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Abstract—This work introduces a model of fuzzy perception
for BDI agents, to support the simulation of decision making
processes in environments with imperfect information. An appli-
cation to a fuzzy prey-predator environment was developed, as
an example, where the process of deciding which prey a predator
should attack is based on its fuzzy perception of the strength of
the prey, and on the comparison of the preys’ strengths with
its own strength. Different simulations were realized for the
comparative evaluation of different types of predator agents,
in contexts with and without competition between predators.
The quantitative analysis of the simulations shows that the fuzzy
predator agent presents the best scores. However, the important
result is that the fuzzy predator seems to behave more adequately
in the environment, in the sense that it presents an apparently
more natural, coherent and realistic behavior.

I. INTRODUCTION

Fuzzy sets and Fuzzy Logic (FL) [1] may be viewed as an
attempt to formalize/mechanize two kinds of human capabili-
ties. The first one is the capability to reason and make rational
decisions in an environment of imperfect information (i.e,
of imprecision, uncertainty, incompleteness of information,
conflicting information, partiality of truth and partiality of
possibility). And second, the capability to perform a wide
variety of physical and mental tasks without any measurements
and any computations [2].

Zadeh [3] pointed out the Incompatibility Principle, which
states that “complexity and precision are incompatible prop-
erties”, arguing that the conventional numerical-based ap-
proaches are inadequate to model human-like complex pro-
cesses. Therefore, “the closer one looks at a real-world prob-
lem, the fuzzier becomes its solution”.

In the context of Social Simulation (SS), Grüne-Yanoff [4]
and Rossiter et al. [5] remarked that one often has to deal
with “fuzzy” social concepts, which are difficult to formalize
and observe in the real-world system. For that reason, FL has
been used in SS for representing vagueness, uncertainty and
subjectiveness in everyday life.

Among the agent models commonly used in agent-based
simulation of decision processes in complex environments,
there are the ones of an intentional nature, whose behaviors
can be explained by attributing certain mental attitudes to the
agents, such as knowledge, belief, desire, intention, obligation,
commitment (see, e.g., [6], [7]).

A well-known intentional model is the BDI (Beliefs, De-
sires and Intentions) architecture, introduced by Rao and
Georgeff [8]. This model is based on the representation of
the agent’s beliefs about the states of the world and a set of
desires, which identify those states that the agent has as goals.
By a process of deliberation, the agent formulates one or more
intentions (the states which the agent is committed to bringing
about). The agent then builds a plan to achieve those intentions
(through some form of means-ends reasoning), and executes it.
After that, the agent uses its perception about the environment
(which may include itself) in order to have its beliefs updated.

Although Rao and Georgeff explicitly acknowledge that an
agent’s model of the world is incomplete, the BDI model
does not take into account the influence of the imperfect
information (in the sense discussed above) acquired from the
world in beliefs, desires and intensions. In particular, it does
not consider that the agent could have a “fuzzy” perception of
the world. Then, in this paper, we experiment with a BDI agent
with fuzzy perception operating in a task environment with
imperfect information, namely, a fuzzy prey-predator system.

Prey-Predator systems are an important theme in the area
of Population Dynamics, their modeling having achieved a
classical status through the formulation of the so-called Lotka-
Volterra equations [9]. The particular type of systems that
we simulate was inspired by the Fuzzy Prey-Predator Model
introduced by Peixoto et al. [10].

The paper is organized as follows. Section II discusses
related work. Section III presents some concepts on the fuzzy
inference system used in this work. The environment with
imperfect information inspired by the Fuzzy Prey-Predator
Model is introduced in Sect. IV, including our approach for the
fuzzy perception module to be included in the BDI architecture
of the predator agent. The results on simulations are discussed
in Sect. V. Section VI is the Conclusion.

II. RELATED WORK

In the context of social simulation, FL has been playing
an important role, and it is possible to find many interesting
works using FL to deal with different problems that can not
be solved with classical simulation models and tools. In this
section, we briefly present some of those works, according to
the different issues covered by them.



