
OperettA: Organization-Oriented Development

Environment

Virginia Dignum

Delft University of Technology, The Netherlands, m.v.dignum@tudelft.nl

Huib Aldewereld

Utrecht University, The Netherlands, huib@cs.uu.nl

Abstract—The increasing complexity of distributed applica-
tions requires new modeling and engineering approaches. Such
domains require representing the regulating structures explicitly
and independently from the acting components (or agents). Or-
ganization computational models, based on Organization Theory,
have been advocated to specify such systems. In this paper,
we present the organizational modeling approach OperA and
a graphical environment for the specification and analysis of
organizational models, OperettA. OperA provides an expressive
way for defining open organizations distinguishing explicitly
between the organizational aims, and the agents who act in it.

I. INTRODUCTION

The engineering of applications for complex and dynamic

domains is an increasingly difficult process. Requirements

and functionalities are not fixed a priori, components are not

designed nor controlled by a common entity, and unplanned

and unspecified changes may occur during runtime. There

is a need for representing the regulating structures explicitly

and independently from the acting components (or agents).

Organization computational models, based on Organization

Theory, have been advocated to specify such systems.

Traditionally, Multi-Agent Systems (MAS) stress the auton-

omy and encapsulation characteristics of agents. In such agent-

centric view, interactions between agents are mostly seen as

speech acts whose meaning may be described in terms of

the mental states of an agent. As systems grow to include

hundreds or thousands of agents, it is necessary to move

from an agent-centric view of coordination and control to an

organization-centric one. Organizations provide stable means

for coordination that enable the achievement of global goals.

In this sense, organization models play a critical role in the

development of larger and more complex MAS [5].

Comprehensive analysis of several agent systems has shown

that different design approaches are appropriate for different

domain characteristics [6]. In particular, agent organization

frameworks are suitable to model complex environments

where many independent entities coexist witing explicit nor-

mative and organizational structures and global specification

of control measures is necessary.

Models for agent organizations must, on the one hand, be

able to specify global goals and requirements but, on the other

hand, cannot assume that participating actors will always act

according to the needs and expectations of the system design.

Concepts as organizational rules [21], norms and institutions

[9], [10], and social structures [15] arise from the idea that the

effective engineering of organizations needs high-level, actor-

independent concepts and abstractions that explicitly define the

organization in which agents live [22]. These are the rules and

global objectives that govern the activity of an organization.

The OperA model [4] proposes an expressive way for

defining agent organizations distinguishing explicitly between

the organizational aims, and the agents who act in it. OperA

enables the specification of organizational structures, require-

ments and objectives, and at the same time allows participants

to have the freedom to act according to their own capabilities

and demands. OperA has been applied is many domains,

including knowledge management, work practice analysis, and

serious games and social simulation. Space constraints do not

allow for a comparison of OperA with other approaches. For

this effect, we refer the reader to [2].

In this paper, we present OperettA, a graphical environment

for the specification, validation and analysis of organizational

models, based on the OperA formalism [4]. This organization

specification tool builds heavily on mechanisms from Model

Driven Engineering (MDE), which enables the introduction

and combination of different formal methods hence enabling

the modeling activity through systematic advices and model

design consistency checking.

The paper is organized as follows: first, in section II we

introduce and briefly explain the OperA framework. In section

III the specification of organizational models in OperA is de-

tailed. In section IV we introduce the OperettA Environment.

In section V we provide some design guidelines for organiza-

tion models. Finally, section VI gives our conclusions.

II. ORGANIZATION MODELING: THE OPERA FRAMEWORK

Organizational models should enable the explicit represen-

tation of structural and strategic concerns and their adaptation

to environment changes in a way that is independent from the

behavior of the agents. Organization models, combining global

requirements and individual initiative, have been advocated

to specify open systems in dynamic environments [11], [4].

We take formal processes and requirements as a basis for the

modeling of complex systems that regulate the action of the

different agents.

The deployment of organizations in dynamic and unpre-

dictable settings brings forth critical issues concerning the

14

design, implementation and validation of their behavior [16],

[13], [20], and should be guided by two principles.

• Provide sufficient representation of the institutional re-

quirements so that the overall system complies with the

norms.

• Provide enough flexibility to accommodate heterogeneous

components.

