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Abstract. Extraction-Transformation-Loading (ETL) tools are pieces of software responsible for 
the extraction of data from several sources, their cleansing, customization and insertion into a data 
warehouse. In this paper, we focus on the logical design of the ETL scenario of a data warehouse. 
Based on a formal logical model that includes the data stores, activities and their constituent parts, 
we model an ETL scenario as a graph, which we call the Architecture Graph. We model all the 
aforementioned entities as nodes and four different kinds of relationships (instance-of, part-of, 
regulator and provider relationships) as edges. In addition, we provide simple graph 
transformations that reduce the complexity of the graph. Finally, in order to support the 
engineering of the design and the evolution of the warehouse, we introduce specific importance 
metrics, namely dependence and responsibility, to measure the degree to which entities are bound 
to each other. 

1. Introduction 

Related literature has characterized data warehouse processes as complex [BoFM99], costly and critical 
(covering thirty to eighty percent of effort and expenses of the overall data warehouse construction) 
[ShTy98, Vass00]. In order to facilitate and manage these data warehouse operational processes, 
specialized tools are already available in the market [Arde01, Data01, Micr01, ETI01], under the 
general title Extraction-Transformation-Loading (ETL) tools. To give a general idea of the 
functionality of these tools we mention their most prominent tasks, which include (a) the identification 
of relevant information at the source side; (b) the extraction of this information; (c) the customization 
and integration of the information coming from multiple sources into a common format; (d) the 
cleaning of the resulting data set, on the basis of database and business rules, and (e) the propagation of 
the data to the data warehouse and/or data marts. In the sequel, we will not discriminate between the 
tasks of ETL and Data Cleaning and adopt the name ETL for both these kinds of activities. 

[KRRT98] gives an informal but detailed methodology for the management of ETL activities. 
Research has also provided preliminary results on the modeling and optimization of ETL activities. The 
AJAX data cleaning tool [GFSS00] deals with typical data quality problems, such as the object identity 
problem, errors due to mistyping and data inconsistencies between matching records. AJAX provides a 
framework wherein the logic of a data cleaning program is modeled as a directed graph of mapping, 
matching, clustering and merging transformations over some input data. [RaHe01] present the Potter’s 
Wheel data cleaning system, which offers the possibility of performing several algebraic operations 
over an underlying data set in an interactive/iterative way. [RaDo00] provides an extensive overview of 
the field of data cleaning, along with research issues and a review of some commercial tools. [Mong00] 
discusses a special case of the data cleaning process, namely the detection of duplicate records and 
extends previous algorithms on the issue. [BoDS00] focuses on another subproblem, namely the one of 
breaking address fields into different elements and suggest the training of a Hidden Markov Model to 
solve the problem. Moreover, in previous lines of research [VQVJ01, VVS+01] there was a first effort 
to cover the design aspects of ETL by trying (a) to show how data warehouse processes can be linked 
to a metadata repository; (b) to construct a running tool and (c) to cover some quality aspects of the 
data warehouse process.  
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We believe that these approaches have not considered the inner structure of the ETL activities in 
sufficient depth. In this paper, we start from a general framework for the logical design of an ETL 
scenario and focus on the internal structure of ETL activities (practically exploiting their data centric 
nature). We employ a uniform paradigm, namely graph modeling, for both the scenario at large and the 
internals of each activity. Our contributions can be listed as follows: 
- First, we briefly present a logical model that includes the data stores, ETL activities and their 

constituent parts. An activity is defined as an entity with (possibly more than one) input 
schema(ta), an output schema, a rejection schema for the rows that do not pass the criteria of the 
activity and a parameter schema, so that the activity is populated each time with its proper 
parameter values.  

- Second, we show how this model is reduced to a graph, which we call the Architecture Graph. 
We model all the aforementioned entities as nodes and four different kinds of relationships as 
edges. These relationships involve (a) type checking information (i.e., which type an entity 
corresponds to), (b) part-of relationships (e.g., which activity does an attribute belong to), (c) 
regulator relationships, covering the population of the parameters of the activities from 
attributes or constant values and (d) provider relationships, covering the flow of data from 
providers to consumers.  

