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Abstract 
The popularity of data warehouses for analysis of data has 

grown tremendously, but much of the creation of data 
warehouses is done manually.  We propose and illustrate 
algorithms for automatic conceptual schema development and 
evaluation.  Our creation algorithm uses an enterprise schema 
of an operational database as a starting point for source-driven 
data warehouse schema design.  Candidate conceptual schemas 
are created using the ME/R model, extended to note where 
additional user input can be used to further refine a schema.  
Our evaluation algorithm follows a user-driven requirements 
approach that utilizes queries to guide selection of candidate 
schemas most likely to meet user needs.  In addition, we propose 
a guideline of manual steps to refine a conceptual schema to suit 
additional user needs, for example, the level of detail needed for 
date fields.  The algorithms are illustrated using the TPC-H 
Benchmark schema and queries.  Our algorithms provide a 
foundation for a software tool to create and evaluate data 
warehouse conceptual schemas. 
1. Introduction 

As conventional transaction processing systems have 
matured, becoming faster and more stable, the focus of 
organizational needs has changed.  Increasing the value of 
transaction processing systems “means turning data into 
actionable information” [R96a].  Although traditional 
OnLine Transaction Processing (OLTP) systems may 
have some, or all, of the necessary data, it is not easily 
accessed by the user for analytical processing. The need 
for OnLine Analytical Processing (OLAP) gives rise to 
the data warehouse concept.  

A data warehouse creation process consists of five 
steps: pre-development activities, architecture selection, 
schema creation, warehouse population, and data 
warehouse maintenance [M97, SC99].  The focus of this 
paper is the schema creation phase and its automation; 
while this phase includes conceptual, logical, and physical 
schema design, we only address conceptual design of a 
data warehouse here. The conceptual model allows a 
high-level design of entities and their relationships, 
represented in a user-friendly manner independent of 
implementation issues. A conceptual schema is a 
description of the data to be in the data warehouse that is 
understandable by end users to verify requirements, 
identify possible gaps, and conduct analysis for business 
goals.  

We propose automated techniques to develop and 
evaluate candidate data warehouse conceptual schemas 
using source-driven and user-driven requirements 
gathering, respectively.  Source-driven requirements 

gathering defines the requirements of a data warehouse 
using source data or a schema from an OLTP system.  
The benefits of using a source-driven requirements 
gathering approach are that minimal user time is required 
to start the project, and complete data is supplied since the 
existing data in the OLTP system provides the framework 
for the data warehouse.  A disadvantage of this approach 
is that incomplete knowledge of user needs and reliance 
on only the OLTP database may not produce an adequate 
data warehouse schema. To alleviate this disadvantage we 
include an opportunity for user refinement in our design 
process.  User-driven requirements gathering is a method 
based on investigating functions users perform.  We focus 
on user needs as represented in a set of queries to be 
applied against the data warehouse.  Having user-driven 
requirements prevents critical business needs from being 
overlooked. To illustrate the proposed algorithms, both 
source-driven and user-driven requirements are gathered 
from the TPC-H Benchmark [TPC99].  We treat the 
benchmark schema as an OLTP schema for source 
derivation and its queries as user requirements. 

Section 2 discusses data models used to represent 
schemas and gives a brief overview of related work in 
data warehouse design.  Section 3 presents and illustrates 
an automated approach to constructing candidate 
conceptual schemas for a data warehouse from an OLTP 
schema.  Section 4 gives an algorithm for evaluating 
candidate schemas based on user requirements as well as 
a guideline for manual schema refinement.  Section 5 
discusses advantages and known limitations of our work 
along with topics for future work. 

 
2. Related Work 

The goal of creating a conceptual schema is 
to translate user requirements into an abstract 
representation understandable to the user, that is 
independent of implementation issues, but is 
formal and complete, so that it can be 
transformed into the next logical schema 
without ambiguities [TB99]. 

Requirements of a conceptual model for a data warehouse 
include a) providing a modeling construct to represent 
business facts and their properties, b) connecting temporal 
dimensions to facts, c) relating objects with their 
properties and associations, d) defining relationships 
between objects and business facts, and e) outlining 
dimensions and their respective hierarchies [TB99].  We 
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discuss our choice for a conceptual model and related 
automated approaches below. 
 
