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Abstract

We discuss the problem of designing a computationally grounded logic
for reasoning about epistemic attitudes of AI agents, mainly concentrating on
beliefs. We briefly review exisiting work and analyse problems with seman-
tics for epistemic logic based on accessibility relations, including interpreted
systems. We then make a case for syntactic epistemic logics and describe
some applications of those logics in verifying AI agents.

1 Introduction

The Belief-Desire-Intention (BDI) model of agency is arguably the most
widely adopted approach to modelling artificial intelligence agents [18]. In
the BDI approach, agents are both characterised and programmed in terms
of propositional attitudes such as beliefs and goals and the relationships be-
tween them. For the BDI model to be useful in developing AI agents, we
must be able to correctly ascribe beliefs and other propositional attitudes to
an agent. However standard epistemic logics suffer from several problems
in ascribing beliefs to computational agents. Critically, it is not clear how
to connect the computational implementation of an agent to the beliefs we
ascribe to it. As a result, standard epistemic logics model agents as logically
omniscient. The concept of logical omniscience was introduced by Hintikka
in [19], and is usually defined as the agent knowing all logical tautologies
and all the consequences of its knowledge. However, logical omniscience
is problematic when attempting to build realistic models of agent behaviour,
as closure under logical consequence implies that deliberation takes no time.
For example, If processes within the agent such as belief revision, planning
and problem solving are modelled as derivations in a logical language, such
derivations require no investment of computational resources by the agent.

In this paper we present an alternative approach to modelling agents
which addresses these problems. We distinguish between beliefs and rea-
soning abilities which we ascribe to the agent (‘the agent’s logic’) and the
logic we use to reason about the agent. In this we follow, e.g., [21, 20, 17].
In the spirit of [33], our logic to reason about the agent’s beliefs is grounded
in a concrete computational model. However, unlike [33, 29] we choose
not to interpret the agent’s beliefs as propositions corresponding to sets of
possible states or runs of the agent’s program, but syntactically, as formulas
‘translating’ some particular configuration of variables in the agent’s internal
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state. One of the consequences of this choice is that we avoid modelling the
agent as logically omniscient. This has some similarities with the bounded-
resources approach of [15] and more recent work such as [1, 4].

This paper is essentially a high-level summary of the course on logics and
agent programming languages the authors gave at the 21st European Summer
School in Logic, Language and Information held in Bordeaux in 2009. Some
of the ideas have appeared in our previous work, for example [5, 6], but have
never been summarised in a single article.

The rest of the paper is organised as follows. In section 2 we discuss mo-
tivations for modelling intentional attitudes of AI agents in logic. In section 3
we analyse problems with the standard semantics for epistemic logic, includ-
ing interpreted systems. In section 4 we discuss other approaches to mod-
elling knowledge and belief, namely the syntactic approach, logic of aware-
ness, and algorithmic knowledge. Then we introduce our proposal based on
the syntactic approach in section 5 and briefly survey some of the applica-
tions of the syntactic approach in verification of agent programs in section
6.

2 Logic for verification

There are many reasons for modelling agents in logic. The focus of our
work is on specifying and verifying AI agents using logic. The specifica-
tion and verification of agent architectures and programs is a key problem
in agent research and development. Formal verification provides a degree of
certainty regarding system behaviour which is difficult or impossible to ob-
tain using conventional testing methodologies, particularly when applied to
autonomous systems operating in open environments. For example, the use
of appropriate specification and verification techniques can allow agent re-
searchers to check that agent architectures and programming languages con-
form to general principles of rational agency, or agent developers to check
that a particular agent program will achieve the agent’s goals in a given range
of environments.

Ideally, such techniques should allow specification of key aspects of the
agent’s architecture and program, and should admit a fully automated ver-
ification procedure. One such procedure is model-checking [12]. Model-
checking involves representing the system to be verified as a transition sys-
tem M which can serve as a model of some (usually temporal) logic, spec-
ifying a property of the system as a formula φ in that logic, and using an
automated procedure to check whether φ is true in M . However, while there
has been considerable work on the formal verification of software systems
and on logics of agency, it has proved difficult to bring this work to bear on
verification of agent architectures and programs. On the one hand, it can
be difficult to specify and verify relevant properties of agent programs using
conventional formal verification techniques, and on the other, standard epis-
temic logics of agency (e.g., [16]) fail to take into account the computational
limitations of agent implementations.

