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Preface 

Welcome to the 5th Workshop on Models@run.time at MODELS 2010! 

This document contains the proceedings of the 5th Workshop on Models@run.time that will 
be co-located with the ACM/IEEE 13th International Conference on Model Driven 
Engineering Languages and Systems (MODELS). The workshop will take place in Oslo, 
Norway, on the 5th of October, 2010. The workshop is organized by Nelly Bencomo, Gordon 
Blair, Franck Fleurey and Cédric Jeanneret. 

From a total of 15 papers submitted 4 full papers, 6 posters were accepted. This volume 
gathers together all the 10 papers accepted at Models@run.time 2010. After the workshop, a 
summary of the workshop will be published to complement these proceedings. 

We would like to thank a number of people who contributed to this event, especially the 
members of the program committee and additional reviewers who provided valuable feedback 
to the authors. We also thank to the authors for their submitted papers, making this workshop 
possible. 

We are looking forward to having fruitful discussions at the workshop! 

September 2010 

 Nelly Bencomo 
 Gordon Blair 
 Franck Fleurey 
 Cédric Jeanneret 
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Meta-Modeling Runtime Models 

Grzegorz Lehmann1, Marco Blumendorf1, Frank Trollmann1, Sahin Albayrak1, 

 
1 DAI-Labor, Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany 

{Grzegorz.Lehmann, Marco.Blumendorf, Frank.Trollmann, Sahin.Albayrak}@dai-labor.de 

Abstract. Runtime models enable the implementation of highly adaptive 

applications but also require a rethinking in the way we approach models. 

Metamodels of runtime models must be supplemented with additional runtime 

concepts that have an impact on the way how runtime models are built and 

reflected in the underlying runtime architectures. The goal of this work is the 

generalization of common concepts found in different approaches utilizing 

runtime models and the provision of a basis for their meta-modeling. After 

analyzing recent works dealing with runtime models, we present a meta-

modeling process for runtime models. Based on a meta-metamodel it guides the 

creation of metamodels combining design time and runtime concepts.  

Keywords: Meta-modeling, Models@Runtime, runtime models, meta-

metamodel. 

1   Introduction 

(Self-)Adaptive applications are required to adapt dynamically at runtime, often to 

situations unforeseeable at design time. Application code generated from design time 

models fails to provide the required flexibility, as the design rationale held in the 

models is not available at runtime. To tackle this issue the use of runtime models (or 

models@run.time) has been proposed. Runtime models enable the reasoning about 

the decisions of developers when they are no longer available. Additionally, they 

provide appropriate abstractions from code-level details of the applications at runtime. 

Although the idea of utilizing models at runtime is not new, there is still a lack of 

common understanding and suitable methodologies for the definition of runtime 

models. Moving the models from design time to runtime raises questions about the 

connection of the models to the runtime architecture, about synchronization and valid 

modifications of the models at runtime or the identification of model parts specified at 

design time and those determined at runtime. 

The goal of this work is the generalization of common concepts found in different 

approaches utilizing runtime models and the provision of a basis for their meta-

modeling. The approach brings: 

 A common understanding of runtime models and their concepts 

 Means for comparing and discussing about different runtime models 

 Basis for achieving future interoperability 

 Basis for the definition of a meta-modeling process for runtime models 
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The next section presents some exemplary works dealing with runtime models 

(2.1) and discusses their common properties (2.2). In section 3 our approach to meta-

modeling runtime models is described. Section 4 concludes this paper. 

2   Related Work 

Model-driven engineering is a promising approach to the development of complex 

systems and applications. Since its emergence, model-based development aims at 

expressing different aspects of application on different levels of abstraction within 

different models. Utilizing formal models takes the design process to a computer-

processable level, on which design decisions become understandable for automatic 

systems. The principles of model-driven architectures [9] have been successfully 

applied in different domains, e.g. the user interface engineering domain, where 

application code is generated from models. 

Modern context-sensitive applications are required to adapt dynamically to context 

of use situations unforeseeable at design time. This requirement leads to the recent 

extension of model utilization's scope from design time to runtime. 