Hassan et al. [11] observed that simple agent models, as
those normally used with exiting tools, are neither sufficient
nor adequate to deal with the uncertainty and subjectiveness
that have to be considered in the analysis of values (e.g.,
trust) in human societies. In their agent-based social modeling
and simulation, FL was used to naturally specify attributes
of the agents representing individuals, the evolution of the
agent minds, the inheritance, the relationship and similarity
between individuals, etc. In the same direction, in [12], fuzzy
filters were used for modeling trust in social modeling using
multiagent systems.

In Ghasem-Aghaee and Ören [13], human personality facets
and traits (according to the Big Five and OCEAN models)
were specified as conditional rules in fuzzy agents, in order to
perform human behavior simulation. With related objectives,
Dimuro et al. [14] introduced an approach based on FL for
the evaluation of the social exchange values generated in
the simulation of social exchanges between personality-based
agents, with the analysis of the fuzzy equilibrium equation.

Sabeur and Denis [15] presented an application of FL
in the simulation of human behavior and social networks,
representing behavioral elements, such as stress, motivation
or fatigue, and sociological aspects. Hassan et al. [16] use a
fuzzy system to model friendship dynamics with an agent-
based model that could manage social relationships, together
with demographics and evolutionary crossover.

Fort and Pérez [17] used FL to model the adaptive behaviour
of the agents playing the Iterated Prisoner’s Dilemma, gov-
erned by Pavlovian strategies, to analyze the evolution of co-

operation. Sabater et al. [18] proposed a fuzzy representation
of evaluations for the system Repage, which adopts a cognitive
theory of reputation.

Concerning fuzzy perception in robots, Cuesta and
Ollero [19] used it to improve robot’s navigation, and Mobahi
and Ansari [20] applied fuzzy perception to improve the
credibility in robot’s emotions.

Notice that the agent architectures proposed so far mostly
deal with two-valued information. Casali et al. [21], however,
incorporated a formal model to represent and reason under
uncertainty, introducing a general model for graded BDI

agents, and an architecture, based on multi-context systems,
able to model these graded mental attitudes. In [22], the model
was used to specify an architecture for a travel assistant agent
that helps a tourist to choose holiday packages, and in [23] it
was applied to build a recommender system for tourism.

Hybrid models can be found in the literature, introducing
some kind of fuzziness to BDI architecture. Long and Ester-
line [24] introduced a BDI agent, which uses fuzzy inference
engines, fuzzy controllers and classifiers, for the modeling
of co-operative societies of artificial agents, outlining some
social conditions necessary for agents to form joint intentions
and actions. Lokuge and D. Alahakoon [25] introduced a BDI
agent coupled with a neural network and an adaptive neuro
fuzzy inference system for application in container terminal
operations, allowing the improvement the decision making
process in such a complex, dynamic environment. A BDI

agent with a fuzzy neural network was also used by Hai-bo
et al. [26] for application in autonomous underwater vehicles.
Shen et al. [27] have explored a hybrid BDI model based on
deliberative and fuzzy reasoning, and in [28] the model was
improved within the context of wireless sensor networks.

However, neither the nice formalization by Casali et al.
nor the other analyzed works have considered the influence
of fuzzy perception on the operation of a BDI agent and its
decision making.

III. ON FUZZY INFERENCE SYSTEMS

Fuzzy set theory [1], [2], [3] is based on the idea that several
elements in human thinking are not exact data, but can be
approximated as classes of objects in which the transition from
membership to nonmembership is gradual rather than abrupt,
represented by membership grades in the interval [0; 1]. Since
human reasoning sometimes does not follow the two-valued
or multivalued logic, FL is a logic with fuzzy truths, fuzzy
connectives, and fuzzy rules of inference.