- Finally, we provide results on the exploitation of the Architecture Graph. First, we provide 
several simple graph transformations that reduce the complexity of the graph. For example, we 
give a simple algorithm for zooming out the graph, a transformation that can be very useful for 
the visualization of the graph. Second, we measure the importance and vulnerability of the 
nodes of the graph through specific importance metrics, namely dependence and responsibility. 
Dependence stands for the degree to which a node is bound to other entities that provide it with 
data and responsibility measures the degree up to which other nodes of the graph depend on the 
node under consideration.  

The reader is strongly encouraged to refer to the long version of the paper [VaSS02a] with further 
results and discussions that we cannot present here for lack of space. This paper is organized as 
follows. Section 2 presents how an ETL scenario can be modeled as a graph. Section 3 describes the 
exploitation of the architecture graph through several useful transformations and treats the design 
quality of an ETL scenario via this graph. In Section 4 we conclude our results. 

2 The Architecture Graph of an ETL Scenario 

In this section, we first give a formal definition of activities, recordsets and other constituents of an 
ETL scenario. The full layout of such an ETL scenario can be modeled by a graph, which we call the 
Architecture Graph. Apart from this static description, the architecture graph also captures the data 
flow within the ETL environment. At the same time, the information on the typing of the involved 
entities and the regulation of the execution of a scenario, through specific parameters are also covered. 

2.1 Preliminaries 

Being a graph the Architecture Graph of an ETL scenario comprises nodes and edges. The involved 
data types, function types, constants, attributes, activities, recordsets and functions constitute the nodes 
of the graph. In the sequel, we summarize the definition of these elements and refer the interested 
reader to [VaSS02a] for more details. 

- Data types. Each data type T is characterized by a name and a domain, i.e., a countable set 
of values. The values of the domains are also referred to as constants. 

- Attributes. Attributes are characterized by their name and data type. Attributes and 
constants are uniformly referred to as terms. 

- A Schema is a finite list of attributes. Each entity that is characterized by one or more 
schemata will be called Structured Entity.  

- RecordSets. A recordset is characterized by its name, its (logical) schema and its (physical) 
extension (i.e., a finite set of records under the recordset schema). As mentioned in 
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[VQVJ01], we can treat any data structure as a “record set” provided that there are the 
means to logically restructure it into a flat, typed record schema. In the rest of this paper, 
we will mainly deal with the two most popular types of recordsets, namely relational 
tables and record files.  

- Functions. A Function Type comprises a name, a finite list of parameter data types, and a 
single return data type. A function is an instance of a function type. 

- Elementary Activities. In our framework, activities are logical abstractions representing 
parts, or full modules of code. We employ an abstraction of the source code of an activity, 
in the form of an SQL statement, in order to avoid dealing with the peculiarities of a 
particular programming language. An Elementary Activity is formally described by the 
following elements: 
- Name: a unique identifier for the activity. 
- Input Schemata: a finite set of one or more input schemata that receive data from the 

data providers of the activity.  
- Output Schema: the schema that describes the placeholder for the rows that pass the 

check performed by the elementary activity.  
- Rejections Schema: a schema that describes the placeholder for the rows that do not 

pass the check performed by the activity, or their values are not appropriate for the 
performed transformation.  

- Parameter List: a set of pairs which act as regulators for the functionality of the 
activity (the target attribute of a foreign key check, for example). The first component 
of the pair is a name and the second is a schema, an attribute, a function or a constant. 

- Output Operational Semantics: an SQL statement describing the content passed to the 
output of the operation, with respect to its input. This SQL statement defines (a) the 
operation performed on the rows that pass through the activity and (b) an implicit 
mapping between the attributes of the input schema(ta) and the respective attributes of 
the output schema. 

- Rejection Operational Semantics: an SQL statement describing the rejected records, 
in a sense similar to the Output Operational Semantics. This statement is by default 
considered to be the negation of the Output Operational Semantics, except if 
explicitly defined differently.  