Since an agent program is a special kind of program, logics intended
for the specification of conventional programs can be used for specifying
agent programming languages. In this approach we have some set of propo-
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sitional variables to encode the agent’s state, and, for example, dynamic or
temporal operators for describing how the state changes as the computation
evolves. However, for agents based on the Belief-Desire-Intention model of
agency, such an approach fails to capture important structure in the agent’s
state which can be usefully exploited in verification. For example, we could
encode the fact that the agent has the belief that p as the proposition u1,
and the fact that the agent has the goal that p as the proposition u2. However
such an encoding obscures the key logical relationship between the two facts,
making it difficult to express general properties such as ‘an agent cannot have
as a goal a proposition which it currently believes’. It therefore seems natural
for a logical language intended for reasoning about agent programs to include
primitives for the beliefs and goals of the agent, e.g., where Bp means that
the agent believes that p, and Gp means that the agent has a goal that p.

Given that a logical language intended for reasoning about agent pro-
grams should include primitives for the beliefs and goals of an agent, what
should the semantics of these operators be? For example, should the belief
operator satisfy the KD45 properties? In our view, it is critical that the prop-
erties of the agent’s beliefs and goals should be grounded in the computation
of the agent (in the sense of [31], that is, there should be a clear relationship
between the semantics of beliefs and goals and the concrete computational
model of the agent). If the agent implements a full classical reasoner (per-
haps in a restricted logic), then we can formalise its beliefs as closed under
classical inference. However if the agent’s implementation simply matches
belief literals against a database of believed propositions without any ad-
ditional logical reasoning, we should not model its beliefs as closed under
classical consequence. The notion of ‘computationally grounded’ logics is
discussed in more detail in the next section.

3 Standard epistemic logic is not computation-

ally grounded

Since the first BDI logics such as [13] and [27], the knowledge and beliefs
of AI agents have been modelled using epistemic modal logics with possi-
ble worlds semantics. An agent i believes a formula φ in a possible world
or state s if φ is true in all states s� which are belief-accessible from s. For
knowledge, the accessibility relation is usually assumed to be an equivalence
relation between states, intuitively meaning that the agent cannot tell whether
the actual state is s or one of the other knowledge-accessible states. This re-
lation is often referred to as the ‘indistinguishability relation’ of agent i and
denoted by ∼i. A more concrete version of the possible worlds semantics
are interpreted systems introduced in [16], where each state is an n-tuple of
the agents’ local states and the state of the environment (assuming the sys-
tem consists of n agents and an environment) and s ∼i s� holds if the local
state of agent i is the same in s and s�. The logic over interpreted systems
has temporal operators in addition to the epistemic ones, and the formulas are
interpreted over computational runs (sequences of states). The epistemic log-
ics based on this semantics have attractive formal properties. However, they
suffer from two main problems: the problem of correctly ascribing beliefs to
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an agent, and the problem of logical omniscience.
The problem of belief ascription is concerned with the difficulty of de-

termining what an agent’s beliefs are at a given point in its execution. Many
agent designs do not make use of an explicit representation of beliefs within
the agent. For example, the behaviour of an agent may be controlled by a col-
lection of decision rules or reactive behaviours which simply respond to the
agent’s current environment. However when modelling the agent, it can still
be useful to view the agent as having beliefs. For example, when modelling
an agent with a reactive architecture which does not explicitly represent be-
liefs, we may say that “the agent believes there is an obstacle to the left” and
“if the agent believes there is an obstacle to the left, it will turn to the right”.
However, for this to be possible, we need some principled way of deciding
what the agent believes.