2.1   Approaches Utilizing Models at Runtime 

Models are utilized at runtime in different domains and for different purposes. This 

section analyzes exemplary approaches from several fields, ranging from model-

based simulation and validation, adaptive and self-managing systems, to executable 

and reconfigurable models. Depending on the application domain the models fulfill 

different roles, but some shared similarities can be identified. 

[12] describes the Cumbia platform, as a runtime system for executable runtime 

models, aiming at the provisioning of reusable monitoring and control tools. 

Integrating the execution logic and semantics behind the evolution of the model over 

time as part of the model leads to self-contained executable models. Cumbia's models 

are based on the idea of open objects, consisting of an entity, a state machine 

describing the entity’s lifecycle and a set of actions triggered by the transitions of the 

state machine. Cumbia identifies four types of runtime model information: 

 Structure of models - the static information about the application 

 State of the elements in the models 

 Historical information - the trace of model elements’ state during the execution 

 Derived information - additional information not directly included in the 
model but derived from it, e.g. by means of calculations 

A slightly different approach to application monitoring is presented in [1]. The 

authors show how state machine logic can be embedded in object-oriented code. A 

runtime environment extracts the annotated state chart information at runtime and 

executes it. This way the runtime environment provides control of the application, 

enables the logging of its workflow and debugging of events. In the implementation, 

Java code is connected to the state charts by means of special classes, interfaces and 

annotations. Rather than being created and manipulated at design time, the state 

machine model is extracted from code at runtime. 
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Another approach for model-based (rapid) development of software is discussed in 

[7]. The authors propose a layered debugging architecture for their model-based 

applications. In an example the authors extend the UML state diagram metamodel 

with elements holding dynamic runtime information. The metamodel is thus split into 

a static and a dynamic part. However the categorization of design and runtime 

information is not further generalized. 

The utilization of models at runtime is also common in approaches dealing with 

model-based design and adaptation of large, (self-) adaptive systems, like [14], [5] 

and [6]. The configuration of the systems and the possible adaptations are held in 

models at runtime. Adaptations are performed on the running system by transforming 

the models of the system. 

In the ALIVE approach [14] executable code is generated from application models 

by means of transformations. If an adaptation is necessary at runtime, the models are 

modified and the executable code is regenerated. A monitoring mechanism assures 

that the application is paused for the time of adaptation and restarted when the new 

executable code is loaded. 

In [5] an adaptation model holds information about possible variants of the system, 

constraints expressing valid configurations of the system and rules defining when 

adaptations should be performed. A context model represents the environment of the 

application and is the basis for the adaptation rules. Sensors deployed in the 

environment and in the system assure that the information in the models is up-to-date. 

In the Rainbow framework [6] the architecture monitors and adapts the system 

through abstract models. The system layer consists of probes and effectors. The 

former observe and measure system states. The latter carry out the adaptations 

performed on the model level in the system. On the architecture layer, adaptation 

operators and strategies are provided. Operators determine the reconfiguration action 

that can be performed on the system. Strategies describe how operators need to be 

applied to achieve certain system properties. 

The idea of utilizing models at runtime drives the design of executable models and 

languages. Kermeta, presented in [11], extends the Essential Meta Object Facility 

(EMOF) with action semantics. The composition of an existing meta language with an 

action metamodel results in an executable meta-language, enabling the definition of 

domain specific languages with precisely defined operational semantics. The Kermeta 

metamodel enhances the EMOF metamodel with typical action expressions (e.g. 

Conditional, Assignment, Loop). 

[10] present Kermeta at RunTime (K@RT), a framework for adaptive software 

systems reconfigurable at runtime. K@RT supervises component-based systems by 

maintaining a reference model at runtime. The model provides a high-level view of 

the system. Modifications performed on the model are propagated into the underlying 

running system by automatically generated reconfiguration scripts. The authors 

propose a generic and extensible Metamodel for Runtime Models that represents 

component-based systems at runtime and aims at abstracting a running system. 

Composed of three packages (type, instance and implementation) and compatible with 

the Service Component Architecture (SCA), the metamodel enables the description of 

component-based software structures. 