To fully capture the characteristics and interactions of the static entities mentioned previously, we 
model the different kinds of their relationships as the edges of the graph. Here, we list these types of 
relationships along with the related terminology that we will employ for the rest of the paper. 
- Part-of relationships. These relationships involve attributes and parameters and relate them to 

the respective activity, recordset or function to which they belong.  
- Instance-of relationships. These relationships are defined among a data/function type and its 

instances. 
- Provider relationships. These are 1:N relationships that involve attributes with a provider-

consumer relationship. The flow of data from the data sources towards the data warehouse is 
performed through the composition of activities in a larger scenario. In this context, the input 
for an activity can be either a persistent data store, or another activity, i.e., any structured entity 
under a specific schema. Provider relationships capture the mapping between the attributes of 
the schemata of the involved entities. Note that a consumer attribute can also be populated by a 
constant, in certain cases. 

- Regulator relationships. These relationships are defined among the parameters of activities and 
the terms that populate these activities. 

- Derived provider relationships. A special case of provider relationships that occurs whenever 
output attributes are computed through the composition of input attributes and parameters. 
Derived provider relationships can be deduced from a simple rule and do not originally 
constitute a part of the graph. 

We assume the infinitely countable, mutually disjoint sets of names of column Model-specific in Fig. 
2.1. As far as a specific scenario is concerned, we assume their respective finite subsets, depicted in 
column Scenario-Specific in Fig. 2.1. Data types, function types and constants are considered Built-in’s 
of the system, whereas the rest of the entities are provided by the user (User Provided). Formally, let 
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G(V,E) be the Architecture Graph of an ETL scenario. Then, V = D∪F∪C∪Ω∪Φ∪S∪RS∪A and E = 
Pr∪Po∪Io∪Rr∪Dr. The graphical notation for the Architecture Graph is depicted in Fig. 2.2. 
 

 Entity Model-specific Scenario-specific 
Data Types DI D 

Function Types FI F 

 

Built-in 
Constants CI C 
Attributes ΩI Ω 
Functions ΦI Φ 
Schemata SI S 
RecordSets RSI RS 
Activities AI A 
Provider Relationships PrI Pr 
Part-Of Relationships PoI Po 
Instance-Of Relationships IoI Io 
Regulator Relationships RrI Rr 

 

User-provided 

Derived Provider Relationships DrI Dr 

Fig. 2.1 Formal definition of domains and notation 

 

Data Types Black ellipsis 
 

RecordSets Cylinders 
 

Function 
Types Black squares 

 
Functions Gray squares 

 

Constants Black cycles 
 

Parameters White squares 
 

Attributes Hollow ellipsoid 
nodes 

 
Activities Triangles 

 

       

Part-Of 
Relationships 

Simple edges 
annotated with  
diamond* 

 Provider 
Relationships 
 

Bold solid rows 
(from provider to 
consumer) 

 

Instance-Of 
Relationships 

Dotted arrows  
(from instance 
towards the type) 

 Derived 
Provider 
Relationships 

Bold dotted arrows 
(from provider to 
consumer) 

 

Regulator 
Relationships Dotted edges  

 
 

* We annotate the part-of relationship among a 
function and its return type with a directed edge, to 
distinguish it from the rest of the parameters. 

Integer
R 

$2€ my$2€ 

rate 1

SK PKEY

Fig. 2.2 Graphical notation for the Architecture Graph. 

2.2 Constructing the Architecture graph 

In this subsection we will describe the precise structure of the architecture graph, based on the 
theoretical foundations and the graphical notation of the previous subsection. Clearly, we do not 
anticipate a manual construction of the entire graph by the designer, but rather, we anticipate that the 
designer will need to specify only the high level parts of the Architecture Graph during the construction 
of an ETL scenario. In general, this process can be facilitated by a graphical tool or a declarative 
language; we refer the interested reader to [VVS+01] for an example of both these alternatives. 