Therefore, organizational models must provide means to

represent concepts and relationships in the domain that are rich

enough to cover the necessary contexts of agent interaction

while keeping in mind the relevance of those concepts for the

global aims of the system.

The OperA model [4] proposes an expressive way for

defining open organizations distinguishing explicitly between

the organizational aims, and the agents who act in it. That is,

OperA enables the specification of organizational structures,

requirements and objectives, and at the same time allows

participants to have the freedom to act according to their

own capabilities and demands. At an abstract level, an OperA

model describes the aims and concerns of the organization

with respect to the social system. These are described as

organization’s externally observable objectives, that is, the

desired states of affairs for the organization.

The OperA framework consists of three interrelated models.

The Organizational Model (OM) is the result of the observa-

tion and analysis of the domain and describes the desired be-

havior of the organization, as determined by the organizational

stakeholders in terms of objectives, norms, roles, interactions

and ontologies. The OM provides the overall organization

design that fulfills the stakeholders requirements. Objectives

of an organization are achieved through the action of agents,

which means that, at each moment, an organization should

employ the relevant agents that can make its objectives happen.

However, the OM does not specify how to structure groups

of agents and constrain their behavior by social rules such

that their combined activity will lead to the desired results.

The Social Model (SM) maps organizational roles to agents

and describes agreements concerning the role enactment and

other conditions in social contracts. Finally, the Interaction

Model (IM) specifies the interaction agreements between

role-enacting agents as interaction contracts. IM specification

enable variations to the enactment of interactions between role-

enacting agents.

The OperettA framework is developed to specify organi-

zation models, according to the OperA OM, which will be

described in more detail in section III, using as example the

conference organization scenario taken from [8]. In section

IV-B we describe the use of MDE principles to implement

this framework.

III. THE ORGANIZATION MODEL

A common way to express the objectives of an organization

is in terms of its expected functionality, that is, what is

the organization expected to do or produce.In OperA, the

Organization Model (OM) specifies the means to achieve such

objectives. That is, OM describes the structure and global

characteristics of a domain from an organizational perspective,

where global goals determine roles and interactions, specified

in terms of Social and Interaction Structures. E.g., how should

a conference be organized, its program, submissions, etc.

Moreover, organization specification should include the de-

scription of concepts holding in the domain, and of expected

or required behaviors.Therefore, these structures should be

linked with the norms, defined in Normative Structure, and

with the ontologies and communication languages defined in

the Communication Structure.

A. The Social Structure.

The social structure of an organization describes the roles

holding in the organization. It consists of a list of role defi-

nitions, Roles (including their objectives, rights and require-

ments), such as PC-member, program chair, author, etc.; a list

of role groups’ definitions, Groups; and a Role Dependencies

graph.

Abstract society objectives form the basis for the definition

of the objectives of roles. Roles are the main element of the

Social Structure. From the society perspective, role descrip-

tions should identify the activities and services necessary to

achieve society objectives and enable to abstract from the

individuals that will eventually perform the role. From the

agent perspective, roles specify the expectations of the society

with respect to the agent’s activity in the society. In OperA,

the definition of a role consists of an identifier, a set of role

objectives, possibly sets of sub-objectives per objective, a set

of role rights, a set of norms and the type of role. An example

of role description is presented in table I.

Id PC member

Objectives paper reviewed(Paper,Report)

Sub-objectives {read(P), report written(P, Rep), review received(Org, P, Rep)}
Rights access-confmanager-program(me)

Norms & PC member is OBLIGED to understand English
Rules IF paper assigned THEN PC member is OBLIGED

to review paper BEFORE given deadline
IF author of paper assigned is colleague

THEN PC member is OBLIGED to refuse to review asap

TABLE I
PC member ROLE DESCRIPTION.

Groups provide means to collectively refer to a set of roles

and are used to specify norms that hold for all roles in the

group. Groups are defined by means of an identifier, a non-

empty set of roles, and group norms. An example of a group

in the conference scenario is the organizing team consisting of

the roles program chair, local organizer, and general chair.

The distribution of objectives in roles is defined by means of

the Role Hierarchy. Different criteria can guide the definition

of Role Hierarchy. In particular, a role can be refined by

decomposing it in sub-roles that, together, fulfill the objectives

of the given role.

