
1

An Interactive Process Meta Model for Runtime User
Interface Generation and Adaptation

Thomas Schlegel
University of Stuttgart

Universitätsstr. 38, Stuttgart, Germany
Thomas.Schlegel@vis.uni-stuttgart.de

+49 711 7816 209

ABSTRACT
Complex and distributed interactive systems today – in this
case mainly in production and supply chain management –
rely strongly on defined processes but as well on flexible
interaction and dynamic adaptation. We describe an
interactive process model that allows recognizing and
deriving interactions with users on runtime. The model can
be dynamically adapted to fit new requirements or offer
additional interactions in specific contexts.

Author Keywords
Interactive Processes, Process Model, Production Process
Control, Runtime User Interface Generation

ACM Classification Keywords
H.5.2 User interface management systems (UIMS), H.5.3
Theory and models, H.5.m Miscellaneous, C.3 process
control systems, H.4.1 workflow management

INTRODUCTION
Industry has experienced a strong development in the
direction of product customization (flexibility in production
and products) and globalization (flexibility in
organizational structures and local differences), leading to
instable processes and user interfaces with frequent
adaptations and necessary changes. Industrial systems, in
production and supply chain, are developing today from
monolithic systems towards a complex set of interconnected
systems like Service Oriented Architectures (SOA, [2]). On
the one hand, these complex industrial systems like
networked production systems or supply networks [13] rely
on defined processes to ensure proper and controlled
execution of business processes in production companies.
On the other hand, build-to-order, Mass Customization [1]
and rapid reconfiguration (e.g. [3]) of the factory require
flexibility and adaptability of processes that go beyond
what is possible today.

Therefore, we experience today interaction with a “system
of systems” [6], integrating different users and different
systems in a dynamic Multi-Stakeholder Multi-System
(MS2) System, which adds a new level of complexity and
necessary flexibility to today’s networked industrial
systems and their interaction layer. Interactions with such a
complex system occur at all levels of the processes. Hence,

processes changing dynamically on runtime lead to the
requirement of adapting or generating their adjacent user
interface even during their execution.

To achieve this flexibility in process modeling and
execution, we shortly motivate and present the concepts of
interaction in this field, explain the necessary interactive
process model integrating static and dynamic aspects in one
model and show a first user interface prototype for
executing, controlling, adapting and testing interactive
processes and interacting with the user based on this model.

INTERACTIVITY IN COMPLEX SYSTEMS
We studied e.g. the production of dishwashers at BSH,
where variability is expected to be low compared e.g. to
special machines. Even in this company, 1000 variants exist
and changes to the process have to be applied with high
frequency depending on product changes, location and
many other factors, like distributing formerly integrated
interaction tasks of the workers.

Users and even software developers working on such an
MS2 System normally only perceive and access some local
parts of the system – often without a detailed mental model
of the whole system, while the system itself may
additionally be changing and evolving without notification.
Full oversight and control over the processes for one
stakeholder or organization is often not possible, if the
system is spanning across organizational and technological
borders. E.g. an operator in a production cell executes some
steps of a complex production process for producing a car
part that is assembled by other workers in a different
factory of a different company, still participating in the
same overall process. This makes decentralization and
flexible interaction a key issue for these systems.

The need for integrating interaction with processes has been
recognized by the Workflow community, e.g. leading to
additional standards like BPEL4People [4] and WS-Human
Task [5], which emphasize the importance of the user in
process execution. But even these specifications do not
fully cover dynamically and decentrally changing
interactions in interactive processes. To overcome this
issue, interactions cannot be embedded or occur in
processes as pre-programmed or interaction-based user
interfaces with predefined dialogs and functions anymore.

Pre-proceedings of the 5th International Workshop on Model Driven Development of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and UI
Engineering, organized at the 28th ACM Conference on Human Factors in Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners. This volume is published by its editors.

9

2

Flexibility is offered by model-based user interfaces (e.g.
[11] and especially for workflows [7]), which do not rely on
statically predefined functions and dialogs anymore. In an
MS2-System with dynamically changing processes, even
dynamic model-based user interfaces are needed, which
additionally allow changes to the underlying workflows and
interactions by users on runtime and offer automatable
creation of interactions and dialogs based on changing
contexts. Disadvantages of such a flexible system include
that usability tests of model-based and runtime-generated
systems are not fully possible and that the system and
models become complex and partially unpredictable and
make software development more expensive and complex.
Although, for decentralized and runtime-changing
infrastructures there is currently no second option available.

A SEMANTIC PROCESS MODEL
Model- and context-based generation means that the
underlying process model has to provide the semantics and
abilities for generating user interfaces and also mechanisms
for safely adapting the process model to new needs arising
while the system is already in production state. To achieve a
decentralized execution of interactive processes, the
underlying process model has to provide the semantics and
the dynamics of the processes and the adjacent interactions.