To motivate our discussion we will present an example involving the existence of (a) two source 
databases S1 and S2; (b) a central data warehouse DW and (c) a Data Staging Area (DSA), where all the 
transformations take place. The scenario involves the propagation of data from the table 
PARTSUPP(PKEY, DATE, QTY, COST) of source S1 as well as from the table PARTSUPP(PKEY, QTY, 
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COST) of source S2 to the data warehouse. Table DW.PARTSUPP (PKEY, SUPPKEY, DATE, QTY, COST) 
stores information for the available quantity (QTY) and cost (COST) of parts (PKEY) per supplier 
(SUPPKEY). Practically, the two data sources S1 and S2 stand for the two suppliers of the data 
warehouse. The full-scale example can be found in the long version of the paper [VaSS02a]. Here we 
will employ only a small part of it, where the data from source S1 have just been transferred to the DSA 
in an intermediate table DS.PS1(PKEY,DATE,QTY,COST). We will particularly focus on two activities 
of the flow from table DS.PS1 towards the target table DW.PARTSUPP. 
1. In order to keep track of the supplier of each row (and ultimately populate attribute SUPPKEY of the 

table DW.PARTSUPP), we need to add a ‘flag’ attribute, namely SUPPKEY, indicating 1 or 2 for the 
respective supplier. In our case, this is achieved through the activity Add_SPK1. 

2. Then, we need to assign a surrogate key on attribute PKEY. In the data warehouse context, it is 
common tactics to replace the keys of the production systems with a uniform key, which we call a 
surrogate key [KRRT98]. The basic reasons for this replacement are performance and semantic 
homogeneity. Textual attributes are not the best candidates for indexed keys and thus need to be 
replaced by integer keys. At the same time, different production systems might use different keys for 
the same object, or the same key for different objects, resulting in the need for a global replacement 
of these values in the data warehouse. This replacement is performed through a lookup table of the 
form L(PRODKEY,SOURCE, SKEY). The SOURCE column is due to the fact that there can be 
synonyms in the different sources, which are mapped to different objects in the data warehouse. In 
our case, the activity that performs the surrogate key assignment for the attribute PKEY is SK1, using 
the lookup table LOOKUP_PS(PKEY, SOURCE, SKEY). 
Attributes and part-of relationships. The first thing to incorporate in the architecture graph is the 

structured entities (activities and recordsets) along with all the attributes of their schemata. We choose 
to avoid overloading the notation by incorporating the schemata per se; instead, we apply a direct 
part-of relationship between an activity node and the respective attributes. We annotate each such 
relationship with the name of the schema (by default, we assume a IN, OUT, PAR, REJ tag to denote 
whether the attribute belongs to the input, output, parameter or rejection schema of the activity). 
Naturally, if the activity involves more than one input schemata, the relationship is tagged with an INi 
tag for the i-th input schema. Then, we incorporate the functions along with their respective parameters 
and the part-of relationships among the former and the latter. We annotate the part-of relationship with 
the return type with a directed edge, to distinguish it from the rest of the parameters.  

Fig. 2.3a depicts the decomposition of the recordsets DS.PS1, LOOKUP_PS and the activities 
Add_SPK1 and SK1 into the attributes of their input and output schemata. Note the tagging of the 
schemata of the involved activities. We do not consider the rejection schemata in order to avoid 
crowding the picture. At the same time, the function Add_const1 is decomposed into its parameters. 
This function belongs to the function type ADD_CONST and comprises two parameters: in and out. The 
former receives an integer as input and the latter propagates it towards the SUPPKEY attribute, in order 
to trace the fact that the rows come from source S1. 

Note also, how the parameters of the two activities are also incorporated in the architecture graph. 
For the case of activity Add_SPK1 the involved parameters are the parameters in and out of the 
employed function. For the case of activity SK1 we have five parameters: (a) PKEY, which stands for the 
production key to be replaced; (b) SOURCE, which stands for an integer value that characterizes which 
source’s data are processed; (c) LU_PKEY, which stands for the attribute of the lookup table which 
contains the production keys; (d) LU_SOURCE, which stands for the attribute of the lookup table which 
contains the source value (corresponding to the aforementioned SOURCE parameter); (e) LU_SKEY, 
which stands for the attribute of the lookup table which contains the surrogate keys. 

Data types and instance-of relationships. Instantiation relationships are depicted as dotted arrows 
that stem from the instances and head towards their data/function types. In Fig. 2.3b, we observe the 
attributes of the two activities of our example and their correspondence to two data types, namely 
Integer and US_Date. For reasons of presentation, we merge several instantiation edges so that the 
figure does not become too crowded. At the bottom of Fig. 2.3b, we can also see the fact that function 
Add_const1 is an instance of the function type ADD_CONST. 