2.1 Conceptual Model Selection 

In the OLTP arena, Entity/Relationship-based models 
are most widely used, and in the OLAP arena dimensional 
modeling is most popular. An ER schema is a graphical 
representation of entities and their relationships to each 
other. ER-based models have been extended to include 
the dimensional functionality necessary in data 
warehousing [B99, FS99, TB99, HS00].  Dimensional 
models organize data based on business rules of an 
organization.  Dimensional models are based on the idea 
that an organization’s facts are central and the data 
unfolds around it.  The most well-known dimensional 
model is the Star model [BH98]; other variations are the 
Snowflake model [BH98] and the Dimensional Fact 
Model [GM98a].  Further discussion about ER versus 
dimensional modeling [K95, R96b] and converting from 
an ER model to a dimensional model [K97, M98] is given 
elsewhere.  

Conceptual and logical schemas for data warehouses 
can be built with ER-based or dimensional-based models.  
It is possible that the conceptual schema may be in one 
form and the logical another.  For example, McGuff 
[M98] uses ER modeling for conceptual schemas and 
dimensional for the logical and physical designs, while 
Wu and Buchmann [WB97] do the opposite for schema 
creation.   Table 1 gives a summary of models used by 
various authors for conceptual and logical schema 
creation.  The Star model is popular for both conceptual 
and logical modeling, but may not be the best choice for 
end users since it does not show drill-down and roll-up 
paths [BH98].  We choose the ME/R model for 
conceptual schema creation and the Star model for logical 
schema creation.  Translating from ME/R to Star form is 
straightforward; our algorithm and examples are not 
provided in this paper due to space limitations.   

The ME/R (Multidimensional Entity-Relationship) 
model is similar to, but simpler than, the EVER and 
StarER models.  Figure 1 is an ME/R example of a 
customer orders application. The central construct is a 
fact node, represented by a diamond, that contains 
business measures. A level node, represented by a 
rectangle, contains information about the measures. Each 
level or fact node has attributes, represented as ellipses, 
that are descriptors for this entity.  These are the three 
main constructs that make up the ME/R model, and they 
are connected by various relationships.  In the example, 
Order is the fact node. Product, Customer, Day, Month, 
Week, and Year are level nodes.  A fact node is related to 
a level by a dimension edge that is an undirected line.  
The has edge connects facts or levels to their attributes 
and is also an undirected line. The classification edge is 
the relationship between levels.  This is represented by a 
pitchfork-like symbol at one end of a directed line.  All 

the levels of the fact node, related by classification edges, 
represent a dimension of the model.  The dimension that 
represents the order date in our example is made up of a 
Day level, a classification of the Month level that in turn 
is a classification level of Year.  The directed edge 
between the levels is important in that it shows 
hierarchical aggregation.  This is especially useful when a 
level node can be a classification node for more than one 
other level as seen in the Day to Week relationship.  In our 
example, we can roll-up from the Day level to the Month 
level, changing the level of aggregation shown for the fact 
attributes.  Week is an alternate roll-up path from Day. 

 
 Conceptual Design Logical Design 
ER [M98] [BH98] 
EVER [B99]  
StarER [TB99]  
ME/R [HS00]  
DWCDM [FS99]  
MAC [TK01]  
Star [WB97, R96b, K96b,

BH98, M94, M98] 
[K96b, BE99, CD97,
K97, BH98, M98] 

Snowflake  [BE99, CD97, BH98] 
DFM [GR98, GR99]  

Table 1.  Models for Conceptual and Logical Schemas 
 

 
Figure 1.  An Example ME/R Schema 

With only three main constructs, the ME/R model is 
simple for users to read, and aggregation is shown 
through the hierarchy of levels representing a dimension. 
This model resembles the Star model, leading to ease of 
understanding by both users and logical modelers of the 
data warehouse.  Details of additional ME/R modeling 
constructs are given elsewhere [HS00].  
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2.2 Automated Approaches to Schema Design 
The initial determination of measures, facts, or events 

can prove to be the most difficult part of the design 
process, and is usually done manually.  Different 
approaches to finding measures are suggested: (1) 
deriving the fact table of a Star schema by selecting the 
“many-to-many relationships in the ER model containing 
numeric and additive nonkey facts” [K97], (2) finding 
candidate measures by analyzing the business queries for 
data items indicating the performance of the business 
[BH98], (3) finding facts based on entities most 
frequently updated [GM98b], and (4) observing that “fact 
properties are usually numerical data, and can be 
summarized (or aggregated)” [TB99].  The third approach 
is implemented in a CASE tool [GR01]; we include the 
last approach in our algorithm in Section 3. 