This refinement of roles defines Role Dependencies. A

dependency graph represents the dependency relations be-

tween roles. Nodes in the graph are roles in the society.

15

Arcs are labelled with the objectives for which the parent

role depends on the child role. Part of the dependency graph

for the conference society is displayed in figure 1. For

example, the arc between nodes PC-Chair and PC-member

represents the dependency between PC-Chair and PC-member

concerning paper-reviewed (PC − Chair �paper reviewed

PC−Member).The way objective g in a dependency relation

r1 �g r2 is actually passed between r1 and r2 depends on the

coordination type of the society, defined in the Architectural

Templates. In OperA, three types of role dependencies are

identified: bidding, request and delegation.

organizer

role

session
chair
role

author
role

PC
member

role

presenter

role

conference_organized

paper_submitted

PC chair

role

program _fixed session_organized

paper_reviewed paper_presented

Fig. 1. Role dependencies in a conference.

B. The Interaction Structure.

Interaction is structured as a set of meaningful scenes that

follow pre-defined abstract scene scripts. Examples of scenes

are the registration of participants in a conference, which

involves a representative of the organization and a potential

participant, or paper review, involving program committee

members and the PC chair. A scene script describes a scene

by its players (roles), its desired results and the norms regu-

lating the interaction. In the OM, scene scripts are specified

according to the requirements of the society. The results

of an interaction scene are achieved by the joint activity

of the participating roles, through the realization of (sub-)

objectives of those roles. A scene script establishes also the

desired interaction patterns between roles, that is, a desired

combination of the (sub-) objectives of the roles. Table II gives

an example of a scene script.

Scene Review Process

Roles Program-Chair (1), PC-member(2..Max)

Results r1 = ∀ P ∈ Papers: reviews done(P, rev1, rev2)

Interact. Pattern PATTERN(r1): see figure 2

Norms & Rules Program-Chair is PERMITTED to assign papers
PC-member is OBLIGED to review papers assigned
before deadline

TABLE II
SCRIPT FOR THE Review Process SCENE.

OperA interaction descriptions are declarative, indicating

the global aims of the interaction rather than describing exact

activities in details. Interaction objectives can be more or less

restrictive, giving the agent enacting the role more or less

freedom to decide how to achieve the role objectives and

interpret its norms. Following the ideas of [17], [14], we call

such expressions landmarks, defined as conjunctions of logical

expressions that are true in a state. Landmarks combined

with a partial ordering to indicate the order in which the

landmarks are to be achieved are called a landmark pattern.

Figure 2 shows the landmark pattern for the Review Process.

Several different specific actions can bring about the same

start

assign

paper

PC1

end

assign

paper

PC2

Assign

deadline

receive

review

PC1

receive

review

PC2

Review

deadline

Fig. 2. Landmark pattern for Review Process.

state, that is, landmark patterns actually represent families of

protocols. The use of landmarks to describe activity enables

the actors to choose the best applicable actions, according to

their own goals and capabilities. The relation between scenes is

Send Call

for Papers

Form PC

Send Call for

Participation

Paper

Submission

Review

Process

Registration

Paper

Acceptance

Conference

onsite

registration

Conference

Sessions

M

start end

Workshops

N

Fig. 3. Interaction Structure in the Conference scenario.

represented by the Interaction Structure (see figure 3). In this

diagram, transitions describe a partial ordering of the scenes,

plus eventual synchronization constraints. Note that several

scenes can be happening at the same time and one agent can

participate in different scenes simultaneously. Transitions also

describe the conditions for the creation of a new instance of the

scene, and specify the maximum number of scene instances

that are allowed simultaneously. Furthermore, the enactment of

a role in a scene may have consequences in following scenes.

Role evolution relations describe the constraints that hold for

the role-enacting agents as they move from scene to scene.

C. The Normative Structure.

At the highest level of abstraction, norms are the values of

a society, in the sense that they define the concepts that are

used to determine the value or utility of situations. For the

conference organization scenario, the desire to share informa-

tion and uphold scientific quality can be seen as organization

values. However, values do not specify how, when or in

which conditions individuals should behave appropriately in

any given social setup.