Parameters and regulator relationships. In this case, we link the parameters of the activities to the 
terms (attributes or constants) that populate them. We depict regulator relationships with simple dotted 
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edges. In the example of Fig. 2.3a we can observe how the parameters of the two activities are 
populated. First, we can see that activity Add_SPK1 receives an integer (1) as its input and uses the 
function Add_const1 to populate its attribute SUPPKEY. The parameters in and out are mapped to the 
respective terms through regulator relationships. The same applies also for activity SK1. All its 
parameters, namely PKEY, SOURCE, LU_PKEY, LU_SOURCE and LU_SKEY, are mapped to the respective 
attributes of either the activity’s input schema or the employed lookup table LOOKUP_PS. 

 

PKEY 

DATE 

QTY 

COST 

SUPPKEY 

PKEY 

DATE 

QTY 

COST 

PKEY 

DATE 

QTY 

COST 

SUPPKEY

PKEY 

DATE

QTY 

COST

SUPPKEY 

SKEY

AddSPK1 SK1IN IN OUT OUT

Add_ 
const1 

in out

PKEY 

SK 

SOURCE LOOKUP_
PS 

LU_PKEY

LU_SKEY

PKEY

SOURCE

PAR PAR

LU_SOURCE

1 

DS.PS1 

PKEY 

COST 

DATE 

QTY 

PKEY

DATE

QTY

COST 

SUPPKEY

PKEY

DATE

QTY 

COST

PKEY 

DATE 

QTY 

COST 

SUPPKEY 

PKEY 

DATE 

QTY 

COST 

SUPPKEY 

SKEY 

AddSPK1 SK1 IN IN OUT OUT 

IntegerUS Date
ADD_
CONST 

PAR

Add_ 
const1 

(a) (b) 

Fig. 2.3 Relationships of the architecture graph: (a) Part-of, provider and regulator 
relationships; (b) Instance-of relationships 

The parameter LU_SKEY deserves particular attention. This parameter is (a) populated from the 
attribute SKEY of the lookup table and (b) used to populate the attribute SKEY of the output schema of 
the activity. Thus, two regulator relationships are related with parameter LU_SKEY, one for each of the 
aforementioned attributes. The existence of a regulator relationship among a parameter and an output 
attribute of an activity normally denotes that some external data provider is employed in order to derive 
a new attribute through the activity, through the respective parameter.  

Provider relationships. As already mentioned, the provider relationships capture the data flow from 
the sources towards the target recordsets in the data warehouse. Provider relationships are depicted with 
bold solid arrows that stem from the provider and end in the consumer attribute. Observe Fig. 2.3a. The 
flow starts from table DS.PS1 of the data staging area. Each of the attributes of this table is mapped to 
an attribute of the input schema of activity Add_SPK1. The attributes of the input schema of the latter 
are subsequently mapped to the attributes of the output schema of the activity. The flow continues from 
activity Add_SPK1 towards the activity SK1 in a similar manner. Note that, for the moment, we have not 
covered how the output of function Add_Const1 populates the output attribute SUPPKEY for the 
activity AddSPK1, or how the parameters of activity SK1 populate the output attribute SKEY. This 
shortcoming is compensated through the usage of derived provider relationships, which we will 
introduce in the sequel. 

Another interesting thing is that during the data flow, new attributes are generated, resulting on new 
‘streams’ of data, whereas the flow seems to stop for other attributes. Observe the rightmost part of Fig. 
2.3a where the values of attribute PKEY are not further propagated (remember that the reason for the 
application of a surrogate key transformation is to replace the production keys of the source data to a 
homogeneous surrogate for the records of the data warehouse, which is independent of the source they 
have been collected from). Instead of the values of the production key, the values from the attribute 
SKEY will be used to denote the unique identifier for a part in the rest of the flow. 

Derived provider relationships. As we have already mentioned, there are certain output attributes 
that are computed through the composition of input attributes and parameters. A derived provider 
relationship is another form of provider relationship that captures the flow from the input to the 
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respective output attributes. Formally, assume that source is a term in the architecture graph, target 
is an attribute of the output schema of an activity A and x,y are parameters in the parameter list of A. 
The parameters x and y need not necessarily be different with each other. Then, a derived provider 
relationship pr(source,target) exists iff the following regulator relationships (i.e., edges) exist: 
rr1(source,x) and rr2(y, target).  