However, even when agents do represent beliefs explicitly, the mapping
between the agent’s belief state and the logical model of the agent is not
straightforward. As noted by van der Hoek andWooldridge [32, p.149] “pos-
sible worlds semantics are generally ungrounded. That is, there is usually
no precise relationship between the abstract accessibility relations that are
used to characterise an agent’s state, and any concrete computational model.”
This makes it difficult to use BDI logics for specifying agent systems or to
use model-checking tools and algorithms to model-check a particular agent
program, since one would need to somehow extract from the program the
belief accessibility relations for generating a logical model for use in model-
checking. “Because, as we noted earlier, there is no clear relationship be-
tween the BDI logic and the concrete computational models used to imple-
ment agents, it is not clear how such a model could be derived.”[32, p. 153]
This problem does surface in model-checking BDI agent programs; see, for
example, [8], where the beliefs of an agent which is intended to implement
the LORA architecture [34] (which uses standard semantics for beliefs) are
modelled syntactically as a finite list of formulas rather than using an ac-
cessibility relation. Similar concerns about a gap between BDI logics and
concrete agent programs, or the lack of groundedness, were raised by Meyer
in [23].

One consequence of this lack of computational grounding is that epis-
temic logics based on possible worlds semantics model agents as logically
omniscient reasoners: they believe/know all tautologies and they believe/know
all logical consequences of their beliefs/knowledge (Bi� and Biφ∧Bi(φ →
ψ) → Biψ are tautologies of any logic with a modal operator Bi defined as
truth in all i-accessible worlds). In effect, agents are modelled as perfect
logical reasoners with unlimited computational powers. This is problematic
when attempting to build realistic models of agent behaviour, where the time
required by the agent to solve a problem is often of critical importance.

Some authors (for example, [26], [25]) argue that unlike the possible
worlds structures, interpreted systems can be seen as a grounded semantics
for intensional logics. The following arguments are paraphrased from [25,
p.36]

• since the semantics of interpreted systems refers to computational runs,
a system description in terms of runs (using local states, protocols, etc.)
immediately provides a logical model to evaluate formulae;
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• epistemic properties are based on the equivalence of local states (which
is a concrete computational notion); and

• local states could be represented as e.g. arrays of variables, thereby
allowing for a ‘fine grained’ description of agents.

The last point and the examples of modelling multi-agent systems such as
Dining Cryptographers given in [26, 25] suggest the following way of ascrib-
ing knowledge to agents. The local state of the agent (values of variables)
determines what the agent ‘knows’. For example, a propositional variable
paidi may mean that a variable v1 in agent i’s state has value Paid (see
[26]). Clearly, we want that when the agent i is in the same local state s0

i

where v1 = Paid, Kipaidi holds. And this works out with the interpreted
systems definition of knowledge: since paidi holds in all global states where
agent i�s state is s0

i , in all those global states Kipaidi holds.
However, while at first sight this semantics may appear to be compu-

tationally grounded, we argue that it is a very roundabout way of defining
an agent’s knowledge. The indistinguishability relation ∼i between global
states is used for the truth definition of Ki formulas, so to determine the truth
of such formulas we need to examine all global states related by ∼i, which
adds significant complexity to, for example, the model-checking problem.
This additional (and unnecessary) complexity is purely an artefact of the pos-
sible worlds truth definition of Ki. From the start we decided that what the
agent actually knows depends on the properties of the agent’s local state and
we should really only have to examine the agent’s state.

Another, more serious, artefact of this truth definition, is that Kiφ holds
not only for the formulas φ which do correspond to some properties of the
agent’s state (the real or explicit knowledge of the agent), but also for a host
of other formulas. Among those additional formulas are tautologies and log-
ical consequences of the real knowledge of the agent such as Ki(¬(paidi ∧
¬paidi)), consequences by introspection (such as KiKiKiKipaidi and
KiKiKiKi¬Ki¬paidi) and, even more paradoxically, formulas talking about
the global properties of the system. For example, if there is just one global
state s0 where agent i’s local state is s0

i , and s0 has a single successor s1,
then i ‘knows’ precisely what the next global state looks like. For example,
suppose some proposition q is true in s1. Then�q (‘in the next state, q’) is
true in s0. Since s0 is the only state ∼i-accessible from s0, agent i knows
that in the next state q: Ki�q, and similarly for all the other formulas true in
s1. This is by no means a grounded knowledge ascription. Even if the system
is entirely deterministic, agent i does not necessarily have any knowledge of
this.