In OperA, norms are specified in the Normative Structure

using a deontic logic that is temporal, relativized (in terms

of roles and groups) and conditional. For instance, the fol-

lowing norm might hold: “The authors must submit their

16

contributions before the deadline”, which can be formalized

as: Oauthor(submit(paper) ≤ Deadline)
Furthermore, in order to check norms and act on possible

violations of the norms by the agents within an organization,

abstract norms have to be translated into actions and concepts

that can be handled within such organizations. To do so, the

definition of the abstract norms are iteratively concretized into

more concrete norms, and then translated into specific rules,

violations and sanctions.

Concrete norms are related to abstract norms through a map-

ping function, based on the counts-as operator as developed

in [1]. For example, in the context of Org, submit(paper)
can be concretized as:send mail(organizer, files) ∨

send post(organizer, hard copies) →Org submit(paper)

D. The Communication Structure.

Communication mechanisms include both the representation

of domain knowledge (what are we talking about) and proto-

cols for communication (how are we talking). Both content

and protocol have different meanings at the different levels of

abstraction (e.g. while at the abstract level one might talk of

disseminate, such action will most probably not be available

to agents acting at the implementation level). Specification of

communication content is usually realized using ontologies,

which are shared conceptualizations of the terms and predi-

cates in a domain. Agent communication languages (ACLs)

are the usual means in MAS to describe communicative

actions. ACLs are wrapper languages in the sense that they

abstract from the content of communication.

In OperA, the Communication Structure describes both the

content and the language for communication. The content

aspects of communication, or domain knowledge, are spec-

ified by Domain Ontologies and Communication Acts define

the language for communication, including performatives and

protocols.

IV. OPERETTA ENVIRONMENT

In order to support developers designing and maintain-

ing organization models, tools are needed that provide an

organization-oriented development environment. The require-

ments for such a development environment are the following.

1) Organizational Design: The tool should provide means

for designing organizational models in an ‘intuitive’

manner. The tool should allow users to create and

represent organizational structures, define the parties

involved in an organization, represent organizational and

role objectives, and define the pattern of interactions

typically used to reach these objectives.

2) Organizational Verification: The tool should provide

verification means and assistance in detecting faults in

organizational designs as early as possible, to prevent

context design issues from being translated to the other

levels of system specification.

3) Ontology Design: The tool should to be able to specify,

import, and maintain domain ontologies. Domain on-

tologies specifying the knowledge for a specific domain

of interaction should be able to be represented, existing

ontologies containing such information should be able

to be included (and provide inputs for organizational

concepts, such as role or objective names). Ontologies

should be maintainable and updatable.

4) Connectivity to System Level: The output of the or-

ganizational design tool is intended for use by system

level tools, namely MAS environments and agent pro-

gramming languages. The output of the tool thus needs

to provide easy integration and connection between the

organization and system level.

5) User-Friendly GUI: A user-friendly graphical interface

is to be provided for users to create and maintain

organizational models easily. Help and guidelines are

useful for beginners to use the tool.

6) Availability: The tool should be available under open

source license and for use by other projects.

We have developed the OperettA development environment as

an open-source solution on the basis of these requirements.

OperettA enables the specification and verification of OperA

OMs, which satisfies requirements 1 and 2. OperettA combines

multiple editors into a single package. It provides separate

editors on different components of organizational models;

i.e., it has different (graphical) editors for each of the main

components of an organizational model as defined in the

OperA framework. These specialized editors correspond to

the OperA OM structures: social, interaction, normative and

communicative. The OperettA Ontology Manager enable the

specification and import of domain ontologies, as in require-

ment 3.

The OperettA tool is a combination of tools based on the

Eclipse Modeling Framework (EMF) [18] and tools based on

the Graphical Modeling Framework (GMF) integrated into a

single editor. Developed as an Eclipse plug-in, OperettA is

fully open-source and follows the MDE principles of tool de-

velopment. In the following we look at the editors provided by

OperettA, and how OperettA connects to MAS solutions, thus

satisfying requirement 4. A graphical interface (requirement 5)

for OperettA has been developed and is currently being user-

tested within the ALIVE project [12]. Finally, in accordance

to the last requirement, OperettA is available opensource at

sourceforge1.

