
1

End-User Customization of Multi-Device Ubiquitous User
Interfaces

Fabio Paternò, Giuseppe Zichitella
HIIS Laboratory – CNR-ISTI

Via Moruzzi 1, 56124 Pisa, Italy
{fabio.paterno, giuseppe.zichitella}@isti.cnr.it

ABSTRACT
In this paper we discuss an approach to supporting end-
users in customizing multi-device ubiquitous user
interfaces. In particular, we show a tool allowing end-users
to customize desktop-to-mobile adaptation by exploiting
model-based descriptions in the MARIA language. Some
results are presented along with indications for future work.

Author Keywords
End-user Development, Ubiquitous Applications, Multi-
Device Environments, Adaptation.

ACM Classification Keywords
H.5.2 User Interfaces.

INTRODUCTION
One of the main issues in current technological settings is
how to design and develop interactive applications that can
be accessed through a wide variety of devices (ranging
from small watches to very large screens, including various
types of smartphones, PDAs and Digital TVs). This is
particularly important in Web application, which are the
most common applications.

One important research area in this context is the model-
based approach, in which declarative descriptions of the
user interface are used in order to avoid dealing with a
plethora of low-level implementation details associated
with the wide number of available devices and
implementation languages. Despite such potential benefits,
its adoption has mainly been limited to professional
designers, but new solutions are recently emerging that are
able to extend such approaches in order to achieve natural
development by enabling end-users to develop or modify
interactive applications still using conceptual models, but
with continuous support that facilitates their development,
analysis, and use [1].

End-User Development [3] (EUD) can be defined as a set
of methods, techniques, and tools that allow users of
software systems, who are acting as non-professional
software developers, at some point to create, modify or
extend a software artefact. End-users have already
difficulties with single device applications, thus it is easy to
understand how such difficulties increase when considering
applications for multi-device environments. This is one
further reason for providing better support for EUD in
ubiquitous applications.

The vision of ubiquitous computing [9] is that the users
operate in intelligent environments, which are aware of
users’ needs and able to assist, even proactively, the users
in performing their activities and reaching their goals. To
this end, one important aspect is the possibility for a user
surrounded by multiple devices to freely move about and
continue the interaction with the available applications
through a variety of interactive devices. Indeed, in such
environments one big potential source of frustration is that
people have to start their session over again from the
beginning at each interaction device change. Continuous
task performance implies that interactive applications be
able to follow users and adapt to the changing context of
use while preserving their state. Thus, migratory user
interfaces require integrated solutions able to address state
persistence and user interface adaptation when the user
changes the device.

Model-based languages are utilized at design time to help
the user interface designer cope with the increasing
complexity of today’s applications and contexts. The
underlying user interface models are mostly used to
generate a final user interface code, which is then executed
at run time. Nevertheless, approaches utilizing the models
at run time are receiving increasing attention. We agree
with Sottet et al. [8], who call for keeping the models alive
at run time to make the design rationale available and show
a solution for this purpose.

In the following we present some research work that
exploits model-based approaches for multi-device
ubiquitous applications. We show how we have enriched a
software model-based platform for migratory user
interfaces with a new tool for desktop-to-mobile adaptation,
called parametric bidimensional semantic redesign. One of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Pre-proceedings of the 5th International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and
UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners. This volume is published by its editors.

41

its features is that it allows the end-users to customize the
adaptation process. We present some initial results and then
discuss how we plan to extend them.

MIGRATORY USER INTERFACES
Migration is the result of two main features: state
persistence across multiple devices and adaptation to the
device interaction resources. They have to be supported
while users interact with the applications made available by
the intelligent environment. For this purpose, we have
designed and developed a migration architecture [5], which
supports a number of reverse and forward transformations
that are able to transform existing desktop Web applications
for various interaction platforms and support task
continuity. The basic assumption is that there exists a huge
amount of easily accessible content for desktop Web
applications, which can be processed and transformed to
support migratory interfaces, even across non-Web
implementation languages. The advantage of this solution
with respect to others (e.g. [4]) is that it does not require
that the applications be implemented using a particular
toolkit in order to make them able to migrate.

In this environment the client devices subscribe to the
migration service by running a migration client that
provides the environment with information regarding the
device characteristics. The devices access Web applications
through the migration server, which includes proxy
functionalities. Migration can be triggered either by the user
or it can be automatically triggered by the smart
environment when some specific event (such as very low
battery or connectivity) is detected, or in a mixed solution
in which the environment suggests possible migrations and
the user decides whether or not to accept them.