[8] propose FAME as a polyglot library capable of maintaining the connection of 

models and code at runtime. FAME enables the adaptation of software at runtime 
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through modifications of the models and even the meta-models by means of a set of 

basic operations (Get, Set, Create, Delete). FAME is capable of maintaining the 

causal connection between models and several programming languages, e.g. 

Smalltalk, Ruby or Java (with some limitations). 

This presented some exemplary works utilizing runtime models. The next section 

discusses what the common properties of the different approaches are and what 

definitions can be used to generalize runtime models. 

2.2   Generalizing Runtime Models 

Although many approaches utilize models at runtime, none known to us does 

explicitly deal with the issues of creating metamodels of runtime models. Most works 

in the area of runtime models focus on defining special adaptation (e.g. as 

transformations executable at runtime) or system models (e.g. component networks), 

rather than looking at the common characteristics of runtime models. 

An analysis of model dynamics and executability has been performed in [3]. The 

therein proposed classification of model elements in executable models comes nearest 

to a meta-metamodel. The authors differentiate three parts of dynamic models: 

 Definition part – is the static part of a model, defined at design time 

 Situation part – includes all elements describing the dynamic state of a model 
during its execution, and finally the 

 Execution part – specifying the transitions of the model from one state to 
another, in other words its execution logic 

The proposed classification has been a good starting point for our work, but, 

because of its focus on executable models, it does not fully apply to runtime models. 

For example, not every runtime model must have a definition part defined at design 

time. There are surely runtime models built up completely at runtime. Thus we have 

searched for a different basis for classifying runtime models. 

In our view, the key for classifying and generalizing elements of runtime models 

lies in their causal connection. In [2] a model@run.time has been defined as a 

causally connected self-representation of the associated system that emphasizes the 

structure, behavior, or goals of the system from a problem space perspective. A 

runtime model provides up-to-date information about the system under study (SUS) 

and enables to perform adaptations of the system by means of model modifications. 

In [13] and [4] the classification of descriptive and specification (also called 

prescriptive) models is discussed. According to [13] a model is descriptive if all 

statements made in the model are true for the SUS. On the other side a specification 

model prescribes how the system should be: a specific SUS is considered valid 

relative to this specification if no statement in the model is false for the SUS. Favre [4] 

proposes to use the term or truth to distinct if the model or the system has the truth. In 

case of runtime models, both the system and the runtime model have (parts of) the 

truth. Due to their causal connection, runtime models describe systems with their 

states and, at the same time, specify how the systems should behave. 

The importance of the causal connection can be observed in the approaches 

presented in section 2.1. Most of them posses means for connecting the runtime 

models with the system under study, although the description/specification ratios 
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strongly differ. In works focusing on model executability, e.g. [11], the models have 

an either strong or sole prescriptive role. In self-adaptive systems, like [5] and [6], the 

utilized runtime models mostly have both, descriptive and specification, parts. On the 

other end, when runtime models are used for debugging and monitoring of 

applications (e.g. [1]), the descriptive character dominates. 

Another common property of runtime models is that they evolve over time. The 

modifications of the models can be performed in different ways, e.g. by means of 

transformations, predefined operations or by special tools. Depending on whether the 

prescriptive or descriptive part of the model is modified, the changes have different 

consequences. Modifications of the prescriptive elements (e.g. performed by an 

adaptation engine) lead to changes in the system. Modifications of the descriptive 

parts of runtime models are mostly triggered by the system (e.g. probes in [6]) - 

whenever the system changes, its representation in the model must also change. 

The identified typical properties of runtime models lead to requirements posed on 

their metamodels. Metamodels of runtime models must provide modeling constructs 

enabling the definition of: 

 prescriptive part of the model specifying how the system should be 

 descriptive part of the model specifying how the system is, i.e. the state of the 
SUS at runtime (similar to the situation part defined in [3]) 

 valid model modifications of the descriptive parts, executable at runtime 

 valid model modifications of the prescriptive parts, executable at runtime 

 causal connection in form of information flow between the model and its SUS 

The following sections present a meta-modeling process addressing the above 

requirements. 