A. OperettA Components

The main element of OperettA is the OperA Meta-Model

(see figure 4 for an overview of the tools in OperettA and their

functionalities). The meta-model, created with the EMF tools,

provides the (structural) definition of what organizational

models should look like. This meta-model is extended with

the default EMF edit and editor plug-ins to provide model

accessors and the basic tree-based editor for the creation

and management of OperA models. The basic editor has

been extended with graphical interfaces for editing parts of

the organization model: the social diagram editor, and the

1http://ict-alive.svn.sourceforge.net/

17

!"#$%&'$()%$*+

,)-.*+

!/."0+,.1$2,)-.*+
3%.14'54&61$*&7.4)/.".8$9+

,)-.*+066.'')"'+
3%.14'54&61$*&7.4)/.".8$4.-&19+

!/.".80+:-&1)"+
3%.14'54&61$*&7.4)/.".8$4.-&1)"9+

;)6&$*+<&$#"$=+

:-&1)"+
3%.14'54&61$*&7.4)/.".8$4-&$#"$=4''9+

>%1."$6()%+<&$#"$=+

:-&1)"+
3%.14'54&61$*&7.4)/.".8$4-&$#"$=4&'9+

?")7&-.'+.-&(%#+5@%6()%$*&1A+

1)+!"#$%&'$()%$*+,)-.*+

<.B%.'+

'1"@61@".+

C'.'+,,+-.B%&()%'+

D".$1.E=$%$#.+!,+

3

:
%
$
F
*.
'+
-
&G
.
".
%
1+
.
-
&1
)
"+
7
&.
H
'+

I$*&-$()%+

J"$=.H)"K+
3%.14'54&61$*&7.4)/.".8$46L.6K9+

I."&B.'+=)-.*+

-.'+.-&(%#+5@%6()%$*&1A+

!"#$%&'$()%$*+,)-.*+

C'.'+

!"#$%&'#()*+",)-.&/+")
3/*$%%.-9+

3

<.B%.'+

D".$1.E=$%$#.+!,+,+

!%1)*)#A+

,$%$#.=.%1+
3%.14'54&61$*&7.4)/.".8$4)%1)*)#A9+

>=/)"1'E:M/)"1'+)%1)*)#A+

,)-.*+N"$6K."+
3%.14'54&61$*&7.4)/.".8$4=)-.*N"$6K."9+

I."&B.'+=)-.*+

>=/)"1'E:M/)"1'+)%1)*)#A+

O@&*-'+".)"#$%&'$()%+'6"&/1'+

Fig. 4. OperettA Tool Components.

interaction diagram editor. A third graphical editor is planned

for editing and managing formulas and norms.

Next to the graphical editing extensions, OperettA contains

three other plug-ins for additional functionality. The Validation

Framework provides an improvement over the default valida-

tion of EMF-based tools to provide validation of additional

restrictions. An ontology managing plug-in is included as well

to allow the ontology developed with OperettA to be exported

to OWL, as well as allowing for importing existing ontology

into the organization to boot-strap the organization design.

Finally, OperettA contains a Model Tracker plug-in that can

generate re-organization descriptions based on changes made

in the OperettA organization editors.

We discuss the graphical editors and additional plug-ins in

more details in the following.

1) Social Diagram Editor: This graphical editor provides

a view of the Social Structure element of OMs. It allows the

graphical creation of organizational Roles and Dependencies,

thus specifying the social relations between important parties

that play a part in the organization. The Social Diagram Editor

also provides editing capabilities to specify and manage Role

related Objectives, to provide context for the different Roles

in an organization. Figure 5 depicts the Social Diagram Editor

of OperettA that is used to enter organizational roles and

dependencies between roles. Role objectives are created and

managed via the objectives editor shown in the bottom part of

the figure.

2) Interaction Diagram Editor: Similar to the Social Di-

agram Editor, the Interaction Diagram Editor provides a

graphical view of the Interaction Structure element of OMs.

This editor allows for the specification and management of

the interaction elements of the organization; that is, it is for

the specification and management of the different interactions

that take place in the organization in order to achieve the

different (role) objectives specified in the social part of the

OM. The specification of the interaction is done in terms

of scenes and transitions (the connection and synchronization

Fig. 5. OperettA Social Diagram Editor.

points between scenes). Together, these define the order in

which objectives are to be reached and how the organization

works (though specified on a high level of abstraction). The

Interaction Diagram Editor allows for the graphical creation

and maintenance of scenes, transitions and arcs (links between

scenes and transitions). The graphical editor provides a user-

friendly overview of the structural aspect of the organization,

defining how different interactions within the organization are

supposed to help achieve the organizational objectives. Finally,

OperettA allows for the specification and editing of scene

properties (like the scene results, the players active in the

scene, the landmark pattern, etc).

