
A Multimodal User Interface Model For Runtime 
Distribution 

Dirk Roscher, Marco Blumendorf, Sahin Albayrak 
DAI-Labor, TU-Berlin 

Ernst-Reuter-Platz 7, D-10587 Berlin, Germany 
{Dirk.Roscher, Marco.Blumendorf, Sahin.Albayrak}@DAI-Labor.de 

ABSTRACT 
Smart environments provide numerous networked 
interaction resources (IRs) allowing users to interact with 
services in many different situations via many different 
(combinations of) IRs. In such environments it is necessary 
to adapt the user interface dynamically at runtime to each 
new situation to allow an ongoing interaction in changing 
contexts. Our approach allows to dynamically select the 
combination of IRs that are suitable for the interaction in 
the current context at any time. The decision is based on 
information from a user interface model executed at 
runtime and a context model gathering information about 
the environment. The user interface model supports the 
CARE properties to specify flexible multimodal interaction. 

Author Keywords 
User interface distribution, model-based development, 
executable models 

INTRODUCTION 
Smart environments provide numerous networked 
interaction resources (IRs) allowing users to interact with 
services in many different situations via many different 
(combinations of) IRs. In such environments user interfaces 
(UIs) need to take a changing context of use into account 
[6]. This makes the alteration of the used IRs and thus the 
dynamic (re-) combination of the resources at runtime an 
important aspect. 

In this work, we first present the requirements to 
dynamically adjust the used IRs at runtime (section 3). 
Afterwards, our model-based approach targeting the 
requirements is described. A UI model reflects the various 
UI elements as well as the relations between them in terms 
of CARE properties [7] to achieve multimodal interaction 
(section 4). At runtime, the modeled UI description in 
combination with information about the available IRs from 
an additional context model is used to continuously adjust 

the UI distribution according to the current situation 
(section 5). Before we describe our approach, related work 
is presented in the next section. 

RELATED WORK 
Model-based development is a promising approach in the 
context of multimodal UIs. According to the classification 
of the Cameleon Reference Framework proposed in [6] UI 
models feature four levels of abstraction: Concepts and 
Task Model, Abstract, Concrete and Final User Interface. 
Based on this general framework, several User Interface 
Description Languages (UIDLs) have been designed. The 
most relevant with respect to the goals of this work are 
UsiXML [11] and TERESA [2]. Their goal is to develop 
multimodal UIs but they only support a fixed set of IRs, 
whereas we aim to support sets of IRs changing at runtime. 

The distribution of UIs has also been a topic of various 
research activities, ranging from the characterization of 
distributed UIs [8] to development support for specifying 
distributed UIs [12]. The approach of Elting and 
Hellenschmidt [9] supports simple conflict resolution 
strategies when distributing output across graphical UIs, 
speech syntheses and virtual characters. The main goal is 
the semantic processing of input and output in distributed 
systems. The dynamic redistribution and definition of 
dynamic UI models has thus not been the focus of the 
approach. The I-AM (Interaction Abstract Machine) system 
[1] presents a software infrastructure for distributed 
migratable UIs. It provides a middleware for the dynamic 
coupling of IRs to form a unified interactive space. The 
approach supports dynamic distribution across multiple 
heterogeneous platforms but does not support the arbitrary 
recombination of IRs and is limited to graphical output as 
well as mouse and keyboard input. 

Our approach utilizes the modeled design information at 
runtime to dynamically adjust the combination of the used 
IRs. In the following we first describe the requirements that 
need to be fulfilled to allow the distribution of multimodal 
UIs at runtime. Afterwards, we show how these 
requirements are implemented by our approach. 

DYNAMIC UI DISTRIBUTION 
To support UI (re-) distribution at runtime several 
requirements needs to be fulfilled, that are derivated from 
the abstract architecture depicted in Figure 1: 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA. 
Copyright 2009 ACM  978-1-60558-246-7/09/04...$5.00. 

Pre-proceedings of the 5th International Workshop on Model Driven Development 
of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience 
and UI Engineering, organized at the 28th ACM Conference on Human Factors in 
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010. 
 
Copyright © 2010 for the individual papers by the papers' authors. Copying 
permitted for private and academic purposes. Re-publication of material from this 
volume requires permission by the copyright owners. This volume is published by 
its editors.