Fuzzy inference systems are non-linear models that aim to
describe the input-output relationship of a real system using a
family of linguistic If-then constructions and the inference
mechanisms of FL. Among the several methods available
for fuzzy inference, we adopt in this work the Kang-Takagi-

Sugeno (KTS) method [29], where each fuzzy rule represents
a local model of the real system under consideration1. The kth

rule of a KTS system with input vector X = (x1, . . . , xN ) and
output z presents the general form:

If (x1 is A1,k) and . . .and (xN is AN,k)

then z = fk(X), (1)

where the linguistic terms An,k (n = 1, . . . , N ) in the rule
antecedents represent fuzzy sets with membership functions
µn,k, which are used to partition the domains of the input
variables into overlapping regions. The functions fk in the rule
consequents are usually first-order polynomials of the form:

fk(x1, . . . , xN ) = b0,k + b1,kx1 + . . . , bN,kxN . (2)

For a given input X = (x1, . . . , xN ), the degree of fulfil-
ment of the kth rule evaluates the compatibility of the input
X with the rule antecedent and determines the contribution of
the rule’s response z = fk(x1, . . . , xN ) to the overall model’s
output. The degree of firing of the kth rule is expressed as

wk(x1, . . . , xN ) = T1(µA1,k(x1), . . . , µAN ,k(xN )), (3)

where T1 is a t-norm (triangular norm). In this work, T1 is
the Minimum t-norm (called Gödel t-norm), and then Eq. 3
becomes :

wk(x1, . . . , xN ) = min{µA1,k(x1), . . . , µAN ,k(xN )}. (4)

The overall output of a normalized first-order TSK fuzzy
model with K rules is given by

z =

K∑

k=1

T2(wk(x1, . . . , xN ), fk(x1, x2, . . . , xN ))

K∑

k=1

wk(x1, . . . , xN )

, (5)

1The adoption of the KTS method is due to its better performance in some
applications, since it avoids the defuzzification step. See [29] for details.



where T2 is also a t-norm. In this work, T2 is the Product

t-norm, so that Eq. 5 results in:

z =

K∑

k=1

wk(x1, . . . , xN ) · fk(x1, x2, . . . , xN )

K∑

k=1

wk(x1, . . . , xN )

. (6)

IV. A FUZZY PREY-PREDATOR ENVIRONMENT

In [10], Peixoto et al. proposed a fuzzy rule-based system
to elaborate a predator-prey model to study the interaction
between aphids (preys) and ladybugs (predators) in citricul-
ture. Due to the lack of available information about the phe-
nomenon, instead of using the usual differential equations that
characterize the classic deterministic models, they introduced
a fuzzy approach for analyzing the problem.
In this paper, we informally build on the fuzzy prey-predator

approach for an agent-based simulation in order to analyze the
ability of a predator with fuzzy perception in surviving in an
environment of imperfect information.2

In this environment, the age and the weight of a prey (and
of a fuzzy predator itself) are vague information for the fuzzy
predator. However, such information is crucial for a predator
to evaluate the strength level of a certain prey in comparison
with its own strength level, and, therefore, to estimate the
probability of the success of its attack to such prey, which
is given by:

Prob = 50 +
RAP −RPP

200
, (7)

where RAP and RPP are the predator’s and the prey’s
strength levels, respectively.

We assume that (i) predators and preys are initially ran-
domly distributed in a grid; (ii) the food is always available
for the different preys, and (iii) a predator loses weight for
being looking around for preys and much more for each
unsuccessful attack (on the contrary, it gains weight if its
attack is successful). Then, the predator survival during the
evolution of the time depends on its decision about attacking
or not any prey it finds during its life. This decision is based on
the imperfect information that the agent can perceive through
its fuzzy perception mechanism, which uses a fuzzy inference
system to determine the prey’s strength level and its own.