There have been some proposals for semi-automated 
or automated approaches to schema creation from OLTP 
systems.  Automating logical schema creation and 
physical schema design have been proposed [TS97, 
CT98, GR98, BE99, TS99, S99, HL00, HS00, MK00].  
None of the previous approaches include an automated 
mechanism for finding candidate measures.  Our research 
is the first effort that addresses automation of creating an 
entire candidate conceptual schema from an OLTP 
schema, including the initial determination of facts or 
measures. 
 
3.  Conceptual Schema Creation 

Our approach to schema generation has two basic 
premises. One is that numeric fields represent measures of 
potential interest to a business and the more numeric 
fields in an entity the more likely it is that the entity is an 
event or fact. The second premise is that the cardinality of 
a relationship determines how useful a related entity is to 
the schema being created. Any entity related with a many-
relationship is of likely importance (and any of its entities 
may be as well), since it is potentially a higher level of 
abstraction. 

Our algorithm for creating candidate conceptual 
schemas has five steps that result in candidate schemas 
centered around likely business events, with relationships 
to other entities forming the dimensions describing these 
events. Although there are instances where the events 
chosen have little or no meaning to users and additional 
commonly used calculations may need to be added, the 
bulk of the initial schema creation is automated.  Schemas 
can be manually refined as described in Section 4.   

Input to the algorithm is an ER schema represented 
here in table data structures.  The steps of the algorithm 
are generalized as follows: 

1. Find entities with numeric fields and create a fact 
node for each entity identified.  

2. Create numeric attributes of each fact node, based 
on numeric fields in the entities. 

3. Create date and or time levels (dimensions) with any 
date/time type fields per fact node. 

4. Create a level (dimension) containing the remaining 
entity attributes (non-numeric, non-key, and non-
date fields).  

5. Recursively examine the relationships of the entities 
to add additional levels in a hierarchical manner 
(creating a dimension). 

The output of the algorithm is a set of candidate 
ME/R schemas in tabular form.  Four additional tables are 
created for use in logical schema creation that store fact 
node names for the various candidate schemas created, 
the names of each level of the fact nodes and the levels 
that are sub-levels of the level nodes, and the attributes of 
the facts and levels.  These tables are not illustrated in this 
paper, only the graphical representations of candidate 
schemas are presented here. 

The algorithm is given in Figure 2 with the 
corresponding steps labeled.  The function calls are 
informally described here via an example using the TPC-
H Benchmark schema [TPC99].  The TPC-H Benchmark 
is created specifically to benchmark query performance in 
a data warehouse environment, but here we treat the TPC-
H schema as an OLTP schema since it resembles one in a 
normalized format. There are benefits from the decision 
to use the TPC-H benchmark. First, it is an industry 
benchmark example and thus not biased toward the 
schema creation algorithm. Second, order entry and/or 
part distribution is a common function of a wide range of 
businesses. Third, and most important for our purposes, a 
schema for source-driven requirements and queries for 
user-driven analysis are given.  We reverse engineer an 
ER schema from the TPC-H schema and use it as input to 
our algorithm. 

Step 1 orders the entities with numeric fields in 
descending order of number of numeric fields.  
Descending order is not necessary but the entities with the 
greatest number of numeric fields create candidate 
schemas that are generally better for answering user 
queries. By processing the entities in this order the 
candidates that are more likely to be useful are created 
first. In our example, the only numeric fields are of type 
decimal and integer. The result of this step is a list of 
tables in a ranked order of number of numeric fields, i.e., 
LineItem (5), PartSupp (2), Part (2), Orders (2), Supplier 
(1), and Customer (1), for a total of 6 candidate schemas. 