3   Meta-Modeling Runtime Models 

This part presents a process guiding the meta-modeling of runtime models 

(sections 3.1-3.4). Section 3.5 describes the meta-metamodel underlying this process.  

For illustration purposes, the process is applied to a simplified finite state machine 

(FSM) metamodel, depicted in Fig. 1. The metamodel defines a finite state machine 

element FSM consisting of states, of which one State is the start state. States are 

connected with each other via Transitions. The FSM provides conditions bound to 

transitions. Additionally each State can be associated with entry actions (EntryAction 

elements) executed upon the activation of the state. 

Fig. 1. Metamodel of finite state machines consisting of States with Entry Actions and 

Transitions bound to Conditions. 

Transition
Entry Action

name

State
name

actions

transitions

type
Condition

name

type

FSM

conditions

states

start

type

type

condition
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target
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The presented metamodel describes typical design-time models, with no runtime 

concepts included. It can be used to statically describe state machines but provides 

limited utility at runtime. However, in our example scenario we wish to use the FSM 

models both at design- and runtime. At design-time we wish to specify the behavior 

of software components in form of FSMs. At runtime we want to execute, monitor 

and inspect the state of the FSM models. 

 In the following the metamodel is extended with runtime concepts so it enables the 

definition of FSM runtime models. The meta-modeling process consists of four steps; 

each of the following subsections is dedicated to one of the subsequent steps. 

3.1   Identify the Prescriptive and Descriptive Parts 

To use the FSM models at runtime we must first identify elements of the models, 

which describe the runtime state of the system under study. At runtime, Conditions of 

a FSM become fulfilled and lead to the execution of the associated Transitions, which 

then activate target states. The example metamodel is therefore extended by adding 

an active attribute to the State and an isFulfilled attribute to the Condition. These 

descriptive attributes, marked orange in Fig. 2, hold the state of a FSM at runtime. 

The distinction between the prescriptive and descriptive elements is necessary to 

clearly separate parts of a model altered in order to change the behavior of the system 

from the parts storing the runtime state of the system. In the example FSM 

metamodel, a state and the conditions of its transitions belong to the specification 

part, but whether a state has been activated or a condition fulfilled belongs to the 

descriptive part and is determined at runtime. 

The differentiation between prescriptive and descriptive elements cannot be based 

on their type or class, but depends on the relationship of the element to other 

elements. Model elements of a specific type may in some cases be descriptive 

elements and in other cases prescriptive elements. It only counts whether the element 

is aggregated in a prescriptive- or descriptive field. 

In case of the example runtime FSM models, the state and transition hierarchy is 

defined by the model developer at design time. The states composing the FSM are 

thus prescriptive elements (e.g. elements held in FSM.states, FSM.start or 

Transition.target). However, an FSM may also store a history list of states activated 

in the past. The history is a result of runtime execution of the model and thus belongs 

Fig. 2 Finite state machine metamodel with the orange marked descriptive elements history, 

isFulfilled and active, holding the state of the FSM at runtime. 
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to its descriptive part. This way, model elements of type State are either prescriptive 

or descriptive depending on their relationship to other model elements. As shown in 

Fig. 2, States are descriptive elements, if they are part of FSM.history, or prescriptive 

elements, if they belong to the design-time state network specification (FSM.states). 

The latter are defined by the developer, the former are determined at runtime. 

3.2   Modifications of Descriptive Elements 

In the previous section the example metamodel has been enhanced with descriptive 

elements that enable to describe the state of a FSM model at runtime. In the next step 

of the meta-modeling process, available operations that can be performed on the 

descriptive part of the model must be identified. The example FSM metamodel is thus 

enhanced with operations, which describe the transitions of FSM models from one 

state to another (i.e. the FSM execution logic). We refer to these operations as 

DescriptionModificationElements. 

Fig. 3 pictures the FSM metamodel with DescriptionModificationElements altering 

the state of FSMs at runtime. The State type has been enhanced with the 

DescriptionModificationElements activate and deactivate, which alter the active 

attribute of States. Activation of a State leads to the execution of its entry actions, so 

the activate operation uses the execute operation of EntryAction. States become 

activated and deactivated by executed transitions. Transitions are triggered by the 

fulfillment of the associated conditions. 