3) Ontology Manager: The Ontology Manager part of the

OperettA tool is a plug-in for importing and exporting (do-

main) ontologies. The creation and maintenance of ontologies

is done by external tools (like, for example, Protégé). Parts of

the functionality of organizational ontology editing is included

in the OperettA editors:

• Automatic creation of organizational ontology while de-

signing the organization. As the designer is inputting the

organizational model in OperettA, OperettA maintains

an ontology of role names, objective names, and logical

atoms that the designer uses to define the organization.

• Using an included (existing) ontology for the naming of

organizational model elements; that is, if an (external)

ontology is present in the organizational model it can

be used to pick concept names for different parts of

an organizational model (e.g., the name of a role can

be picked from an existing ontology included in the

model). The addition of the (external) ontology to an

organizational model is done via the ontology manager.

The functionality of ontology editing in the OperettA tools

is limited to organizational ontologies. The Ontology manager

plug-in extends OperettA with the following capabilities:

• Importing an ontology from a file (e.g., RDF or OWL

[19]). Ontologies about the domain or organization that

is to provide the context of a system might be already

available. These ontologies tend to be stored in some

18

conventional ontology file-format. The Ontology Man-

ager allows OperettA to import and use such ontologies.

• Exporting (generated) organizational ontologies to file. In

order to align an use the organizational ontology created

by OperettA, the Ontology Manager extends the OperettA

tool with the capability to export the default ontology to

an owl file.

The organizational ontology created by OperettA is stored

in the Organizational Model. The ontological elements need

to be available to the system level of design, and thus need

to be included in the domain ontology. The integration of

organizational concepts in a domain ontology is not trivial, as

it should respect the structure of the domain ontology while

adding organizational concepts as roles, objectives, etc. and the

instances of these concepts; role names, objective names, etc.

The alignment between the exported ontology and the domain

ontology will have to be done by hand in an external editor.

The inclusion of the ontology manager satisfies requirement

3.

4) Model Tracker: To support reorganization, OperettA is

extended with a model tracker. This model tracker allows a

designer to view the changes made on the organizational model

since a last save (but not necessarily the previous one). By

storing the changes to the organizational model in a history

file, the model tracker can be used to generate scripts that

express how an organization is changed. Reorganization scripts

capture changes in a precise and concise manner, and can

be used to communicate organizational changes to the system

level.

5) Validation Framework: The validation plug-in of Op-

erettA overwrites the basic validation provided by the EMF

framework. Instead of just verifying constraints specified in

the OperA meta-model, the validation has been extended with

additional verification constraints to minimize organizational

design mistakes. The overall purpose of the validation plug-in

is to provide OM designers meaningful feedback to eliminate

design errors as early as possible (in the design process).

The validation plug-in is installed separately from OperettA,

but after installation it can be invoked from within each of

the different OperettA editing views. The validation plug-in

seamlessly overwrites the standard EMF validation, making it

the new default manner of validating OperettA models.

The validation plug-in works directly on the model instance

to verify various modeling constraints, accessing the model via

the meta-model definitions. Some examples of the constraints

validated are checking that roles have a name, checking

that role names are unique, checking that all roles have an

objective, and so on. Less stringent constraints are checked as

well, like, for example, whether roles are connected to other

roles via dependencies; i.e., while it does not hold for every

OM, in most models roles should be connected to other roles

(that is, it should be depending upon (an)other role(s) or being

depended upon by (an)other role(s)). Such “soft” constraints

are presented to designer as a warning, intended to have the

designer rethink their model and update if appropriate. The

validation plugin fulfills requirement 3.

Fig. 6. A Norm in OperettA.

6) Norm Editor: Norms are an important part of the or-

ganizational Model, providing lead ways on a high level of

abstraction for the agents to follow. Norms can be inputted in

the current version of OperettA via the basic EMF generated

editor. This editor is not user-friendly. An example norm in

OperettA is shown below in figure 6. The norm shown in this

figure describes that buyers should have paid for the items

they have won in an auction before one week has expired.