PKEY 

SUPPKEY

PKEY PKEY 

SUPPKEY 

PKEY 

SUPPKEY

SKEY 

AddSPK1 SK1
IN INOUT OUT 

PKEY 

SK

SOURCELOOKUP_
PS 

LU_PKEY

LU_SKEY

PKEY

SOURCE

PAR

LU_SOURCEPKEY 

SK 

SOURCE LOOKUP_
PS 

PKEY 

SUPPKEY 

SKEY

SK1 
IN OUT

Legend 

 
Fig. 2.4 Derived provider relationships of the architecture graph 

Intuitively, the case of derived relationships models the situation where the activity computes a new 
attribute in its output. In this case, the produced output depends on all the attributes that populate the 
parameters of the activity, resulting in the definition of the corresponding derived relationship. Observe 
Fig. 2.4, where we depict a small part of our running example. The legend in the left side of Fig. 2.4 
depicts how the attributes that populate the parameters of the activity are related through derived 
provider relationships with the computed output attribute SKEY. The meaning of these five relationships 
is that SK1.OUT.SKEY is not computed only from attribute LOOKUP_PS.SKEY, but from the 
combination of all the attributes that populate the parameters. 

3. Exploitation of the Architecture Graph 

In this section, we provide results on the exploitation of the Architecture Graph for several tasks. 
Specifically, in Section 3.1, we give a simple algorithm for zooming out the graph, a transformation 
that can be very useful for it visualization. Also, we give a simple algorithm that returns a subgraph 
involving only the critical entities for the population of the target recordsets of the scenario. Then, in 
Section 3.2, we measure the importance and vulnerability of the nodes of the graph through specific 
importance metrics, namely dependence and responsibility. Dependence stands for the degree to which 
an entity is bound to other entities that provide it with data and responsibility measures the degree up to 
which other nodes of the graph depend on the node under consideration. Dependence and responsibility 
are crucial measures for the engineering of the evolution of the ETL environment. 

3.1 Graph Transformations 

In this subsection, we will show how we can employ trivial transformations in order to eliminate the 
detailed information on the attributes involved in an ETL scenario. Each transformation that we discuss 
is providing a ‘view’ on the graph. These views are simply subgraphs with a specific purpose. One 
would normally expect that the simplest view is produced by restricting the subgraph to only one of the 
four major types of relationships (provider, part-of, instance-of, regulator). We consider this as trivial, 
and we proceed to present two transformations, involving (a) how we can zoom out the architecture 
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graph, in order to eliminate the information overflow, which can be caused by the vast number of 
involved attributes in a scenario and (b) how we can obtain a critical subgraph of the Architecture 
Graph that includes only the entities necessary for the population of the target recordsets of the 
scenario.  

Zooming In and Out the Architecture Graph. We give a practical zoom out transformation that 
involves provider and regulator relationships. We constraint the algorithm of Fig. 3.1 to a local 
transformation, i.e., we consider zooming out only a single activity or recordset. This can easily be 
generalized for the whole scenario, too. Assume a given structured entity (activity or recordset) A. The 
transformation Zoom_Out of Fig. 3.1, detects all the edges of its attributes. Then all these edges are 
transferred to link the structured entity A (instead of its attributes) with the corresponding nodes. We 
consider only edges that link an attribute of A to some node external to A, in order avoid local cycles in 
the graph. Finally, we remove the attribute nodes of A and the remaining internal edges. Note that there 
is no loss of information due to this relationship, in terms of interdependencies between objects. 
Moreover, we can apply this local transformation to the full extent of the graph, involving the attributes 
of all the recordsets and activities of the scenario. 

Major Flow. In a different kind of zooming, we can follow the major flow of data from sources to 
the targets. We follow a backward technique. Assume the set of recordsets T, containing a set of  target 
recordsets. Then, by recursively following the provider and regulator edges we can deduce the critical 
subgraph that models the flow of data from sources towards the critical part of the data warehouse. We 
incorporate the part-of relationships too, but we choose to ignore instantiation information. The 
transformation Major_Flow is shown in Fig. 3.2. 
 

