous agents,
(1999), 69-76.

[28] Wooldridge M. J., Jennings N. R. and Kinny D.: The Gaia methodology for agent-oriented
analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3), September,
(2000), 285-312.

[29] Zhang, T. I., Kendall, E. A., and Jiang H. C.: System Analysis of Agent based LCC
Information Gathering. In Proceedings of the First Pacific Rim Intern ational Work-
shop on Intelligent Information Agents (PRIIA 2000), Melbourne, Australia,
(2000).