The norm is input using several logical formulas; one for

the activation condition expressing when the norm is active

(the item is bid on and won), one for the expiration condition

expressing that the norm is no longer active (the item has

been paid for), one for the maintenance condition expressing

the formula to be checked when the norm is active to see if

violations have happened (the buyer has not paid and the week

has not yet expired), and one for the deadline expressing a state

of affairs before which the norm should have been fulfilled. A

user-friendlier (graphical) interface for inputting and managing

the norms of an organizational model is planned for a future

version of OperettA. This extension, with the graphical editors

for the social and interaction structures, fulfills requirement 5.

B. Connectivity to System Level

The OperettA tool has only off-line functionalities; it is

used by designers to create the context of the system and

their linked ontologies. It provides design and validation

functionalities for the creation and management of OperA

organizational models. For the connection to implementations

OperettA depends on the Model Driven Engineering (MDE)

approach by providing a meta-model of the modeling concepts.

MDE refers to the systematic use of models as primary

artifacts throughout the Software Engineering lifecycle. The

defining characteristics of MDE is the use of models to

represent the important aspect of the system, be it require-

ments, high-level designs, user data structures, views, interop-

erability interfaces, test cases, or implementation-level artifacts

such as code. The Model Driven Development promotes the

automatic transformation of abstracted models into specific

implementation technologies, by a series of predefined model

transformations.

In essence, this means that the models created with the

OperettA tool can be used for automated transformation

towards applicable (models of) platforms; e.g, service-based

implementations or multiagent systems. The only required step

for such transformation is the definition of the transformations

based on the OperettA meta-model concepts to the meta-model

of the desired platform.

19

Finally, OperettA is based on the OperA formalism, which

assumes that individual agents are designed independently

from the organization, to model goals and capabilities of a

given entity. Individual agents are the enactors of organiza-

tional role(s), as a means to realize their own goals [3]. As such

it is necessary that OperettA can connect to such MAS frame-

works. As a proof of concept, we have done experiments on the

connection towards frameworks like Brahms and Repast, for

the simulation of organizations in which normative properties

of the organization can be verified for different populations

with emergent behavior. As part of the ALIVE project [12] a

connection was made with AgentScape to generate MAS from

the organizational specification.

V. DESIGN GUIDELINES

In the previous we introduced organizational modeling and

the OperettA Environment to support this. In this section we

present a small overview on how one goes about designing an

organization. After identifying that an organization presents

the solution to the problem:

1) Identify (functional) requirements: First one determines

the global functionalities and objectives of the society.

2) Identify stakeholders: The analysis of the objectives of

the stakeholders identifies the operational roles in the

society. These first two steps set the basis of the social

structure of the OperA model.

3) Set social norms, define normative expectations: The

analysis of the requirements and characteristics of the

domain results in the specification of the normative

characteristics of the society. This results in the norms

in the normative structure.

4) Refine behavior: Using means-end and contribution

analysis, a match can be made between what roles

should provide and what roles can provide. This aspect

contributes to refinement of role objectives and rights.

5) Create interaction scripts: Using the results from steps 3

and 4, one can now specify the patterns of interaction for

the organization, resulting in the interaction structure.

More details about the methodological steps taken to create

organizational models can be found in [7].

VI. CONCLUSIONS

In this paper, we present an organization-oriented model-

ing approach for system development. The OperA modeling

framework can be used for different types of domains from

closed to open environments and takes into consideration

the differences between global and individual concerns. The

OperettA tool supports software and services engineering

based on the OperA modeling framework. It has been used in

the European project ALIVE [12] that combines cutting edge

coordination technology and organization models to provide

flexible, high-level means to model the structure of inter-

actions between services in an environment.