Transformation Zoom_Out  
Input: the architecture graph G(V,E) and a structured entity A  
Output: a new architecture graph G’(V’,E’)  
Begin  

G’ = G; 
∀ node t∈V’, s.t. ¬∃ edge (A,t)∈Po’ ∧ ∃ 
edge (A,x)∈Po’ { 

∀ edge (t,x)∈Pr’: Pr’= Pr’∪(t,A)-(t,x); 
∀ edge (x,t)∈Pr’: Pr’= Pr’∪(A,t)-(x,t); 
∀ edge (t,x)∈Rr’: Rr’= Rr’∪(t,A)-(t,x); 

 }  
∀ node t∈V’, s.t. ∃ edges (A,t)∈Po’, 
(A,x)∈Po’{  

∀ edge (t,x)∈Pr’: Pr’= Pr’-(t,x);  
∀ edge (x,t)∈Pr’: Pr’= Pr’-(x,t);  
∀ edge (t,x)∈Rr’: Rr’= Rr’-(t,x); 
remove t;  

 }  
End 

Transformation Major_Flow  
Input: the architecture graph G(V,E) and the set of target 
recordsets T.  
Output: a sub graph G’(V’,E’) containing information for  the 
major flow of data from sources to targets.  
Begin  

Let TΩ be the set of attributes of all the recordsets of T;  
V’=T∪TΩ;  
do { V"=∅;  

∀t∈V",a∈V,e(a,t)∈Pr:{ 
     V"=V"∪{t};E’=E’∪{e} }; 
∀t∈V",a∈V,e(a,t)∈Po:{ 
     V"=V"∪{t};E’=E’∪{e} }; 
∀t∈V",a∈V,e(t,a)∈Po:{ 
     V"=V"∪{t};E’=E’∪{e} }; 
∀t∈V",a∈V,e(a,t)∈Rr:{  
     V"=V"∪{t};E’=E’∪{e} };  
V’=V’∪V";  

} while V"≠∅;  
End 

Fig. 3.1 Zoom_Out transformation Fig. 3.2 Major_Flow transformation 

3.2 Importance Metrics 

One of the major contributions that our graph-modeling approach offers is the ability to treat the 
scenario as the skeleton of the overall environment. If we treat the problem from its software 
engineering perspective, the interesting problem is how to design the scenario in order to achieve 
effectiveness, efficiency and tolerance of the impacts of evolution. In this subsection, we will assign 
simple importance metrics to the nodes of the graph, in order to measure how crucial their existence is 
for the successful execution of the scenario. 

Consider the subgraph G’(V’,E’) that includes only the part-of, provider and derived provider 
relationships among attributes. In the rest of this subsection, we will not discriminate between provider 
and derived provider relationships and will use the term ‘provider’ for both. For each node A, we can 
define the following measures: 
- Local dependency: the in-degree of the node with respect to the provider edges; 
- Local responsibility: the out-degree of the node with respect to the provider edges; 
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- Local degree: the degree of the node with respect to the provider edges (i.e., the sum of the 
previous two entries). 

Intuitively, the local dependency characterizes the number of nodes that have to be ‘activated’ in 
order to populate a certain node. The local responsibility has the reverse meaning, i.e., how many nodes 
wait for the node under consideration to be activated, in order to receive data. The sum of the 
aforementioned quantities characterizes the total involvement of the node in the scenario.  

Except for the local interrelationships we can always consider what happens with the transitive 
closure of relationships. Assume the set (Pr∪Dr)+, which contains the transitive closure of provider 
edges. We define the following measures: 
- Transitive dependency: the in-degree of the node with respect to the provider edges; 
- Transitive responsibility: the out-degree of the node with respect to the provider edges; 
- Transitive degree: the degree of the node with respect to the provider edges. 
- Total dependency: the sum of local and transitive dependency measures; 
- Total responsibility: the sum of local and transitive responsibility measures; 
- Total degree: the sum of local and transitive degrees. 
 