4 Other approaches

Problems such as logical omniscience which arise when interpreted systems
are used to model resource-bounded reasoners have been known for a long
time, and some proposed solutions are described in [16]. One of the solutions
is termed syntactic in [16]: instead of using a possible worlds truth definition
for the knowledge modality Ki, in each state we get essentially a syntactic
assignment of formulas agent i believes in that state. For consistency with
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what follows we will denote this set of formulas as Ai(s). The truth defi-
nition for Kiφ in state s of a model M will then become M, s |= Kiφ iff
φ ∈ Ai(s). Clearly, this truth definition makes Ki entirely free of the prob-
lem of logical omniscience; however in [16] it is argued that its shortcoming
is the lack of any interesting properties of Ki. They prefer a related ap-
proach, of combining Ki defined using the possible worlds definition with a
new syntactic operator Ai standing for ‘awareness’. Ki is the standard (true
in all ∼i) notion of knowledge (called ‘implicit knowledge’ in [16]); Aiφ is
true if φ ∈ Ai(s) and this only means that i is aware of φ, not that i neces-
sarily knows that φ; and Xiφ =df Kiφ ∧ Aiφ means that i explicitly knows
φ. Clearly, explicit knowledge is also not closed under consequence since i
may not be aware of some of the consequences.

Another related approach to ‘fixing’ the idealisation inherent in the pos-
sible worlds definition of knowledge is the concept of algorithmic knowledge
[16]. Instead of some arbitrary syntactic setAi(s), we assume that each state
s comes equipped with an algorithm algi(s) and agent data (used by the al-
gorithm) datai(s). An agent algorithmically knows a formula φ in s if the
output of algi(s) for φ is ‘yes’. In [16], a number of interesting questions
are raised, for example how to relate the computation of the knowledge an-
swering algorithm to the rest of the system dynamics, but the authors decided
to keep the two issues separate: the algorithm computation is assumed to be
instantaneous and not included in the rest of the system transitions. Subse-
quent work on algorithmic knowledge, see for example [24], continues to
adopt this ‘closure under the algorithm’ condition for the algorithmic knowl-
edge, although beliefs are represented as tokens, and the algorithm as a set of
rewriting rules.

5 Syntactic belief ascription

In this section we present syntactic belief ascription as an alternative ap-
proach to computationally grounded belief ascription. We distinguish be-
tween beliefs and reasoning abilities which we ascribe to the agent (‘the
agent’s logic’) and the logic we use to reason about the agent. In this we
follow, e.g., [21, 20, 17]. Our approach grounds the ascription of belief in
the state of the agent and allows us to explicitly model the computational de-
lay involved in updating the agent’s state. Our logic for reasoning about the
agent’s beliefs is grounded in a concrete computational model in the sense of
[33]. However, unlike [33, 29] we choose not to interpret the agent’s beliefs
as propositions corresponding to sets of possible states or runs of the agent’s
program, but syntactically, as formulas ‘translating’ some particular config-
uration of variables in the agent’s internal state. One of the consequences of
this choice is that we avoid modelling the agent as logically omniscient. This
has some similarities with the bounded-resources approach of [15] and more
recent work such as [14, 4, 1]. We first consider grounded belief ascription
(given an agent state, how to ascibe beliefs to it in a grounded way), and then
discuss closure assumptions (what assumptions is it safe to make concerning
the closure of the agent’s belief set under the agent’s inferential capabilities).

6

6



5.1 Grounded belief ascription

Similarly to interpreted systems, we consider states to be n + 1-tuples of
local states of n agents and the state of the environment, in other words,
s = (s1, . . . , sn, e). We describe the properties of the system in a language
built from a set of propositional variables P . Beliefs ascribable to an agent
i are a finite set of literals (variables or their negations) over P which we
will denote Li. Following, for example, Rosenschein and Kaelbling [28], we
assume that each agent’s state consists of finitely many ‘memory locations’
l1,. . . ,lm, and that each location lj can contain (exactly) one of finitely many
values, vj1 , . . . , vjk