5



1. A user interface description is needed that supports 
different variants of multimodal interaction and benefits 
from the advantages of specific modalities and modality 
combinations. Information about the supported modality 
combinations need to be available at runtime. 

2. To combine IRs from different platforms, the user 
interface description needs to address single IRs. 

3. Environment information must be gathered and kept up 
to date (e.g. IRs, users and their positions). 

4. An instance that incorporates information about the UI 
and the environment is required which determines the most 
appropriate combination of IRs at any time. 

5. The combination of arbitrary IRs from different 
platforms also requires a mechanism that allows to control 
IRs independently from each other. 
The first two requirements are fulfilled by our multimodal 
UI model with different presentations and input possibilities 
as described in the next subsection. Afterwards we show 
how this model is used to create multimodal UIs by 
selecting the most appropriate combination of IRs 
(requirements 3 to 5).  

Figure 1: Abstract architecture for distributing UIs. 

MULTIMODAL EXECUTABLE UI MODEL 
The distribution of UIs at runtime requires certain 
information about the UI at runtime (part of requirement 1 
and 2). To achieve this, our approach is based on the notion 
of executable models that combine the static design 
information, execution logic and runtime state information 
of the UI [4]. This allows to execute and observe their 
status at runtime as well as to access design information. 

Our set of metamodels for specifying distributable 
multimodal UIs follows the Cameleon reference 
Framework [6] and thus we distinguish tasks and concepts, 
abstract interface, concrete interface and final interface as 
also done in TERESA and UsiXML (see Figure 2). To 
show how to develop a UI with our set of models, we 
explain the short example presented in Figure 2. The 
example is an excerpt from our cooking assistant and 
models a recipe selection scenario. The presentation of the 
recipe is possible via different modality combinations and 
can be confirmed via several input styles. 

We first specify the workflow of the example with a task 
model (we use an extended version of Concurrent Task 
Trees for the definition [10]) and thus start with the 
definition of the “ConfirmSelection”-task (T1: 
ConfirmRecipe). Afterwards, the abstract interaction(s) for 
each task is specified by choosing between OutputOnly, 
FreeInput, Choice and Command (similiar to UsiXML and 
TERESA) or ComplexInteractor to aggregate several 
abstract interactions. So we choose one abstract interaction 
object for the presentation of the selected recipe 
(A1:OutputOnly) and one for the confirmation 
(A2:Selection). The abstract interactors are connected via 
mappings to the “ConfirmSelection”-task (see Figure 2). 
This is one huge difference between transformational 
approaches like UsiXML and the executable models 
approach. Because of the parallel execution of all models 
(task, abstract and concrete), the information from all 
models is available and does not need to be transformed 
from one model into another. Each model only contains the 
information of its abstraction level and information from 
different models is connected via mappings. 

Figure 2: Model structure and interaction example. 

In the next step the concrete interaction is specified by 
using the concrete input and concrete output model. The 
separation of input and output is another difference to other 
approaches but allows the independent addressing of single 
IRs (requirement 2). However, it requires to handle IRs 
with combined input and output like touchscreens. By 
utilizing the CARE properties, developers can specify their 
intention on how to combine the different modalities 
(requirement 1). Defining multimodal relations with the 
CARE-properties is similar to the ICARE software 
components [5]. In contrast to ICARE however, the 
components and thus the multimodal relationships are not 
statically related at design time but can be freely configured 
between arbitrary modalities through the integration in the 
interaction metamodel and evaluated at runtime. 

To present the recipe (A1:OutputOnly) the developer 
chooses two different presentation possibilities: one for 
graphical output (Picture and Text) and one with additional 
natural language output (Audio). Each possibility is 
aggregated by a complex interactor and the 
Complementarity-attribute means that the children 
complement each other and must be presented together. 

6



Both possibilities are also aggregated by a complex 
interactor with an Equivalence-attribute, marking both 
possibilities as equivalent. The confirmation of the recipe 
(A2:Selection) has only a graphical presentation (Button) 
which is directly mapped to the abstract interactor. 

Figure 3: Overview of the runtime architecture. 

Beneath the used possibilities, the concrete output model 
supports SignalOutput-elements to include more limited 
modalities like blinking lights or haptic feedback 
(vibration) and DynamicOutput to create multiple output, 
e.g. for a dynamically created number of elements. 