PKEY 

SUPPKEY 

PKEY PKEY 

SUPPKEY

PKEY

SUPPKEY 

SKEY

AddSPK1 SK1 
IN IN OUT OUT 

 PKEY SKSOURCE 

LOOKUP_
PS 

LOCAL TRANSITIVE TOTAL 
 IN OUT DEG IN OUT DEG IN OUT DEG 
AddSPK1 

IN.PKEY 0 1 1 0 3 3 0 4 4 
OUT.PKEY 1 1 2 0 2 2 1 3 4 

OUT.SUPPKEY 0 1 1 0 2 2 0 3 3 
SUM 1 3 4 0 7 7 1 10 11 

AVG/attribute 0.33 1.00 1.33 0.00 2.33 2.33 0.33 3.33 3.57
SK1 

IN.PKEY 1 2 3 1 0 1 2 2 4 
IN.SUPPKEY 1 2 3 0 0 0 1 2 3 
OUT.PKEY 1 0 1 2 0 2 3 0 3 

OUT.SUPPKEY 1 0 1 1 0 1 2 0 2 
OUT.SKEY 5 0 5 3 0 3 8 0 8 

SUM 9 4 13 7 0 7 16 4 20 
AVG/attribute 1.8 0.8 2.6 1.4 0 1.4 3.2 0.8 4 
LOOKUP_PS 

PKEY 0 1 1 0 0 0 0 1 1 
SOURCE 0 1 1 0 0 0 0 1 1 

SK 0 1 1 0 0 0 0 1 1 
SUM 0 3 3 0 0 0 0 3 3 

AVG/attribute 0 1 1 0 0 0 0 1 1 
SUM 10 10 20 7 7 14 17 17 34 
AVG/attribute 1.67 1.67 3.33 1.17 1.17 2.33 2.83 2.83 5.67
AVG/entity 3.33 3.33 6.67 2.33 2.33 4.67 5.67 5.67 11.33 

Fig. 3.3 Transitive closure for the entities of Fig. 2.4 and corresponding importance metrics 

Consider the example of Fig. 3.3, where we have computed the transitive closure of provider edges 
for the example of Fig. 2.4. We use standard notation for provider and derived provider edges and 
depict the edges of transitive relationships with simple dotted arrows. Figure 3.3 depicts also the 
aforementioned metrics for the involved attributes. By comparing the individual values with the 
average ones, one can clearly see that attribute SK1.OUT.SKEY, for example, is the most ‘vulnerable’ 
attribute of all, since it depends directly on several provider attributes. Other interesting usages of the 
aforementioned measures include: 
- Detection of inconsistencies for attribute population. For example, if some output attribute in a 

union activity is not populated by two input attributes, or, more importantly, if an integrity 
constraint is violated with regards to the population of an attribute of a target data store (i.e., 
having in-degree equal to zero). 

- Detection of important data stores. Clearly, data stores whose attributes have a positive 
out-degree are used for data propagation. Data stores with attributes having positive both in and 
out degrees, are transitive recordsets, which we use during the flow. Once a zoom-out operation 
has been performed, data stores with in-degree greater than one, are hot-spots since they are 
related with more than one applications. 

- Detection of useless (source) attributes. Any attribute having total responsibility equal to zero is 
useless for the cause of data propagation towards the sources. 
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4. Conclusions 

In this paper, we have focused on the logical design of the ETL scenario of a data warehouse. Based on 
a formal logical model that includes the data stores, activities and their constituent parts, we model an 
ETL scenario as a graph, which we call the Architecture Graph. We model all the aforementioned 
entities as nodes and four different kinds of relationships (instance-of, part-of, regulator and provider 
relationships) as edges. We have provided several simple graph transformations that reduce the 
complexity of the graph. Finally, we have introduced specific importance metrics, namely dependence 
and responsibility, to measure the degree to which an entity is bound to other entities that provide it 
with data and the degree up to which other nodes of the graph depend on the node under consideration.  

The results of this paper are part of a larger project on the design and management of ETL activities 
[VaSS02]. As future work, we already have preliminary results for the optimization of ETL scenario 
under certain time and throughput constraints. A set of loosely coupled tools is also under construction 
for the purposes of visualization of the ETL scenarios and optimization of their execution. 
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