The Process Flow Model Aspect (horizontal aspects)
Common process models like Event-Driven Process Chains
(EPC) with BPEL [8] and UML Activity Diagrams [10]
focus on the flow aspect of the process. Process steps with
their sequence and dependencies are described in a
graphical or other language-based model. The Process
Flow Model contains these horizontal, dynamic aspects of
processes necessary for correct execution. It also provides
the dependencies between different elements to be able to
create interactions, e.g. dialogs which consider causality of
inputs. Flow relations determine where data, events and
activation have to flow (process definition) or currently
flow (process instance).

The Structural Model Aspect (vertical aspects)
While the flow aspect shows the sequencing, the Structural
Model defines the vertical, static aspects of a process. Data
type, activity types, event types and many other
classifications also form an integral part of an executable
and self-dependent process model.

Object-oriented inheritance mechanisms are used to create
specializations of existing types of actions and interactions
in order to provide rich semantics for every component in
the model, like process steps, data or dialog elements.
Aggregation allows for creating complex processes, data
types and semantic groups of interactions, determining their
meaning and integration. The inheritance mechanism allows
creating specializations of complex, aggregated processes
(activities) and their process steps. Figure 1 shows how the
concept works for such a process: Activity A consists of
Activities x, y and z. Activity B is created as a specialized

process (child) of A by inheritance. While x’ and z’ are
created by (sub-)inheritance, i.e. inherited without changes
from A (gray, dashed line), y’ is specialized from y as a full
component (black, continuous line). Through instantiation,
process instances are defined by and created from processes
(types) and then executed decentrally according to the
process specification, e.g. process instance c, which is an
object-oriented instance of Activity C, with its components
being instances of the Activities x’’, y’’ and z’’.

Activity A
Activity x Activity zActivity y

Activity B
Activity x’ Activity z’

sub-inheritance sub-inheritance

Activity C
Activity z’’Activity y’’

sub-inheritancesub-inheritance

Activity x’’

Activity y’

c: Instance-of
Activity C Instance x’’ Activity z’’Instance y’’

Instance-of Instance-of Instance-of

Figure 1. Specialization of aggregated activities by inheritance.

To execute interactive steps, dialog elements can be
instantiated from type-compatible interaction element types.
For such explicit interactions [12], the classification can be
used to determine the most specialized interaction element
available for the type of interaction requested. For implicit
interactions [12], it can be used to determine the correct
interaction elements to be used to gather the information
needed from the users for the current process execution.

Integrated Semantic Process Model
One significant contribution to flexible interactive process
systems is that we provide an integrated process and
interaction concept, which offers the advantages of object-
orientation like runtime behavior, type-safe extension and
generation also for interactive processes.

Input
�

Compo-
nent

Output
�

Type

Instances
/

Subtypes

Input
�

Compo-
nent

Output
�

Type

Instances
/

Subtypes

Figure 2. Integrated model containing the structural (vertical,
semantic) and dynamic (horizontal, flow) aspects of processes.

To execute interactive processes in a decentralized
environment, the integration of both aspects into one model
framework is vital. This is done using different component
and relation types for static aspects like inheritance /
classification and aggregation than for the dynamic aspects
like flow/activation, input and output. Figure 2 shows how
two components are connected horizontally via their Input

10

3

and Output interfaces. Inheritance and aggregation offer a
vertical connection.

Figure 3. Interface of the component.

For each complex/aggregated component the data needed or
produced can be determined semantically by identifying the
“interface” of the component. Figure 3 shows how the input
and output of every component (e.g. process step) can be
connected either internally (arrows between components) or
be aggregated as interface for the whole component (right),
showing input necessary and output delivered to the next
component in the process.

USER INTERFACE CREATION FROM THE MODEL
Once the elements required for execution of the process (or
sub-process) have been identified, for each element it can
be validated if the necessary data is available. If not, or if an
interaction is explicitly foreseen to gather the data from the
user [13], the contained User Information Model (UIM) is
used to determine the type of the element. With this
information, each peer in the system can check the User
Interface Element Model (UIEM) to determine if an
interpretation of the element is available for the defined
context of use. The Dashboard Model is then used to
integrate the elements correctly into the overall dialog set.

Figure 4. Example for the model-based execution of an

interactive shipping process using UIM, UIEM and DM for
model interpretation.

In the example in figure 4, we describe a partial view of a
typical shipping process in logistics. It requires the shipping
address and “Applicable Contracts” (insurance etc.) for the
adjacent order and transport. From the UIM, the type can be

derived. While for “Applicable Contracts” there is no
interaction specification available in the UIEM, it is a
specialization of MultiSelectionFromList for which the
UIEM provides an implementation.

For ShippingAddress, the UIM provides all elements of it
by resolving it from Address. For all partial elements like
LName an implementation is derived from the UIEM. The
semantic group ShippingAddress can be displayed together
with the MultiselectListbox implementation of “Applicable
Contracts”. MultiselectListbox has been determined to be a
valid implementation of MultiSelectionFromList, which in
turn is the (still) most specialized generalization of
“Applicable Contracts” in the UIM.