The predator is a BDI agent with beliefs3 on the following
parameters: age, weight and strength level. The age and weight
the agent can perceive through its perception mechanism.
The strength level can be estimated considering perceived
ages and weights. The abilities of the predator are: random
movement looking for preys, perception of preys’s age and
weight, estimation of prey’s strength level in comparison with
its own strength level at the current time, and decision on
attacks to preys, which considers if the probability of success
satisfies Prob > 0.25 (Eq. 7). The constraints of its life are:

2Notice that we did not study population dynamics, as it was done in [10],
although this can be considered in future work.

3In this paper, we do not refer to the agent’s desires or intentions, only to
its beliefs, since this is the component of the BDI model that is connected to
the fuzzy perception mechanism.
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Fig. 1. Part of the BDI model with a fuzzy perception module.

(i) at each movement it loses a fixed amount of weight (weight

loss rate), and has its age incremented by a fixed value (aging

rate); (ii) at each successful attack, it gains a fixed amount of
weight (attack reward); otherwise, it loses a fixed amount of
weight (attack punishment); (iii) there is a minimum weight
that a predator can support; if it achieves a weight less than the
minimum then it dies by weakness; (iv) there is a maximum
age that a predator can achieve; after that it dies by ageing.

A. Characterizing the Fuzzy Predator (FP) Agent

The Fuzzy Predator (FP) has a perception mechanism
directly connected to the BRF (Belief Revision Function) of
its BDI architecture, partially depicted in Fig. 1. This means
that the fuzzy perception mechanism receives as input data
the prey’s age and weight, as well as the predator’s own age
and weight, all of which are perceived through the predator’s
non precise sensors. Then, using the KTS inference system
(Sect. III), the predator infers the prey’s strength level, and also
its own strength level, updating its beliefs with the inferred
information, in order to let this information be used in the
decision process.

The linguistic variables age, weight and strength

level are modeled as fuzzy sets with trapezoidal member-
ship functions (Fig. 2). The analysis of those linguistic vari-
ables allowed the construction of a knowledge base composed
by the linguistic rules presented in part in Table I. Table II
shows part of the rule base for the KTS inference system of
the perception model of the FP agent, each one with 2 inputs
(age,weight) ∈ R

2 and the output z ∈ R, where “young”,
“adult”, “old”, “very light”, “light”, “average”, “heavy” e
“very heavy” represent fuzzy subsets of R.

Example 1: In order to see how the inference system of
the fuzzy perception mechanism operates, let us consider the
following crisp input data: age = 16 and weight = 84.
Those values are fuzzified, considering the membership grades
in relation to the fuzzy subsets that define those linguistic
variables, given in Fig. 2. Then, the age value age = 16 is
considered “young” with grade µyoung(16) = 0, 4 and “adult”
with grade µadult(16) = 0, 6. The weight value weight = 84
is evaluated as “heavy” with grade µheavy(84) = 0, 6 and
“very heavy” with grade µvery−heavy(84) = 0, 4.

For each combination of those sets achieved by the input
data, some of the rules of the knowledge base are activated.
In this case, four rules are fired, namely, the rules R4, R5, R9

and R10 of the Tables I and II. Using Eq. 4, it is possible to



Fig. 2. Membership function for the considered linguistic variables.

find the degrees of firing of each one of those rules, as, e.g.,
w4 = min {µyoung(16), µheavy(84)} = 0, 4. Then, one has
that w5 = 0, 4, w9 = 0, 6 and w10 = 0, 4. Using Eq. 6, we
obtain the overall output of the process, where f4, f5, f9 and
f10 are calculated using Table II:

z=
w4f4(16, 84)+w5f5(16, 84)+w9f9(16, 84)+w10f10(16, 84)

w4 + w5 + w9 + w10

=74,

which represents the predator’s strength level.