The DescriptionModificationElements represent procedures or actions altering the 

elements of conforming runtime models. Through them a metamodel provides the 

ability to insert new information about the system into the models in a well-defined 

manner, even at runtime. For example, the DescriptionModificationElement 

setFulfilled makes it possible to inform an FSM model about a condition fulfilled in 

the system under study. 

At this point of the process the FSM metamodel enables the definition of runtime 

models with state information and execution logic as alteration of this information 

(DescriptionModificationElements). The next step deals with the identification of 

SpecificationModificationElements that enable the modification of the prescriptive 

Fig. 3. Finite state machine metamodel with DescriptionModificationElements setFulfilled, 

execute, activate and deactivate. 
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activate
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part of the conforming FSM models. We refer to the modifications of prescriptive 

elements as adaptations, because they change the behavior of the system under study. 

3.3   Modifications of Prescriptive Elements 

One of the main purposes of runtime model utilization is the adaptation of the 

modeled application to varying context situations by means of model modifications. 

However, arbitrary reconfiguration of application models very soon leads to 

inconsistencies and can destroy the integrity of the adapted models. 

The definition of possible model adaptations is an integral part of the meta-

modeling process. It is the task of the meta-modeler to define possible modifications 

of the conforming models and their impact on the models. Only so can the correctness 

of the adaptations and the consistency of the adapted models at runtime be assumed. 

The meta-modeling of model adaptations can again be exemplified using the FSM 

metamodel. A possible and often feasible adaptation of a FSM-based application is 

the adding of special states or entry actions. Such adaptations can, for example, be 

necessary if the context of the application changes and parts of the state network must 

be replaced with alternatives. 

To enable the adding and removing of states in a finite state machine at runtime, 

the example metamodel is extended with SpecificationModificationElements addState 

and respectively delState. Fig. 4 shows the FSM metamodel with the new elements. 

Both alter the states of the adapted FSM. To retain the readability of the figure, we 

did not draw the SpecificationModificationElements addTransition and delTransition 

needed for reconfiguration of the transition network. 

The difference between the Description- and SpecificationModificationElements is 

essential. While the former only change the model, so it reflects the state of the SUS 

at runtime (e.g. activate or deactivate in the example FSM metamodel), the latter have 

the power to modify the structure and behavior of the SUS (e.g. FSM.addState or 

FSM.delState). The SpecificationModificationElements have thus a much stronger 

impact on the models and their adaptation capabilities. 

After identifying the runtime elements of a runtime model, defining the valid 

modification of both its descriptive and prescriptive parts, the meta-modeler has to 

Fig. 4. FSM metamodel with SpecificationModificationElements addState, delState, addAction. 
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deal with one final runtime concept. The next section describes the last step of the 

meta-modeling process, which is the identification of the causal connection between 

the runtime model and its system under study. 

3.4   Identify the Causal Connection 

The connection between a runtime model and its system under study is referred to 

as the causal connection. The concept expresses the interrelation or causal loop 

between the model that represents a system and a system that must act according to 

the model. During the meta-modeling process the causal connections between the 

conforming runtime models and their systems under study must be identified. 

Meta-modeling the causal connection comprises the definition of both directions of 

communication between the runtime models and their SUS. The influence of the 

model on the system and the synchronization of the model, based on the occurrences 

in the system, must be specified. It is thus essential to identify, how descriptive and 

prescriptive elements of the models communicate with the SUS. 

The approaches described in section 2.1 present different ways of handling the 

causal connection. In Rainbow [6] the effectors are responsible of adapting to system 

to the current structure of the model. Probes, or sensors in [5], assure the information 

flow in the opposite direction – from the system and its environment into the model. 

We generalize such elements by the term of proxy elements. 

A proxy element fulfills the role of an interface between the runtime model and its 

system under study. To enable the explicit definition of proxies within metamodels 

we use the proxy type. It enables the classification of model elements connected to 

entities outside of the model. 