To create necessary dialogs for gathering missing
information, the type of a missing element (complex or
simple) is mapped via reference directly to a corresponding
element in the UIM. Each possible realization of an element
is listed in the UIEM and references its source element in
UIM. For a specific context (e.g. WinFormsApp), the
correct renderer in UIM can be identified.

PROTOTYPE FOR MODELING AND EXECUTION
When interactive processes are executed and adapted in a
decentralized system environment, it is necessary to provide
a modeling and control interface, which is context-oriented.
The challenges of this kind of process models are the size
and the connections of the model. Each process component
has sub-components like input and output and a type
hierarchy above and maybe also below as well as flow
connections to other components at the same level. A
graphical notation like BPMN[9], EPC[8] or UML [10]
needs a lot of space, has low content editing abilities and
already uses two dimensions without providing the static
(vertical) aspects of the model. Therefore we are using a
dialog based, navigational form of working with the process
model, including execution, editing and generation.

Figure 5 shows a prototype of a dialog-based interface for
process execution and editing using an object-oriented
process and interaction model. It offers runtime inspection,
editing and execution of the interactive process. In the
center, information about the currently focused component
is displayed and can be edited where possible. Each
component has a unique key (identity) and carries a payload
and comments with it. The left part contains all incoming
data and trigger relations with their types, components and
indication if data is missing. The right part contains all
results and triggers generated by the current component.

Where possible, elements of the current component can be
edited. Also, additional components can be connected using
all available relation types. New components can be created
directly as input, output or part of the current component in
focus.

Navigation is possible upwards to the type layer and along
the aggregation and inheritance relations, downwards to
the sub-elements via different relation types like

11

4

instantiation, inheritance, aggregation and others,
depending on the required aspect, leftwards to the
predecessors of the same and next sub-level along flow
relations of data and activation and rightwards to the
successors of the same and next sub-level along flow
relations of data and activation.

Additional interfaces e.g. serve for browsing the hierarchy
more easily in a tree-like view. The multi-relational
hierarchy of the components is that of a Directed Acyclic
Graph (DAG) for each relation type used, which requires
aspect-oriented (mainly relation type-oriented) navigation.

The prototype has been implemented in C# using
WinForms as generator target. An implementation for WPF
is currently created in addition. The screenshot also shows
how missing information in the process executed is added
interactively: “Applicable Contract” input is not filled by
the predecessors. Clicking on the button for this data
required to execute “Assembly Part 544001”, a dialog
opens that offers the user to interactively enter the contracts
to be used with this order / process instance.

CONCLUSION AND OUTLOOK
This article has presented a concept for an interactive
process model execution and modeling prototype for
distributed process execution and derivation of interaction
elements from the semantic structures in the model.

Further research will be carried out on model extension and
specification to allow for runtime user interface generation
also for complex types and extend the modeling capabilities
in addition to a better integration with existing standards
and concepts in an M2S System. This also includes user
interface generator components and extended process
modeling capabilities.

REFERENCES
1. Anderson, D.M. Build-to-Order & Mass Customization,

Cambria CIM Press (2003).

2. Erl, T. Service-Oriented Architecture – Concepts,
Technology, and Design. Prentice Hall (2005).

3. Harrison, R., Colombo, A. W. Collaborative automation
from rigid coupling toward dynamic reconfigurable
production systems, Proc. 16th IFAC World Congress
2005 (2006).

4. IBM et al. WS-BPEL Extension for People
(BPEL4People), Version 1.0, (June 2007).

5. IBM et al. Web Services Human Task (WS-HumanTask),
Version 1.0, (June 2007).

6. Jamshidi, M. System of systems engineering – New
challenges for the 21st century, IEEE Aerospace and
Electronic Systems Magazine, 23, 5 (2008), 4-19.

7. Guerrero García, J., Lemaigre, C., González Calleros,
J.M., Vanderdonckt, J. Model-Driven Approach to
Design User Interfaces for Workflow Information
Systems, Journal of Universal Computer Science, vol.
14, no. 19 (2008), 3160-3173

8. Kopp, O., Unger, T., Leymann, F. Nautilus Event-driven
Process Chains Syntax, Semantics, and their mapping to
BPEL, Proc. GI EPK (2006).

9. OMG Business Process Modeling Notation
Specification, OMG Final Adopted Specification,
dtc/06-02-01, (2006).

10. OMG Unified Modeling Language (UML)
Superstructure Version 2.1.1. formal/07-02-05, (2007).

11. Pinheiro da Silva, P., Griffiths, T., Paton, N. Generating
User Interface Code in a Model Based User Interface
Development Environment, Proc. Advanced Visual
Interfaces 2000 (2000), 155-160.

12. Schlegel, T. Object-oriented interactive processes in
decentralized production systems. Proc. HCI
International 2009 (2009).

13. Schlegel, T., Kirn, S. Interacting with the Supply Swarm
Towards an Interactive and Visual Management of
Supply Webs. Proc. IEEE INDIN (2009).

Figure 5. Integrated structural (vertical, semantic) and dynamic (horizontal, flow) model.

12