B. The Crisp Predator (CP)

For the comparative analysis of simulations, we imple-
mented a Crisp Predator (CP), which is a BDI agent that
does not consider that the information about itself and the
one perceived from the environment are vague or incomplete.
Its perception mechanism is inspired on the perception mecha-
nism of the fuzzy predator, but, instead of using fuzzy subsets
for the modeling of the input linguistic variables, we use
classical sets with the usual characteristic functions into the
set {0, 1}. For each set of input date, only one rule of the

TABLE I
LINGUISTIC RULE BASE.

If age and weight then strength level

R1 young very light very weak
R2 young light very weak
R3 young average weak
R4 young heavy average
R5 young very heavy average
R6 adult very light average
R7 adult light average
R8 adult average strong
R9 adult heavy very strong
R10 adult very heavy very strong
R11 old very light very weak
R12 old light very weak
R13 old average weak
R15 old very heavy average

knowledge base is activated. The characteristic functions of
the sets related to the linguistic variable age are:

µyoung(x) =

{

1 if x ≤ 15;
0 otherwise

µadult(x) =

{

1 if 15 < x < 35;
0 otherwise

µold(x) =

{

1 if x ≥ 35;
0 otherwise

(8)

The characteristic functions of the sets related to the lin-
guistic variable weight are:

µvery−light(x) =

{

1 if x ≤ 15;
0 otherwise

µlight(x) =

{

1 if 15 < x ≤ 35;
0 otherwise

µaverage(x) =

{

1 if 35 < x ≤ 65;
0 otherwise

(9)

µheavy(x) =

{

1 if65 < x ≤ 85
0 otherwise

µvery−heavy(x) =

{

1 if x > 85
0 otherwise

Example 2: Considering the same input data (age,
weight) of Ex. 1 and the characteristic functions given in
Equations 8 and 9, one has that weight = 84 and age = 16
are definitely evaluated as “heavy” (µheavy(84) = 1) and
“adult” (µadult(16) = 1), respectively. In this case, only the
rule R9 of the rule base of Tables I and II is activated.
Obviously, the firing degree of this rule is w9 = 1. The general
output, given by Eq. 6, results in the value of the straight level:

z =
w9f9(16, 84)

w9

=
1 · 88

1
= 88

To enrich the possible comparisons, we have implemented
a Greedy Predator (GP), which always attacks the preys it
encounters, without considering any reasoning on strength
levels and the probability of success of its attacks to preys.

V. ANALYSIS OF THE SIMULATION RESULTS

The simulations were realized to obtain a general view
of the behaviors of the different predators4 in two kinds
of the Fuzzy Prey-Predator Environment: competitive (Sect-
V-A) and non-competitive environments (Sect. V-B). The
implementation was done in the Jason platform [30].

4Since we are not analyzing population behavior, in the simulations we
only consider either 2 or 3 predators, in order to be able to compare directly
their surviving abilities.



TABLE II
RULE BASE FOR THE KTS INFERENCE SYSTEM.

If age and weight then strength level = fk(age,weight)

R1 young very light f1(x, y) =
x + y

2

R2 young light f2(x, y) =
x + (

y

2
)

2

R3 young average f3(x, y) =
(x + y)− 10

2

R4 young heavy f4(x, y) = (x− 1) +
y

2

R5 young very heavy f5(x, y) = x +
y

2

R6 adult very light f6(x, y) =
x + y

2
+ 25

R7 adult light f7(x, y) =
x + y

2
+ 30

R8 adult average f8(x, y) =
x +

y

2
+ 100

2

R9 adult heavy f9(x, y) =
x + y

4
+ 63

R10 adult very heavy f10(x, y) =

x

2
+ y

2
+ 40

R11 old very light f11(x, y) =
(50− x) + y

2

R12 old light f12(x, y) =
(50− x) +

y

2
2

R13 old average f13(x, y) =
(50− x) + (y − 10)

2

R15 old very heavy f15(x, y) = (50− x) +
y

2

The results were obtained from a total of 100 simulation
runs. In each run, the time grows in discrete units (1 time
unit = one predator movement). In the beginning of each run,
the predators present the following initial parameters: age =
1 and weight = 50. Those parameters change at each time
instant according to the following fixed rates5: the weight loss

rate (-0,1 kg for each movement/time), the aging rate (-0.05
year for each movement/time), the attach reward (+2 kg for
each successful attack), and the attack punishment (-1 kg for
each non successful attack). The simulation run ends when all
the predators have died, either for weakness (weight less than
1 kg) or for ageing (age equal to 50 years).