REFERENCES

[1] Huib Aldewereld, Sergio Álvarez-Napagao, Frank Dignum, and Javier
Vázquez-Salceda. Engineering social reality with inheritance relations.
In Proc. of the 10th Workshop Engineering Societies in the Agents’

World (ESAW 2009). 2009.
[2] L. Coutinho, J. Sichman, and O. Boissier. Modelling dimensions for

agent organizations. In V. Dignum, editor, Handbook of Research

on Multi-Agent Systems: Semantics and Dynamics of Organizational

Models. Information Science Reference, 2009.
[3] M. Dastani, V. Dignum, and F. Dignum. Role assignment in open agent

societies. In AAMAS03. ACM Press, July 2003.
[4] V. Dignum. A Model for Organizational Interaction: based on Agents,

founded in Logic. SIKS Dissertation Series 2004-1. Utrecht University,
2004. PhD Thesis.

[5] V. Dignum. The role of organization in agent systems. In V. Dignum,
editor, Handbook of Research on Multi-Agent Systems: Semantics and

Dynamics of Organizational Models, pages ??–?? Information Science
Reference, 2009.

[6] V. Dignum and F. Dignum. Designing agent systems: State of the
practice. International Journal on Agent-Oriented Software Engineering,
4(3), 2010.

[7] V. Dignum, F. Dignum, and J.J. Meyer. An agent-mediated approach
to the support of knowledge sharing in organizations. Knowledge

Engineering Review, 19(2):147–174, 2004.
[8] V. Dignum, J. Vazquez-Salceda, and F. Dignum. Omni: Introducing

social structure, norms and ontologies into agent organizations. In
Programming Multi-Agent Systems: Second International Workshop

ProMAS 2004, volume 3346 of LNAI. Springer, 2005.
[9] Virginia Dignum and Frank Dignum. Modeling agent societies: co-

ordination frameworks and institutions. In A. Jorge P. Brazdil, editor,
Progress in Artificial Intelligence: Proc. of EPIA-2001, LNAI 2258,
pages 191–204. Springer, 2001.

[10] M. Esteva, J. Padget, and C. Sierra. Formalizing a language for
institutions and norms. In ATAL-2001, LNAI 2333, pages 348–366.
Springer, 2001.

[11] J. Ferber and O. Gutknecht. A meta-model for the analysis and design
of organizations in multi-agent systems. In ICMAS’98, pages 128–135.
IEEE Computer Society, 1998.

[12] European Commission FP7-215890. ALIVE, 2009. http://www.ist-alive.
eu/.

[13] Davide Grossi, Frank Dignum, Mehdi Dastani, and Lambèr Royakkers.
Foundations of organizational structures in multiagent systems. In
AAMAS ’05: Proceedings of the fourth international joint conference

on Autonomous agents and multiagent systems, pages 690–697, New
York, NY, USA, 2005. ACM.

[14] S. Kumar, M. Huber, P. Cohen, and D. McGee. Towards a formalism
for conversation protocols using joint intention theory. Computational

Intelligence Journal, 18(2), 2002.
[15] H.V.D. Parunak and J. Odell. Representing social structures in uml.

In M.Wooldridge, G.Weiss, and P. Ciancarini, editors, Agent-Oriented

Software Engineering II, LNCS 2222. Springer-Verlag, 2002.
[16] L. Penserini, D. Grossi, F. Dignum, V. Dignum, and H. Aldewereld.

Evaluating organizational configurations. In IEEE/WIC/ACM Interna-

tional Conference on Intelligent Agent Technology (IAT 2009), 2009.
[17] I. Smith, P. Cohen, J. Bradshaw, M. Greaves, and H. Holmback.

Designing conversation policies using joint intention theory. In Proc.

ICMAS-98, pages 269–276. IEEE Press, 1998.
[18] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.

EMF: Eclipse Modeling Framework. Eclipse Series. Addison-Wesley
Professional, 2008.

[19] W3C. Owl-s, 2004. http://www.w3c.org/Submission/OWL-S.
[20] H. Weigand and V. Dignum. I am autonomous, you are autonomous.

In M. Nickles, M. Rovatsos, and G. Weiss, editors, Agents and Com-

putational Autonomy, volume 2969 of LNCS, pages 227–236. Springer,
2004.

[21] F. Zambonelli. Abstractions and infrastructures for the design and
development of mobile agent organizations. LNAI 2222, pages 245–
262. Springer, 2002.

[22] F. Zambonelli, N. Jennings, and M. Wooldridge. Organizational abstrac-
tions for the analysis and design of multi agent systems. LNAI 1957,
pages 235–251. Springer, 2001.

20