The information flow between the proxy elements and the outside world can be 

bidirectional. On the one side proxies synchronize the descriptive elements of the 

model with the state of the SUS, and on the other side they adapt the system 

according to the prescriptive part of the model. To achieve the first the proxies are 

provided with DescriptionModificationElements. For the model-SUS synchronization 

the proxies forward calls of SpecificationModificationElements to the SUS. 

Fig. 5. FSM metamodel with Condition and EntryAction proxies handling the causal 

connection. 
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In the example FSM metamodel two proxy types have been identified: Condition 

and EntryAction. An FSM model must become aware of condition fulfillment 

occurring in the SUS. Therefore, as shown in Fig. 5, the Condition proxies expose the 

setFulfilled operation to external condition processes. This way, whenever a condition 

is fulfilled, external components inform the FSM model using the setFulfilled 

element. The EntryAction proxies do not expose any operations to the external 

processes, but trigger action execution in external processes outside of the model. 

The identification of proxy elements enables an explicit and clear definition of the 

boundaries of runtime models. The communication between the model and the system 

via Description- and SpecificationModificationElements ensures that the 

synchronization occurs in a metamodel conformant way and does not interfere with 

the execution logic of the model. In the FSM example, the proxy elements causally 

connect the models with running systems through well-defined interfaces. The 

Condition proxies ensure that the FSM model reflects the state of the SUS at runtime. 

The EntryAction proxies enable the model to influence the SUS upon state changes.  

We have presented a meta-modeling process, which identifies and makes explicit 

the runtime concepts necessary for the utilization of models at runtime. The next 

section sums up the ideas behind this process in form of a meta-metamodel. 

3.5   Meta-Metamodel 

Defining metamodels of runtime models requires a meta-modeling language that 

provides means for the expression of the described runtime concepts within the 

metamodels. Meta-modeling languages are defined in form of special metamodels, so 

called meta-metamodels. We thus present a meta-metamodel, which provides 

necessary constructs for formalizing metamodels of runtime models. 

The meta-metamodel, shown in Fig. 6, prescribes that each conforming metamodel 

defines Types composed of Fields and ExecutableElements. Fields represent 

relationships between types (often referred to as attributes, associations, references, 

etc.) and are classified as either Prescriptive- or DescriptiveFields. Intuitively, model 

elements held in prescriptive fields are prescriptive elements and those held in 

descriptive fields are descriptive elements. The differentiation of fields enables the 

identification of descriptive and prescriptive parts of conforming models during the 

meta-modeling process. 

Fig. 6. Meta-metamodel of runtime models. 
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The ExecutableElements represent operations enabling the modification of model 

elements. Depending on whether the modifications influence the descriptive or the 

prescriptive part of the model, ExecutableElements are refined as either 

DescriptionModificationElements (DME) or SpecificationModificationElements 

(SME). As explained in previous sections, the DMEs encapsulate the state 

synchronization of the models conforming to the metamodel, whereas the SMEs 

represent possible model and system adaptations.  

The descriptive elements of the model are held in the DescriptiveFields. Therefore 

each DME defines, which DescriptiveFields it modifies, using the alters association.  

Associating a DME with other DMEs by means of the uses association the meta-

modeler expresses that the execution of the DME is composed of or includes the 

execution of the associated DMEs (as the State.activate DME using 

EntryAction.execute in case of the FSM metamodel example). 

Performing an adaptation of the model may not only influence its prescriptive part. 

In most cases it impacts its state as well. For this reason the SMEs can define alters 

and uses associations to both types of Fields and ExecutionElements. 

Finally, the special Proxy type enables the formalization of the causal connection 

of runtime models. It classifies model elements connecting the model with its SUS. At 

runtime a proxy element mediates with an external element through a clearly defined 

communication interface. The interface is specified in form of ExecutableElements, 

either called during the model adaptation to influence the SUS (externalExecution) or 

available to the proxies to push information about the SUS into the model (callbacks). 

4   Conclusions and Outlook 

On the basis of our experiences with runtime models, we have presented a meta-

modeling process. The process identifies core runtime concepts reoccurring in 

runtime models and helps supplementing traditional, design time models with them. 