. For example, we could have a location lt for the output
of a temperature sensor which may take an integer value between -50 and
50. Based on those values, we can ascribe beliefs about the external world
to the agent: for example, based on lt = 20 we ascribe to the agent a belief
that the outside temperature is 20 C. Each literal in Li corresponds to the fact
that a given memory location lj (or set of memory locations) has a given set
of values, but ‘translates’ this into a statement about the world. We assume
a mapping Ai assigning to each state s a set of propositional variables and
their negations which form beliefs of agent i in state s. Note that this ‘trans-
lation’ is fixed and does not depend on the truth or falsity of the formulas
in the real world. In general, there is no requirement that Ai be consistent;
if a propositional variable and its negation are associated with two different
memory locations (e.g., in an agent which has two temperature sensors) then
the agent may simultaneously believe that p and ¬p1. Ai does not have to
map a single value to a single belief, for example, all values of lt > 20 could
be mapped to a single belief that it’s “warm”. Conversely, we do not assume
that for every propositional variable p ∈ P , either p or ¬p belong to Ai; if
a location lj has no value (e.g., if a sensor fails) or has a value that does not
correspond to any proposition, then the agent may have no beliefs about the
outside world at all. Other intentional notions such as goals can be modelled
analogously to beliefs, i.e., by introducing an explicit translation from the
contents of the agent’s state into the set of goals. We elaborate belief and
goal ascription using the notion of a memory location rather than assuming
that agents have an internal representation of beliefs or goals e.g., as a list
of literals, for reasons of generality. The ascription mechanism described
above is applicable to arbitrary agents, not only those with an explicit inter-
nal representation of beliefs and goals. In certain sense, we can say that this
ascriptionAi(s) corresponds to the agent’s ‘awareness’ of the facts explicitly
represented in agent i’s local state in the global state s.

Our aim is to model the transitions of the agent-environment system as
a kind of Kripke structure and express properties of the agents in a modal
logic. We consider transition systems similar to the interpreted systems of
[16], except that the beliefs of agents are modelled as a local property of
each agent’s state using syntactic assignment Ai corresponding to agent i’s
beliefs. The state of the environment e corresponds to a classical possible
world, or a complete truth assignment to propositional variables in P . Agent

1This assumes that the agent’s program is using beliefs about the outside world, rather than indi-
rect beliefs about sensor reading; in the latter case of course there would be no contradictory beliefs,
since different sensors would have different propositions associated with them.
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i believes that p in state s, M, s |= Bip, if p ∈ Ai(s). Our proposal is
technically equivalent to the syntactic model of belief in [16]. The difference
between our approach and [16], is that while a syntactic assignment in [16]
is an arbitrary set of formulas, we show how to ground this set in the set of
values of variables in the agent’s state. Note that this truth definition for Bi

does not give rise to any interesting logical properties of Bi, e.g., to KD45
axioms. This is intentional: we do not want our agents to be logically omni-
scient and the logical properties of agent’s beliefs should be determined by
the agent’s architecture and program. However, the agent’s state changes as
the agent executes its program; it could be argued that we may assume that
some computation of ‘consequences’ of the agent’s beliefs takes so little time
that we can safely assume that the set of beliefs is closed with respect to the
agent’s ‘internal logic’ (this argument is made in favour of the closure under
algorithmic knowledge in [16]). This is the topic of the next section.

5.2 Deductive closure assumptions

Clearly, any assumptions concerning deductive closure of the agent’s beliefs
should be based on the agent’s program and on the requirements of mod-
elling. One could argue that if the agent only ever ‘tests’ its beliefs to check
whether it believes p or ¬p, and belief ascription with respect to p is correct,
it is safe to ascribe to the agent a set of beliefs closed with respect to full
classical logic since the agent program does not make any choices depending
on the presence of all the extraneous beliefs (logical tautologies and the like).
However, we would argue that beyond such relatively trivial agent programs,
the deductive closure assumptions should be taken seriously since they may
result in incorrect belief ascription.

We argue that for any agent which answers queries or choses actions
depending on its beliefs, the assumption of deductive closure of beliefs is
only safe if

1. the closure is with respect to the agent’s real ‘internal logic’ or query
answering algorithm implemented by the agent program (so the postu-
lated consequences are actually derivable)

2. the requirements of modelling allow for a reasonably coarse granu-
larity of time, and it is reasonable to assume that the agent’s deductive
algorithm completes within a finite and reasonably short period of time.