Starting with the first entity, LineItem, we create an 
ME/R schema.  The fact node is represented by a 
diamond shape, labeled LineItem Event, shown in Figure 
3.  This fact node becomes the focus of the candidate 
ME/R schema created on this iteration of the loop. 

 In Step 2, the numeric fields for LineItem Event, 
L_LineNumber, L_Quantity, L_ExtendedPrice, 
L_Discount, and L_Tax are added to the diamond as 
ellipses, indicating attributes, as shown in Figure 3. 
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Algorithm for Conceptual Schema Creation 
 
Input Parameters:  
 Table_Columns  // Table containing table name, column name, and column type 
  //      for every OLTP table. 
 Table_Relations // Table containing the OLTP schema relationships 
In/Out Parameters:  
 Fact_Node_Table // Table defining the fact nodes of ME/R schemas and the  
  // OLTP table name that is used to create the fact node. 
 Fact_Attribute_Table  // Table defining the attributes of the fact nodes for the ME/R 
   //  schema. 
 Level_Table // Table defining the levels of the ME/R schema.  
 Level_Attribute_Table  // Defines the attributes of the levels.  
Variables: num_tables[] // Array of table names from OLTP schema(s) with numeric  
   // fields. Array is ordered in descending order of numeric  
   // fields. 
 fact_node // Fact node name. 
 num_field[] // Array of numeric OLTP attribute field names. 
 date_field[] // Array of date OLTP attribute field names. 
 other_field[] // Array of OLTP non-key, non-numeric, non-date/time fields. 
 
Method: 

num_tables[] := select_order_tables_numeric_fields (Table_Columns)  (1) 
for each num_tables[j] 
 fact_node := create_fact_node(num_tables[j], Fact_Node_Table) 
 num_field[] := select_num_field (Table_Columns, num_tables[j]) (2) 
 for each num_field[m]  
  create_fact_node_attribute (fact_node, num_field[m], Fact_Attribute_Table) 
 end for loop 
 date_field[v] := select_date_field  (Table_Columns, num_tables[j]) (3) 
 if isempty(date_field[]) then 
  create_review_levels(fact_node, Level_Table) 
 else 
  for each date_field[v]  
   create_date_time_level (fact_node, date_field[v], Level_Table) 
  end for loop 
 end if 
 if exists other_field_in_OLTP_table (Table_Columns, num_tables[j]) (4) 
  create_level (fact_node, num_tables[j], Level_Table) 
  other_field[] := select_other_fields (Table_Columns, num_tables[j]) 
  for each other_field[a]) 
   add_fields_to_level (fact_node, other_field [a], num_tables[j], Level_Attribute_Table) 
  end for loop  
 end if 
 Walk_Relationships (num_tables[j], fact_node, Table_Columns, Table_Relations, (5) 
   Level_Table, Level_Attribute_Table) 
end for loop 

end algorithm  
Figure 2.  Algorithm for Conceptual Schema Creation 

 

 
Figure 3.  LineItem Event with Numeric Attributes 

Next, as part of Step 3, we identify any date fields of 
this entity.  LineItem has three date and/or time fields: 
L_ShipDate, L_CommitDate, and L_ReceiptDate.  These 
fields become the date/time levels or dimensions of our 
ME/R schema. At this point in the automated process, the 
granularity of the date and time dimensions are unknown; 
user refinement is needed to determine how to represent 
the levels that make up the date dimension.  In ME/R 
diagrams, dimensions are represented by a collection of 
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levels in a hierarchical manner.  Instead of representing 
the date and time dimensions as rectangles normally used 
to represent levels in an ME/R diagram, we introduce a 
new notation, a hexagon, to indicate a portion of the 
schema where user refinement of date/time granularity is 
needed. The ME/R schema created so far as given in 
Figure 4. 

Step 4 is only processed if there are attributes 
remaining in the entity that are not yet processed (i.e., not 
key, numeric, or date fields).  The remaining fields are 
generally text fields. If there are text fields as part of this 
entity then a level (dimension) node is created with this 
entity’s name.  The level nodes are symbolized by 
rectangles.  Each remaining field becomes an attribute of 
the level node. For our example, LineItem has five such 
attributes: L_ReturnFlag, L_LineStatus, L_ShipInstruct, 
L_ShipMode, and L_Comment. The new level, LineItem, 
and its attributes are in Figure 5. 
 