A. The Competitive Environment

The competitive environment consists of 2 kinds of preda-
tors (FP e CP) and different 250 preys. At each successful
predator attack, the corresponding defeated prey dies. Consid-
ering that there is no prey reproduction, the prey population
tends to decrease, increasing the probability of the predator
not finding a prey as it moves in the environment, which may
cause increasing weight losses. In this sense, both predators
compete for the preys remaining in the environment.

5Variations of the initial parameters and rates are not considered here, since
they affect only the agent’s deliberations, not its perceptions.

Fig. 3. The average of attacks (top), victories (middle) and defeats (bottom)
at an age i, with 1 ≤ i ≤ 50, in a competitive environment.

Figure 3 (top) shows the average number of predators’
attacks at each year. Observe that the number of the CP’s
attacks surges around the age of 15. This is so because, before
15, the agent thinks that it is young (with too low strength
level), but, suddenly, as it achieves 15 years old, it concludes
that it is already an adult (with too high strength level). The
increase in the number of the FP’s attacks is more gradual,



showing more coherence in its decisions. On the other hand,
one might have expected that the high number of attacks would
have lasted until around the age of 35, since it is only after
this age that the CP considers itself old. However, due the
prey population decreasing, the number of the attacks of both
predators also decreases, even before the age 35. Around the
age 35, the decrease in the number of the attacks of the CP is
much more abrupt than the smooth decreasing of the number
of the attacks of the FP, as it passes from young to adult/old.

Figure 3 (middle) presents the average of predators’ victo-
ries at each year. There is a significant increase in the number
of victories when the CP is around 15, which is an expected
result, since this is the period that, as it considers itself an
adult by this age, it increases a lot the number of attacks until
around the age of 35, when it considers itself old, as discussed
in the previous paragraph. Also, due to the decrease in the prey
population, and consequently, the decrease in the number of
attacks, the number of victories also decreases, even before
the age 35. Again, it is possible to observe that the graph
corresponding to the FP increases and decreases smoothly, as
the agent becomes old, whereas the one of the CP increases
abruptly around 15 and decreases around 35, also drastically.

Analogous analysis can be done concerning the average of
number of the predators’ defeats at each year, which is shown
in Fig. 3 (bottom).

B. The Non-competitive Environment

The non-competitive environment consists of 3 kinds of
predators (FP, CP and GP), and 250 different preys. For each
prey that dies in consequence of a predator attack, another
prey with similar characteristics appears in the environment,
at a random position. This means that the predators always
have the same chance to find a prey to attack.

Figure 4 (top) shows the average number of predators’
attacks at each year. For the same reasons discussed in
Sect. V-A, the number of the CP’s attacks surges around the
age of 15. However, since the prey population is constant
along the time, the high number of attacks of the CP lasts
until around the age of 35, and then it follows drastically. The
behavior of the FP is much more natural and coherent, since
it presents a gradual increase in the number of attacks as it
becomes an adult, and a also a smooth decrease as it becomes
old. The high number of attacks of the GP during its life was
as expected. During adulthood the numbers of attacks of all
predators are similar.