To confirm the recipe, the developer provides three 
possibilities (Gesture, Speech and Pointing), which are 
aggregated by a complex interactor with an Equivalence-
attribute, defining that they all can be used to provide the 
same input to the system (Figure 2). The next section 
describes how the modeled description is used within a 
runtime architecture to deliver flexible multimodal 
interaction.  

RUNTIME DISTRIBUTION 
Based on the needed components and the requirements that 
need to be fulfilled to realize the anticipated dynamic 
distribution at runtime, we developed and implemented the 
runtime architecture depicted in Figure 3. The different 
components and their behavior are described next. 

On the execution of the set of models, the central task 
model calculates a set of active tasks. This triggers the 
mappings that are connected with each task and results in 
the activation of the mapped abstract interactors. The 
mappings connected to the abstract interactors are in turn 
triggered and the result is a set of active complex CUI 
elements in the concrete input and output model provided to 
the distribution component.  

The second information provider is a context model that 
includes different observers to get information about the 
available IRs (requirement 3). IRs are connected to our 
runtime system via so called channels [3]. One channel is 
responsible for establishing and maintaining the connection 
to one IR (if needed via a network). This includes not only 
the registration within the context model but also the 
capability to receive and send information to the IRs. This 

concept allows the independent addressing of the IRs over 
platform borders (requirement 4).  

We have implemented different channels which connect 
various interaction technologies, including browsers for 
graphical output through an AJAX-based channel 
implementation or connect automatic speech recognition 
via Dragon Natural Speaking and Text-To-Speech engines 
by implementing the Media Resource Control Protocol 
(MRCP). All models (user interface and context) are 
implemented with the Eclipse Modelling Framework 
(EMF). The direct mapping of EMF to Java supports the 
bridging of model and the distribution component on the 
implementation level which allows the distribution 
component to observe the models for state changes. 

The distribution component is notified whenever a new set 
of concrete interactors is activated, and matches the 
supported modalities to the available modalities of the 
available IRs by adhering to the following goals: 

Input: support as many (equivalent) input resources as 
possible while considering the specified CARE relations 
between the input elements. This aims at leaving the control 
about the used IRs to the user by supporting a wide range. 

Output: find the most suitable combination of output 
resources while considering the specified CARE relations 
between the output elements. Distributed output thus aims 
at utilizing the most suitable combination of IRs to convey 
the UI. The selection of IRs depends on their capabilities 
and context information like the resource location.  

The algorithm first determines the IRs that can be utilized 
by the user. Therefore the available IRs are queried from 
the context model together with information about the 
premises and localization and direction information. Based 
on the type of the IRs, the algorithm calculates if the 
resources are currently usable. E.g. displays are considered 
usable when they are within the vicinity of a user and 
haptical input IRs are considered usable when they are 
within the range of the user. The resulting set of usable IRs 
determines the usable modalities and thus the types of 
concrete interactors that can be distributed. 

In the next step the algorithm analyzes the CARE relations 
of the active concrete interactors. The specified UI model 
contains trees of complex interaction elements with simple 
elements as leaf nodes. As only the leaf nodes have to be 
distributed, the relations defined by their parent complex 
interactors influence their distribution. The simple 
interactors are automatically of type "assigned" and can 
thus be directly distributed if a corresponding type of IR is 
available. Interactors combined via complex elements of 
type complementary or redundant must be distributed 
together to reflect their meaning. This means that to make 
an interaction, defined as redundant, available to the user, 
all modalities addressed by the childs of the complex 
interactor have to be available. The equivalence relation is 
used to specify different (combinations of) interactors that 

7



transport the same information in case of output or allow 
the user to provide the same information in case of input. 
This makes the system more reliable and reduces ambiguity 
and inconsistency. With respect to the distribution goals 
specified above, a different handling of the equivalency 
relation for input and output has been realized. For input the 
distribution of as many equivalent interactors as possible 
results in more possibilities for the user to provide the 
needed input. For output a selection of the most feasible 
interactors avoids confusion and unwanted redundancy. 