 
Figure 4.  Date Levels of LineItem Event 

Step 5 is the most complicated step, called 
Walk_Relations, where recursive traversal of relationships 
is conducted.  The rest of the TPC-H schema entities 
(Customer, Orders, Nation, Region, Supplier, Part, and 
PartSupplier) may be used here. In this step, the 
relationships of the fact node/event entity are evaluated. 
Every connected entity is made into a level node with its 
attributes. If this level entity is part of the many side of 
the relationship, its relationships are also evaluated and 
processed by calling the sub-procedure again.  This step 
identifies the relationship names of interest; 
Order_LineItem and PartSupp_LineItem; these 
relationships are processed one at a time within the sub-
procedure loop.  

The relationship names (Order_LineItem and 
PartSupp_LineItem) are used to find the entities that make 
up dimensions for LineItem Event. Starting with the 
Order_LineItem relationship name the first relationship is 
found, with the entity Orders.  A level node is created for 
Orders along with its attributes. 

At this point we have added our first level not 
derived from the LineItem entity. We now need to 
determine if any of the OLTP entities related to Orders 

should be included in this schema.  We use relationship 
cardinality to indicate how many entity instances are 
related to another entity instance by the relationship.  For 
the Orders_LineItem relationship for the LineItem entity, 
the cardinality is on the many side of the relationship with 
Orders. In other words, one Order can have many 
LineItem instances.  Walk_Relations is recursively called 
with Orders now being the parameter passed.  For the 
same reason, Customer, Nation, and Region become 
levels in the hierarchy, shown in Figure 5.  In the 
example, all of the relationships are many-to-one, thus we 
continue to recursively call the Walk_Relations 
procedure.  If we encounter a relationship that is not 
many-to-one or many-to-many, we do not include it in the 
schema. If the cardinality of Orders to Customer had not 
been a many-to-one relationship, the Customer, Nation, 
and Region entitities would not have been visited and 
added to the schema.  As is, the sub-leveling ends with 
Region because it has no relationships not already 
evaluated.  

The last relationship with LineItem is to PartSupp. 
This is a many-to-one relationship, so the relationships of 
PartSupp are recursively processed as well.  PartSupp is a 
little different from other entities in this example because 
it has multiple sub-levels.  The other difference is that the 
Nation and Region levels already exist from the 
relationship to the Customer level so that we do not have 
to duplicate part of the schema.  The first complete 
candidate schema (for one iteration of the outermost loop 
in 2) is given in Figure 5. 

Now that we have completed the first iteration of the 
algorithm, we create another candidate schema in the 
second iteration. Steps 1 through 5 are reapplied with 
PartSupp as the event entity.  Since the PartSupp entity is 
on the one-side of the relationship with the LineItem 
entity, we do not delve any lower on that dimension path.  
The completed candidate schema is shown in Figure 7.  
This candidate schema has fewer levels in its dimensions.  
Only the relationship with the Supplier table leads to sub-
levels.  Another new symbol, the cloud shape, is 
introduced to denote that a level may be needed and is not 
automatically derived from the OLTP schema. In data 
warehouses, events tend to be measured by date or time 
periods.  Although the PartSupp entity does not have any 
date/time fields, the final design in the data warehouse 
probably will.  This dimension may be created by the 
grain requirements of the user for analysis or by the 
refresh requirements used to capture data from the OLTP 
system to store into the data warehouse.  Dimensions 
represented by the cloud are added to any fact node with 
no date or time fields. 

Following the sequence of the algorithm, the other 
entities with numeric fields are examined and candidate 
schemas are produced.  These are given in Figures 7 
through 10. Not all of the generated conceptual schemas 
may prove to be useful to the user; the 6 candidate 
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conceptual schemas automatically created by our 
algorithm are evaluated against user requirements in the 
next section. 