For example, it may make sense to model beliefs of a forward-chaining
rule-based agent as closed under applying the forward chaining procedure to
a finite set of ground beliefs, provided that it does not take a long time to
terminate and we are not concerned with the precise timing of the agent’s
response to a query. Under such conditions, it is reasonable to model the
agent’s beliefs using the deductive algorithmic knowledge approach [24].
Note that although the set of beliefs of such an agent is deductively closed,
it is deductively closed with respect to a very weak logic (basically, a logic
containing universal quantifier elimination and modus ponens, which is much
weaker that the full classical logic).

Consider again a forward-chaining rule-based agent but assume that its
deductive procedure is not guaranteed to terminate (for example, the agent’s
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rules contain arithmetic expressions). In this case, even if modelling allows
for quite coarse granularity of time, it would not be safe to model beliefs of
the agent as deductively closed (since some of the logical consequences will
never be derived in reality but will be ascribed to the agent by the deductive
closure assumption). In this case, the deductively closed set of beliefs, even
in the agent’s own ‘logic’ (its ‘implicit knowledge’) will be an idealisation,
and the algorithmic knowledge approach could be made to work (for a given
granularity of modelling) by amending the agent’s forward-chaining algo-
rithm with a ‘timeout’ corresponding to the granularity of modelling: e.g. if
the agent’s state is ‘sampled’ at 10 minute intervals then the agent’s beliefs
can be modelled as closed with respect to applying the forward-chaining al-
gorithm for 10 minutes.

Finally, arguably the safest way of ascribing beliefs to a resource-bounded
agent is not to make any closure assumptions for the set of agent’s beliefs,
and to model each inference step in the agent’s internal logic as an explicit
transition of the system; this choice gives rise to dynamic syntactic logics
such as [14, 1, 4].

6 Verifying agent programs

In this section we briefly outline some applications of syntactic epistemic
logics in verifying agent programming languages.

6.1 Theorem proving

SimpleAPL is simplified version of the BDI-based agent programming lan-
guages 3APL and 2APL, see, e.g., [9]. SimpleAPL programs have explicit
data structures for beliefs and goals, and a program is specified in terms of the
agent’s beliefs, goals and planning goal rules which specify which plans the
agent should adopt given its goals and beliefs. An approach to verification of
SimpleAPL programs based on syntactic epistemic logic was described in [2]
and extended to verification of agent programs under different deliberation
strategies in [3]. Given the explicit representation of beliefs, belief ascription
for SimpleAPL agents is straightforward: B p (the agent believes that p) is
true if p is present in the belief base of the agent. SimpleAPL agents do not
do any inference, so the set of beliefs is not closed under any inference rules.
Verification in [2] is done by theorem proving; an agent program is axioma-
tised in Propositional Dynamic Logic (PDL) extended with syntactic belief
and goal operators, and a statement such as ‘all executions of this program
starting in a state with initial beliefs p1, . . . , pn and goals κ1, . . . , κm will
achieve the agent’s goals’ can be verified by checking whether the following
formula is derivable from the axiomatisation of the agent program:

i=1�

i=n

Bpi ∧

j=1�

j=m

Gκj → [prog]

j=1�

j=m

Bκj

where prog is a translation of the agent’s program into PDL with syntactic
belief and goal operators.
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As an example, consider the following example of a vacuum cleaner
agent. Actions in SimpleAPL are specified using pre and postcondition pairs
(intuitively, what the agent should believe before it can execute an action,
and what its beliefs are expected to be after it executes an action). Suppose
the agent has the following actions:

{room1} moveR {-room1, room2}
{room2} moveL {-room2, room1}
{room1, battery} suck {clean1, -battery}
{room2, battery} suck {clean2, -battery}
{-battery} charge {battery}

We will abbreviate goals and beliefs of the agent as: ci for cleani, ri for
roomi, b for battery, and actions s for suck, c for charge, r for moveR, l
for moveL. Suppose the program of the agent contains the following planning
goal rules:

c1 <- b | if r1 then s else l; s
c2 <- b | if r2 then s else r; s

<- -b | if r2 then c else r; c

These rules allow the agent to select an appropriate plan to achieve a goal
given its current beliefs. For example, the first rule can be read as “if the goal
is to clean room 1, and the battery is charged, adopt the following plan: if in
room one, suck, else move left and then suck”.