Based on these interpretations of the CARE relationships 
the algorithm first calculates the distribution of the output 
interactors. The algorithm decides between the different 
equivalent interactor combinations by selecting the one 
supporting the most modalities. This is based on the 
assumption that the designer utilizes the advantages of each 
modality, so that more modalities result in a better 
presentation. More sophisticated extensions that consider 
additional context information are currently evaluated. 
Afterwards, the distribution of input interactors is 
calculated. Thereby the algorithm distributes all elements 
that are supported by the usable IRs to allow as many input 
possibilities as possible. It is crucial that during the 
distribution of the input interactors the algorithm pays 
attention to coupled input and output as e.g. in case of a 
touchscreen. The resulting distribution configuration 
consists of tuples of concrete interactors and IR references. 
Before sending the interactors to the channels, the 
presentation of the output interactors is accomplished by a 
layouting algorithm [11] which takes into account the 
spatial and temporal relationships of the interactors as well 
as the workflow model to not scatter related interactors. 

In case of the little example, the algorithm would distribute 
the interactors as follows: For input the algorithm tries to 
support as many IRs as possible and thus determines at 
maximum the gesture, voice input and pointing interactors 
to support a keyboard, a microphone and a mouse 
respectively. For output a screen is required and an optional 
loudspeaker would be integrated if available. The algorithm 
would adapt the distribution accordingly, when e.g. the user 
is changing the position and the distribution component 
determines that some IRs are no longer available to the user 
and others just became available. 

CONCLUSION 
We presented an approach for dynamically selecting the IRs 
at runtime. Based on the modeled modality relations 
defined as CARE properties, which are available at runtime 
due to the utilization of executable models, and information 
about the actual context, a distribution algorithm calculates 
the most appropriate set of IRs. 

In the future we plan to develop a multimodal widget set to 
ease the development of such multimodal and distributable 
UIs. We also want to analyze further factors that influence 
the distribution algorithm. Furthermore, automatic 
calculation raises the problem of unsatisfactory results. To 

overcome this issue for distribution of UIs, we started the 
development of a meta user interface allowing users to 
configure the distribution according to their needs.   

REFERENCES 
1. N. Barralon, J. Coutaz, and C. Lachenal. Coupling 

interaction resources and technical support. In HCI 
International 2007, Volume 4555 of LNCS, pages 13-
22, 2007. 

2. S. Berti, F. Correani, G. Mori, F. Paternò, and C. 
Santoro. Teresa: A transformation-based environment 
for designing and developing multi-device interfaces. In 
CHI 2004, volume II, pages 793-794, 2004. 

3. M. Blumendorf, S. Feuerstack, and S. Albayrak. 
Multimodal user interaction in smart environments: 
Delivering distributed user interfaces. In Constructing 
Ambient Intelligence, AmI 2007 Workshops Darmstadt. 

4. M. Blumendorf, G. Lehmann, S. Feuerstack, and S. 
Albayrak. Executable models for human-computer 
interaction. In Proc. of the DSV-IS Workshop 2008, 
pages 238-251, Berlin, Heidelberg, 2008.  

5. J. Bouchet, L. Nigay, and T. Ganille. Icare software 
components for rapidly developing multimodal 
interfaces. In Proc. of ICMI 2004, pages 251-258, New 
York, USA, 2004. 

6. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, 
Laurent Bouillon, and Jean Vanderdonckt. A unifying 
reference framework for multi-target user interfaces. In 
Interacting with Computers, 15(3):289-308, 2003. 

7. J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, 
and R. M. Young. Four easy pieces for assessing the 
usability of multimodal interaction: The care properties. 
In INTERACT 1995, pages 115-120, 1995. 

8. A. Demeure, J.-S. Sottet, G. Calvary, J. Coutaz, V. 
Ganneau and J. Vanderdonkt. The 4c reference model 
for distributed user interfaces. In ICAS 2008. IEEE 
Computer Society Press. 

9. C. Elting and M. Hellenschmidt. Strategies for self-
organization and multimodal output coordination in 
distributed device environments. In Workshop on 
Artificial Intelligence in Mobile Systems 2004. 

10.S. Feuerstack, M. Blumendorf, and S. Albayrak. 
Prototyping of multimodal interactions for smart 
environments based on task models. In Constructing 
Ambient Intelligence, AmI 2007 Workshops. 

11.Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon 
and V. López-Jaquero. Usixml: A language supporting 
multi-path development of user interfaces. In EHCI/DS-
VIS, Volume 3425 of LNCS, pages 200-220. 2004. 

12.J.P. Molina, J. Vanderdonckt, P. González, A. 
Fernández-Caballero and M.D. Lozano. Rapid 
prototying of distributed user interfaces. In Proc. of 
CADUI'2006, pages 151-166. Springer-Verlag, 2006.

8