 

 
Figure 5. Candidate Schema 1: LineItem Event 

 
 

 
Figure 6.  Candidate Schema 2: PartSupp Event 

 

 
Figure 7.  Candidate Schema 3: Part Event 

 

 
Figure 8.  Candidate Schema 4: Orders Event 
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Figure 9.  Candidate Schema 5: Customer Event 

 

 
Figure 10.  Candidate Schema 6: Supplier Event 

4.  Candidate Schema Selection and Refinement 
The TPC-H Benchmark queries are used here to 

evaluate which candidate schemas best meet users’ needs. 
There are two aspects of a query that are used to 
determine if a candidate schema can answer a query: the 
tables in the FROM clause and the numeric fields in the 
SELECT clause. If a candidate schema does not contain 
the table(s) in the FROM clause it cannot answer the 
query because the fields of that table are not in the 
schema either. It is unnecessary to check for every field in 
the query SELECT statement because the candidate 
schema generation algorithm dictates that every field in a 
table of the OLTP system is in the schema. The numeric 
fields from the SELECT clause are essentially the 

measures that need to be attributes of the fact node to 
answer the query. In order to compare the candidate 
schemas for satisfying the queries, we create a table. For 
our example, Table 2 represents the 22 queries and the 6 
candidate conceptual schemas. In the table, “X” shows 
that the candidate schema completely meets the query 
requirement, and “P” means that the schema partially 
answers the query because a numeric value of interest is 
not in a fact node but is in one of the dimensions. A blank 
entry means that the query is not answerable by this 
schema.  

As an example of how the evaluation algorithm 
works, consider query Q1:  

SELECT l_returnflag, l_linestatus, Sum(l_quantity) as 
sum_qty, Sum(l_extendedprice) as sum_base_price, 
Sum(l_extendedprice * (1 – l_discount)) as 
sum_disc_price, Sum(l_extendedprice * (1 – l_discount) 
* (1 + l_tax)) as sum_charge, Avg(l_quantity) as 
avg_qty, Avg(l_extendedprice) as avg_price, 
Avg(l_discount) as avg_disc, Count(*) as count_order 

FROM  lineitem 
WHERE l_shipdate <= date ‘1998-12-01’ – interval 

‘[DELTA]’ day(3) 
GROUP BY l_returnflag, l_linestatus 
ORDER BY l_returnflag, l_linestatus; 

Starting with Candidate Schema 1, since LineItem Event 
is the fact node and all numeric fields in the SELECT 
statement are attributes of the fact node, this schema 
satisfies the query (an “X” entry). Doing the same steps 
for Candidate Schema 2, PartSupp Event, LineItem is 
again included in the schema, however, the numeric fields 
are not in the fact node but are in a level node (a “P” entry 
for partial match).  Candidate Schemas 3 through 6 are 
processed in this manner with only Candidate Schema 4, 
Orders Event, found to be a partial answer to the query. 
Evaluating the remaining queries for each schema in the 
same manner yields Table 2. 

The evaluation algorithm identifies whether various 
candidate schemas meet the requirements of the user 
queries. The resulting table can be automatically 
processed using a graph covering algorithm or manually 
evaluated to determine which candidate schemas to keep 
and which can be discarded.  We describe a manual 
process to illustrate tradeoffs between candidate schemas 
and motivate our refinement guidelines. 

There are two types of queries that yield results that 
may require manual refinement before evaluation of the 
table: a query with numeric SELECT fields from multiple 
OLTP entities, and queries with no numeric fields. Any 
query that has numeric SELECT fields from more than 
one OLTP table results in only a partial solution to the 
query. Q10 is an example of this. Query Q10 has three 
numeric fields, L_ExtendedPrice, L_Discount, and 
C_AcctBal. Because these fields span different OLTP 
entities, none of our candidate schemas can directly 
answer the query. Any candidate schema that meets the 
FROM criteria evaluates to a “P” for partial. Manual 
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evaluation is needed to determine if the schema can 
indeed answer the query adequately or whether minor 
changes to the candidate schema may allow it to 
completely answer the query. One such change may be 
the movement of a numeric field from a level to a fact 
node. 