The corresponding PDL program expression prog is:

prog =df ((Gc1 ∧Bb)?; (Br1?; s) ∪ (¬Br1?; l; s)) ∪

((Gc2 ∧Bb)?; (Br2?; s) ∪ (¬Br2?; r; s)) ∪

(¬Bb?; (Br2?; c) ∪ (¬Br2?; r; c))

Some example axioms:

Bp → ¬Gp (for every variable p: the agent does not have as a goal some-
thing that it believes has been achieved)

Br2 ∧ Bb ∧ Gc2 → [s](Bc2 ∧ ¬Bb ∧ Br2) (corresponds to the pre and
postconditions of the suck action).

We used MSPASS and pdl tableaux theorem provers to prove the follow-
ing properties:

• if the agent has goals to clean rooms 1 and 2, and starts in the state
where its battery is charged and it is in room 1, it can reach a state
where both rooms are clean: Gc1∧Gc2∧Bb∧Br1 → �prog3�(Bc1∧
Bc2) (where prog3 stands for prog repeated three times)

• the agent is guaranteed to achieve its goal (after 3 iterations of the
program) Gc1 ∧Gc2 ∧Bb ∧Br1 → [prog3](Bc1 ∧Bc2)

The logic sketched above is grounded in the agent programming language
because its models correspond to the agent’s operational semantics. It can be
used to specify and automatically verify properties of SimpleAPL programs.

10

10



6.2 Model-checking

In the previous section, we sketched an approach to verifying agent programs
using theorem proving. Another approach is to use a model-checker. There
are two main strands of work in model-checking multi-agent systems and
agent programs which are exemplified by: model-checking based on ‘stan-
dard’ BDI logics e.g., [22] and model-checking based on a syntactic inter-
pretation of beliefs e.g., [11, 10, 30].

The only model-checker which ‘understands’ epistemic operators (knowl-
edge) is MCMAS [22]. MCMAS allows checking of properties along both
temporal and knowledge accessibility relations. Unfortunately, it is nontrivial
to relate ‘possible worlds’ knowledge to the knowledge or beliefs of imple-
mented BDI agents.

An alternative approach is to model-check an agent programming lan-
guage treating belief as a syntactic modality. This is the approach implicitly
taken in [11] for the verification of AgentSpeak(F) programs. Belief, desire
and intention are defined in terms of the operational semantics of AgentS-
peak(F):

• an agent believes φ if φ is present in its belief base

• an agent intends φ if φ is an achievement goal that appears in the
agent’s set of intentions – i.e., in the agent’s currently executing or
suspended plans.

AgentSpeak(F) programs are translated into the Promela modelling language
of the Spin model checker. Properties to be model-checked are expressed in
a simplified BDI logic translated into the LTL-based property specification
language used by Spin. BDI modalities are mapped onto the AgentSpeak(F)
structures implemented as a Promela model. So, even though Bordini et
al. [11] do not mention the problems with the standard semantics of belief,
or dwell on using the syntactic approach to beliefs rather than the LORA
framework based on the standard epistemic semantics which they officially
adopt, the fact is that they do use a syntactic approach. We argue that this is
inevitable in verification of a real agent programs. A similar approach (using
syntactic or ‘shallow’ modalities) is adopted in [10] and [30].

The work on model-checking agent programs using syntactic approaches
mentioned in this section does not model agent’s deriving consequences from
its beliefs explicitly. However, in other work where the main concern is
with the time required for the agents to produce a response to a query, we
did use model-checking over systems where transitions correspond to agents
applying inference rules (usually, forward-chaining rule firing): see [4, 7] for
more details.

7 Conclusion

‘Standard’ BDI logics allow properties of beliefs and other intentional at-
titudes of AI agents to be formalised. The resulting specifications can be
model checked using model checkers such as MCMAS. However it is not
clear how to implement agents based on these specifications; in particular, it
is not clear what corresponds to belief and goal accessibility relations in the
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agent programming language or the implemented agent. On the other hand,
‘syntactic’ BDI logics allow more accurate modelling of AI agents. We can
verify properties of real agent programs at the belief and goal level (as op-
posed to simply verifying the agent program as just a computer program).
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