The process and the constructs of the meta-metamodel are sufficient to distinguish the 

descriptive and prescriptive (specification) parts of runtime models as well as to 

identify operations for their modification (ExecutableElements). Furthermore the 

causal connection of the runtime model and its system under study can be described 

using the Proxy type. This way the meta-metamodel covers all aspects of meta-

modeling runtime models identified in section 2.2. 

We have utilized our approach to create a large set of metamodels, ranging from 

the FSM metamodel presented in this paper to metamodels from the user interface 

engineering domain (task, UI, layout or context metamodels). Our implementation is 

based on the popular Eclipse Modeling Framework (EMF). To assure a possibly high 

compatibility of our models with EMF we define our metamodels as plain EMF 

metamodels enhanced with some special annotations (e.g. annotating that an attribute 

expressed in Ecore is a DescriptiveField). The use of annotations makes our 

metamodels readable and usable for EMF tools (which simply ignore our custom 

annotations) and at the same time enables to extract the additional information about 

the runtime concepts of the conforming models. 
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We have defined the meta-metamodel in form of an Ecore metamodel and created 

transformations between annotated metamodels and the meta-metamodel. This 

approach enables to define metamodels of runtime models with full advantages of 

EMF tools and work with the meta-metamodel as with a plain EMF metamodel. 

In the future we will explore the possibilities of using the meta-metamodel to 

achieve interoperability between different runtime model approaches (across 

technological spaces). We are working on additional metamodel transformations that 

will enable us to transform metamodels from technological spaces other than Ecore 

into the format of the meta-metamodel. We are also working on a reconfiguration 

metamodel, defined on the basis of the meta-metamodel. Combined with the 

transformations it will enable us to reconfigure and adapt runtime models from 

different technological spaces in one reconfiguration model. 
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Abstract. In model-driven software development a multitude of devel-
opment models that are related with each other are used to systemat-
ically realize a software system. This results in a complex development
process since these models and the relations between these models have
to be managed. Similar problems appear when following a model-driven
approach for managing software systems at runtime. A multitude of run-
time models that are related with each other are likely to be employed
simultaneously, and thus they have to be maintained at runtime. While
for the development case megamodels have emerged to address the prob-
lem of managing development models and relations, the problem is rather
neglected for the case of runtime models by applying ad-hoc solutions.
Therefore, we propose to utilize concepts of megamodels in the domain
of runtime system management. Based on existing work in the research
field of runtime models, we demonstrate that different kinds of runtime
models and relations are already employed simultaneously in several ap-
proaches. Then, we show how megamodels help in structuring and main-
taining runtime models and relations in a model-driven manner while
supporting a high level of automation. Finally, we present two case stud-
ies exemplifying the application and benefits of megamodels at runtime.

1 Introduction

According to France and Rumpe, there are two broad classes of models in Model-
Driven Engineering (MDE): development models and runtime models [1]. Devel-
opment models are employed during the model-driven development of software.
Starting from abstract models describing the requirements of a software, these
models are systematically transformed and refined to architectural, design, and
implementation models until the source code level is reached.

In contrast, a runtime model provides a view on a running software system
that is usually used for managing the system at runtime. Therefore, a runtime
model serves as a basis and interface for monitoring, analyzing, and adapting
a running system, which is realized by causally connecting the model and the
system [1, 2]. Most approaches, like [3–6], employ one causally connected runtime
model that reflects a running software system. While it is commonly accepted
that developing complex software systems using one development model is not
practicable, we argue that the whole complexity of managing a running software
system cannot be covered by one runtime model defined by one metamodel.
This is also recognized by Blair et. al who state “that in practice, it is likely that
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multiple [runtime] models will coexist and that different styles of models may
be required to capture different system concerns” [2, p.25].

At the 2009 Workshop on Models@run.time we presented an approach for
using multiple runtime models at different levels of abstraction simultaneously
for monitoring and analyzing a running system [7]. Each runtime model defined
by a different metamodel abstracts from the system and focuses on a specific
concern, like architectural constraints or performance. At the workshop, our ap-
proach raised questions and led to a discussion about simultaneously coping
with these models since concerns that potentially interfere with each other are
separated in different models [8]. For example, any adaptation being triggered
due to the performance state of a running system, which is reflected by one run-
time model, might violate architectural constraints being reflected in a different
model. Thus, there exists relations, like trade-offs or overlaps, between different
concerns or models, which have to be considered for runtime management.