When the user accesses the application through an
interaction platform other than the desktop, the server
transforms its user interface by building the corresponding
logical description and using it as a starting point for
creating the implementation adapted to the accessing
device. Figure 1 shows how adaptation is obtained. There
are three main phases: reverse engineering, semantics-based
adaptation, and generation. In the first phase, the tool
automatically builds the logical description of the accessed
page. It has rules able to handle HTML and CSS tags and
associate them with the corresponding logical elements. For
example, if DIV, or FIELDSET or IFRAME tags are used
then it recognises that there is a group of logically
connected elements in the page. We call the adaptation
module semantic redesign since its purpose is to change the
design still considering the interaction semantics of the
implementation elements that are specified in the
corresponding logical description. In addition to interface
adaptation, the environment supports task continuity. To
this aim, when a request for migration to another device is
triggered, the environment also takes the state of the user
interface, which depends on the user input (elements

selected, data entered, …) and identifies the last element
accessed in the source device. Thus, when a logical version
of the interface for the target device is generated, it also
contains the state detected in the source device version so
that the user inputs (selections performed, data entered, …)
are not lost. In the last phase, the user interface
implementation for the target device is generated and
activated remotely at the point corresponding to the last
basic task performed in the initial device.

Figure 1. The main phases of the adaptation process.

In the process of creating an interface version suitable for a
platform different from the desktop, we use a semantic
redesign module. This part of the migration environment
automatically transforms the logical description of the
desktop version into the logical description for the new
platform. Therefore, the goal of this transformation is to
provide a description of the user interface suitable for the
new platform. This means that intelligent rules are used for
adapting the description of the user interface to the new
platform taking into account its capabilities (e.g.: using
interface elements that are more suitable for the new
platform) but ensuring at the same time that the support for
the original set of tasks is maintained. This solution allows
the environment to exploit the semantic information
contained in the logical description. In this case the
semantic information is related to the basic tasks that the
user interface elements are expected to support.

This software architecture for migratory user interfaces
currently uses MARIA [7], a recent model-based language,
which allows designers to specify abstract and concrete user
interface languages according to the CAMELEON
Reference framework [2]. This language represents a step
forward in this area because it provides abstractions also for
describing modern Web 2.0 dynamic user interfaces and
Web service accesses. In its first version it provides an
abstract language independent of the interaction modalities
and concrete languages for graphical desktop and mobile
platforms. In general, concrete languages are dependent on
the typical interaction resources of the target platform but
independent of the implementation languages.

In MARIA an abstract user interface is composed of one or
multiple presentations, a data model, and a set of external
functions. Each presentation contains a number of user
interface elements (interactors) and interactor compositions
(indicating how to group or relate a set of interactors), a
dialogue model describing the dynamic behaviour of such
elements, and connections indicating when a change of
presentation should occur. The interactors are classified in
abstract terms: edit, selection, only_output, control,

42

3

interactive description, etc.. Each interactor can be
associated with a number of event handlers, which can
change properties of other interactors or activate external
functions.

END-USER ADAPTATION CUSTOMIZATION
In the research on migratory user interfaces, one issue that
we are considering is how to provide users with more
control on the migration process in order to improve its
usability. In this context more control can mean various
things. One important aspect is control on the rules that
drive adaptation to the various platforms (the most common
case is desktop-to-mobile adaptation). For example, the
adaptation engine is able to split the desktop pages when
they require considerable amount of interaction resources
but some users may like to have more control on the
splitting algorithm.

In particular, we have designed a new tool for adaptation:
Parametric Bidimensional Semantic Redesign. It supports
adaptation from desktop-to-mobile devices and overcomes
limitations of previous approaches in the area [6] because it
allows users to configure the adaptation process and
provides more control on costs calculation and the
adaptation results. For example, while previous solutions
calculated the screen space requested by the user interface
elements mainly in terms of its vertical use, the new
algorithm calculates both the horizontal and the vertical
consumption of screen space.

The adaptation tool takes as input the concrete description
of a desktop user interface in the MARIA language and
goes through a number of steps. For each step a number of
specific rules are applied. First, it performs some basic
transformations: if the user provides preferences regarding
the minimum and maximum fonts for the target device then
it transforms all the textual content in order to fit in the
given range. Next, it calculates the cost of all the interactors
and composition operators in the provided specification. If
the resulting total cost is sustainable for the target device
then the corresponding logical description is generated
otherwise it starts the process to reduce the cost in order to
make it sustainable. First, basic elements are adapted for the
target device: the images are reduced in space while
preserving their aspect ratio, some interactors are replaced
with others that are semantically equivalent but needs less
screen space, long texts are reduced in such a way that the
part exceeding a limit is shown only on request, image and
text in tables are reduced in size. After these basic
transformations the overall cost is calculated again and if it
is not yet sustainable by the target device then the part
related to page splitting is activated. The purpose of this
phase is to split the original desktop presentation into two
or more presentations, which are sustainable for the target
mobile device. For this purpose the algorithm considers the
interactor compositions, and associates some of them to
newly generated mobile presentations, removing them from
the current presentation in order to decrease its overall cost.