For queries with no numeric fields in the SELECT 
statement, the schemas that include all the entities in the 
FROM statement of the query evaluate as direct answers 
(i.e., “X”) to the query requirements.  This evaluation of 
the candidate schemas is correct because the queries only 
require textual or date type information. With no 
requirement for numerical data all data can come from 
any candidate schema with the appropriate levels.  Query 
Q12 is an example of this type of query. The FROM 
section of Query Q12 has two tables, Orders and 
Lineitem.  Candidate Schemas 1 and 4 have data from 
these tables and both meet the user requirements of the 
query. 

 
 1 2 3 4 5 6 
Q1 X P  P   
Q2 P P     
Q3 X   P   
Q4 X   X   
Q5 X      
Q6 X      
Q7 X      
Q8 X      
Q9 P      
Q10 P   P   
Q11 P X    P 
Q12 X   X   
Q13 X   X X  
Q14 X P     
Q15 X P     
Q16 P X     
Q17 X P     
Q18 X   P   
Q19 X P     
Q20 X P     
Q21 X      
Q22 P   P X  

Table 2.  Candidate Schema Evaluation 
 

Table 2 gives us several possibilities for schemas that 
meet our data warehouse requirements as defined by the 
user queries. Candidate Schemas 3 and 6 can be 
eliminated since they do not answer any queries that 
cannot be answered by other candidate schemas. 
Candidate Schema 4, while satisfying many queries, does 
not satisfy any that are not satisfied by Candidate Schema 
1, and can thus be discarded.  Candidate Schema 2 is 
promising; it is a stronger schema than Candidate Schema 
1 for a few of the queries (“X” instead of “P” for Q11 and 
Q16). Candidate Schema 5 may not be needed, but it 
answers Q22 which can only be partially answered by 

Candidate Schema 1. Further analysis is needed to decide 
if Candidate Schema 5 can be dropped or is needed as 
part of the data warehouse for specific purposes. The 
analysis may result in modifications to the query or 
modifications to Candidate Schema 1.  Additional steps to 
further refine schemas based on user input or knowledge 
of a designer are discussed below. 

Most of the refinement steps require little knowledge 
of the existing OLTP database schema; knowledge of the 
user needs is more important.  We identify seven manual 
steps for conceptual schema refinement (numbering starts 
with 6 because the automated conceptual design steps 
ended with 5). 

6. If user queries are known, eliminate unnecessary 
candidate schemas. 

7. Inspect measures in each fact node. Are they 
indeed measures or attributes? 

8. What is the necessary grain of date/time 
information? 

9. Are other calculated fields necessary? 
10. Can schemas be merged? 
11. Can any fields be eliminated as not necessary?  
12. Is there any data required that did not exist in the 

OLTP database? 
There may be other additions dictated by need and 
situation but the steps above address many of the changes 
that need to be made manually. We provide some 
examples, but these examples rely on our interpretation of 
the TPC-H information. The following is for illustrative 
purposes only and is not meant as a comprehensive 
solution for finishing the automatically generated 
schemas.  

Because user queries to be answered by the data 
warehouse are known, we are able to eliminate several of 
the candidate schemas in Step 6.  The selection of the 
candidate schemas is considered a manual step, although 
it is facilitated by the evaluation table, because the 
determination of which schemas to keep is subjective and 
should be considered by a designer.  

Step 7 analyzes the measures of a fact node. Some 
numeric fields are actually attributes (descriptors) rather 
than measures. Fields such as width, length, and other 
physical properties are generally attributes used as 
limiting criteria in a query rather than as measures of the 
business. In LineItem Event, the L_LineNumber field is 
likely used to sequence the items that make up the order. 
L_LineNumber is non-additive, and would not be summed 
for each item of an order, which is a good indicator that it 
is an attribute rather than a measure. As part of Step 7, the 
L_LineNumber field is moved from the fact table and 
placed in the level node or dimension table.   

Step 8, determining the grain of data necessary, 
resolves date and/or time measures (illustrated by 
hexagons and clouds in our ME/R schemas). For example, 
if the user wants to see part inventory levels at the various 
suppliers on a weekly basis, a level representing week is 
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necessary.  Alternate rollup paths for dates could be added 
at this point, as well. 

In Step 9, any calculated fields used on a regular 
basis may be added to the schema so that the calculation 
is done at the warehouse rather than by end user tools.  
For example, in many of the TPC-H queries, LineItem 
measures are combined to produce a revenue field 
(sum(L_ExtendedPrice * (1 – L_Discount)).  Another 
important aspect of Step 9 is adding count fields; this can 
be done in queries or a counter field could be added to the 
fact node. 