Figure 4 (middle) presents the average number of predators’
victories at each year. There is an abrupt increase in the
number of victories when the CP is around 15, due to the high
increase in the number of its attacks by this age. However,
since the prey population does not decrease, the number
of victories stays high until around the age 35. After that,
it decreases radically. Again, it is possible to observe that
the graph corresponding to the FP increases and decreases
smoothly, as the agent becomes old. The higher number of
victories of the GP is due to its attack strategy. During
adulthood, the numbers of victories of the three kinds of

Fig. 4. The average of attacks (top), victories (middle) and defeats (bottom)
at an age i, with 1 ≤ i ≤ 50, in a non-competitive environment.

predators are similar. The highest numbers of victories, for
Crisp and Fuzzy predators, appear between the ages of 20 and
33. Analogous analysis can be done concerning the average of
number of predators’ defeats at each year (Fig. 4 (bottom)).

Figure 5 (top) shows the average number of accumulated
attacks during the predators’ lives, until they reach a certain
age i, with 1 ≤ i ≤ 50. As expected, the GP had an average
number of accumulated attacks much higher than the other
two predators, which had a similar attack behavior.



Fig. 5. Average accumulated number of attacks (top), victories (middle) and
defeats (bottom) during the predator life until the age i, with 1 ≤ i ≤ 50.

Figure 5 (middle) presents the average number of accumu-
lated victories during the predators’ lives, until they reach an
specific age. As expected, the GP had an average number
of accumulated victories much higher than the other two
predators. However, this number for the FP is higher than that
of the CP, as they become older.

Analogous analysis can be done concerning the average
number of accumulated defeats during the predators’ lives,
until they reach an specific age, shown in Fig. 5 (bottom).
Figure 6 (top) shows the average lifetime of the predators. As

Fig. 6. Average lifetime (top), average weight at the end of the life (middle)
and average of number of attacks/victories/defeats (bottom) of predators.

expected, the Greedy and Fuzzy predators present the lowest
and the highest average lifetimes, respectively.

Figure 6 (middle) presents the average weight of predators
at the end of their lives. The average weight of the FP at the
end of its life is the highest one.

Figure 6 (bottom) shows the average number of attacks,
victories and defeats of predators during its whole life. The GP
is the one that presents the highest averages in all categories,
and it is the one that has the average number of defeats
higher than that of victories. Its average numbers of attacks
and victories are higher than the ones of the CP, whereas the



average number of defeats is lower than that of the CP.
We conclude that the simulation of the fuzzy perception

of the FP allowed for a more faithful simulation of naturally
expected smoothness of the development of predation ability
of predators in a Fuzzy Prey-Predator environment.

VI. CONCLUSION

This paper introduces a model of fuzzy perception for
BDI agents in task environments with imperfect information,
which was inspired by an analysis of a particular Fuzzy Prey-
Predator model. The aim was to analyze the influence of fuzzy
perception on the ability of BDI agents to simulate decision
making processes in fuzzy environments. For that, we have
defined a perception mechanism directly connected to the BDI
agent’s BRF. The perception mechanism uses a KTS inference
system, which is application dependant.

The simulations allowed us to obtain a general view of
the behaviors of the different predators (CP, FP, GP) in
two kinds of the Fuzzy-Predator Environment: a competitive
environment and a non-competitive environment.

Although the difference between the results obtained by the
Fuzzy and the Crisp predator agents were not so significant
in the quantitative analysis that we have performed, it seems
that the Fuzzy predator agent showed a more adequate simu-
lated behavior in the environment with imperfect information,
presenting a more natural, coherent and realistic behavior than
the other agents.

Finally, two issues on the obtained results are important to
point out. Firstly, the BDI agent with fuzzy perception seems
to be a good model to be used in agent-based simulations in
environments with imperfect information. Secondly, a fuzzy
perception module can be a good alternative solution in the
design of a BDI agent that can not perceive the information
of the environment with accuracy.

Future work will consider a fuzzy perception mechanism for
a BDI agent that is more application independent. For that, we
are considering the use of the Mamdani inference method [1]
in the level of the agent plans, so that the fuzzification of the
input data will be directly reflected in the agent’s set of beliefs,
then extending to account for fuzzy beliefs.
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