The elements that determine the cost of the interactors are:
the font attributes (size, style, type), the vertical and
horizontal space required by a text, image dimensions,
interline value, interactor type, and so on

Figure 2 shows the user interface that allows end users to
configure the adaptation process. The various parameters
are grouped according to the related user interface aspect
considered. For the fonts, it is possible to specify the
minimum and maximum font in the target device, and the
associated measure unit. For the radio buttons it is possible
to indicate whether they should be transformed into an
interactor that supports the same semantics but with using
less space screen. In this case, it is possible to specify the
threshold, in terms of number of choice options, which
should trigger the transformation and the type of interactor
to use for its replacement. Similar parameters are available
for the list boxes. Other parameters concern the maximum
number of characters for a text, maximum and minimum
dimensions for images. These parameters determine the
cost of rendering a presentation. This cost is compared with
the overall sustainable cost in the target device, which is
given by the screen resolution multiplied by horizontal and
vertical tolerance. The higher the tolerance coefficient
values are, the more scrollable the generated user interface
will be. This means that end users have the possibility to
specify to what extent the adapted content will be scrollable
in the target device. The table tolerance provides an
additional factor to consider when calculating the
sustainable cost. In practise, this means that when there are
tables, more scrolling will be acceptable before deciding to
split the presentation.

The customization interface also allows the user to indicate
two additional parameters: what type of scrolling
(horizontal or vertical) to avoid has the priority, and the
splitting algorithm version to apply. Indeed, the tool
supports two ways to determine how splitting should be
performed. In both cases it analyses the cost of the
composition operators (grouping or relation), which
includes those of the composed interactors, and the cost of
the tables (both data and layout tables). Then, the decision
of the set of elements to allocate to the newly generated
mobile presentation is given in one case by the most
expensive element. In the other case the algorithm first
calculates what elements are able to make the current
presentation sustainable by the target device if removed,
and then selects among them the one that has the lowest
cost. The rationale for this second option is that it allows
users to obtain a sustainable presentation by removing the
least amount of information possible, thus preserving as
much as possible the original design.

In terms of results of the adaptation process we have
conducted a study comparing our tool with two publicly
available tools for desktop-to-mobile adaptation: Mowser
(http://mowser.com) and Skweezer
(http://www.skweezer.com). The results were encouraging
because our tool has shown to be more flexible since it

43

allows end users to customize the adaptation parameters
and is able to adapt a higher number of types of interface
elements than the other two tools (e.g. tables and long texts
do not receive specific adaptation transformations with the
other two tools).

Figure 2. The customization user interface.

CONCLUSIONS
Ubiquitous environments call for adaptive systems in order
to adapt to the varying interaction resources. Model-based
approaches can provide useful support in this context.
However, there is a need for providing users with more
control on ubiquitous interfaces, according to the end-user
development paradigm.

In this paper we have presented first results that allow end-
users to customize desktop-to-mobile adaptation in order to
change the results that can be obtained by automatic user
interface generation.

We plan to further extend this work in various directions.
The customization user interface can be improved in order
to make the effects of the various customization parameters
more understandable. In addition, in this work we have
considered only desktop-to-mobile adaptation but other
types of transformations can benefit from the approach
proposed, e.g. graphical-to-vocal adaptation.

ACKNOWLEDGMENTS
This work has been supported by the EU project OPEN
(http://www.ict-open.eu/)

REFERENCES
1. Berti, S., Paternò, F., Santoro C., “Natural Development

of Ubiquitous Interfaces”, Communications of the
ACM, September 2004, pp.63-64, ACM Press.

2. Calvary, G., Coutaz, J., Bouillon, L., Florins, M.,
Limbourg, Q., Marucci, L., Paternò, F., Santoro, C.,
Souchon, N., Thevenin, D., and Vanderdonckt, J. 2002.
The CAMELEON reference framework. CAMELEON
Project. Deliverable 1.1

3. Lieberman, H., Paternò, F., Wulf W. (eds), End-User
Development, Springer Verlag, ISBN-10 1-4020-4220-
5, 2006.

4. Melchior, J., Grolaux, D.,Vanderdonckt, J.,Van Roy, P.,
A Toolkit for Peer-to-Peer Distributed User Interfaces:
Concepts, Implementation, and Applications, pp. 69.78,
EICS’09, July 15–17, 2009, Pittsburgh, Pennsylvania,
USA.

5. Paternò, F., Santoro, C., Scorcia, A., Ambient
Intelligence for Supporting Task Continuity across
Multiple Devices and Implementation Languages, the
Computer Journal, the British Computer Society, 2009.

6. Paternò, F., Santoro, C., Scorcia A Automatically
Adapting Web Sites for Mobile Access through Logical
Descriptions and Dynamic Analysis of Interaction
Resources. AVI 2008, Naples, May 2008, ACM Press,
pp. 260-267.

7. Paternò F., Santoro C., Spano L.D., "MARIA: A
Universal Language for Service-Oriented Applications
in Ubiquitous Environment", ACM Transactions on
Computer-Human Interaction, Vol.16, N.4, November
2009, pp.19:1-19:30.

8. Sottet J., Ganneau V., Calvary G., Coutaz J., Demeure
A., Favre J., Demumieux R.: Model-Driven Adaptation
for Plastic User Interfaces. INTERACT (1) 2007: 397-
410.

9. Weiser M., "The Computer for the 21st Century" -
Scientific American Special Issue on Communications,
Computers, and Networks, September, 1991.

44