Step 10 is based on the merging of facts and 
dimensions as described by Ballard et al. [BH98] and 
Kimball [K96a, K98]. The merging of either facts or 
dimensions requires knowledge of not only user 
requirements but also of the OLTP system.  If any 
schemas have a common dimension (a dimension having 
all of the same levels as a dimension in another schema) 
they can be merged into fact trees.  By sharing a 
dimension, users gain a more complete view of their order 
data in one schema.  Schema merging relies on the date 
level granularity being the same and the facts sharing a 
date.  

The second form of schema merging is fact merging, 
where facts from two candidate conceptual schemas can 
be merged to a single schema.  Merging some of our 
candidate schemas (or parts of) may allow for additional 
queries to be answered. This may be the case where a 
table is not part of a many relationship to another table 
and some information from that table fulfills a query. In 
our evaluation table (Table 2), Candidate Schema 4 
partially answers Q1, Q3, Q10, Q18 and Q22. If we 
decide to add the numeric fields from LineItem to the 
Order Event we could answer Q1, Q3 and Q18 
completely and would now have more of the numeric 
SELECT fields from Q10 and Q22.  This form of 
candidate schema merging is more likely when a one-to-
one relationship exists. Automating the identification of 
possibilities for merging is a topic for future work. 

Step 11 removes fields that do not hold information 
of interest. In a few entities, such as Region, it is unlikely 
that the comment field holds information of value in an 
OLAP scenario and can be removed. 

The last manual step, Step 12, addresses instances 
where user requirements reference data that is not stored 
in the enterprise database. For example, a car lot may see 
a decline is sales on rainy days and wants to track the 
weekly sales based on weather conditions.  If the OLTP 
system does not have data about the weather, an outside 
source of information is integrated into the data 
warehouse. Because the data is not in the OLTP data 
sources we use as input, this step is not automated in our 
algorithm.  

Schemas selected based on satisfying user queries 
and refined based on manual guidelines provide a basis 
for physical data warehouse design and implementation. 

 
5.  Discussion 

This paper contributes an algorithm to derive data 
warehouse candidate conceptual schemas from an OLTP 
schema.  Our algorithm uses numeric fields and 
relationships between entities as the basis to create ME/R 
schemas.  The basic concept can be used with most 
models such as UML, ER, and relational, as long as the 
source schema contains some notion of entities, their 
relationships, and relationship cardinalities.  The 
algorithm is applicable for any data model where the data 
types can be partitioned into numeric, date/time, and 
textual data types.  A second contribution is an algorithm 
to evaluate candidate conceptual schemas using user 
queries.  Candidate conceptual schemas can be selected 
and possibly modified using our manual refinement 
guidelines to fulfill user needs.  The algorithms are 
illustrated using the TPC-H Benchmark schema and 
queries. 

A potential limitation of the work is that it requires 
an enterprise-wide initial schema and queries that span 
business operations.  If these are not readily available, 
then manual requirements gathering is required before our 
algorithms could be applied; however, this would have to 
be done regardless of the chosen design methodology.  
Alternately, data marts could be created using our 
algorithms if enterprise-wide information is not available. 

Enhancements to the creation algorithm include: 
• allowing specification of count measures and 

measures that are stored in non-numeric fields prior 
to automatic schema generation since this cannot be 
automated and is currently only considered in post-
processing manual refinement, 

• allowing 1-to-1 relationships to create merged fact 
nodes,  

• considering the impact of many-to-many 
relationships [PJD94, SMRE01], and 

• expanding its scope to include historical, 
summarized, and consolidated data rather than just 
OLTP data. 

Extensions to the evaluation algorithm include identifying 
opportunities for schema merging based on queries. 

While we have made headway in the automation of 
conceptual schema generation and evaluation, there is 
additional work to be done to evaluate and implement the 
proposed algorithms.  Our work is illustrated using the 
TPC-H schema and queries, but additional case studies 
using other application scenarios are needed.  Our work 
provides a basis for implementation in a software tool, but 
that remains for future work. 
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