A similar issue appears during the model-driven development of software. A
multitude of development models and relations between those models have to be
managed. An example is the Model-Driven Architecture (MDA) approach that
considers, among others, transformations of platform-independent to platform-
specific models [9]. Thus, different development models are related with each
other, and if changes are made to any model, the related models have to be
updated by synchronizing these changes or by repeating the transformation. In
this context megamodels have emerged as one means to cope with the problem
of managing a multitude of development models and relations. The term mega-
model is known since Jean Bézivin et al. and Jean Marie Favre published their
ideas on modeling MDA and MDE, respectively [10, 11]. Both authors basically
agree that a megamodel is a model that contains models and relations between
those models or between elements of those models (cf. [10–13]).

In contrast, the problem of managing multiple models and relations is ne-
glected for the runtime case and to the best of our knowledge there is no approach
that explicitly considers this problem beyond ad-hoc and code-based solutions.
In this paper, we present categories of conceivable runtime models and possible
relations between those models. Based on that, we propose to apply existing
concepts of megamodels for managing runtime models and relations. Such an
approach provides a high level of automation for organizing and utilizing multi-
ple runtime models and their relations, which supports the domain of runtime
system management, e.g., by automated impact analyses across related models.

The rest of the paper is structured as follows. Section 2 discusses the catego-
rization of runtime models and relations. Section 3 describes the application of
megamodels at runtime, which is exemplified by two case studies in Section 4.
Finally, the paper concludes and gives an outlook on future work in Section 5.

2 Runtime Models and Relations Between Them

In this section, we present categories of conceivable runtime models and relations
between them based on the current state of the research field, primarily the past
Models@run.time workshops [14] and our own work [7, 15–17]. However, we do
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not claim that the presented categories are complete or that each category has
to exist in every approach. Nevertheless, they indicate that different kinds of
runtime models are likely to be employed simultaneously and that these models
themselves together with their relations have to be managed at runtime.

2.1 Categories of Runtime Models

Each of the already mentioned approaches [3–6] employs one runtime model
reflecting the running system. In contrast, our approach [7] provides multiple
runtime models simultaneously, each of which reflects the running system and
is specified by a distinct metamodel. Nevertheless, almost all of the other ap-
proaches also maintain additional model artifacts at runtime. These artifacts do
not reflect the running system, but they are used for runtime management.

In the case of Rainbow [6], such artifacts are invariants that are checked on
the runtime model, and adaptation strategies that are applied if invariants are
violated. Morin et al. [4] even have in addition to an architectural runtime model
reflecting the running system, a feature model describing the system’s variability,
a context model describing the system’s environment, and a so called reasoning
model that can take the form of event-condition-action (ECA) rules describing
which feature should be (de-)activated on the architectural model depending on
the context model. Thus, even if only one causally connected runtime model
is used for reflecting the running system, several other models are employed at
runtime. For the following categories as depicted in Figure 1, we consider any
conceivable Runtime Models regardless whether they reflect a running system
or not. The models are categorized according to their purposes and what they
represent. Runtime models of all categories are usually instances of Runtime
Metamodels conforming to Runtime Meta-Metamodels, which leverages typical
MDE techniques, like model transformation or validation, to the runtime.

Rules, Strategies, Constraints, Requirements and Goals

Configuration Space and Variability Models

Configuration and Architectural Models

Implementation Models

Context
and

Resource
Models

R
untim

e M
odels (M

1)
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Fig. 1. Categories of Runtime Models

Implementation Models are similar to models used in the field of reflection
to represent and modify a running system through a causal connection. Thus,
these models are dynamic as they evolve consistently with a running system.
Such models are based on the solution space of a system as they are coupled to
the system’s implementation and computation model [2]. Examples are models
used in reflective programming languages, which represent the building blocks of
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the languages [18, 19], or models that are directly coupled to platforms or tech-
nologies like CORBA [20]. Therefore, these models are rather platform-specific
and at a low level of abstraction. Examples of such models are class or object di-
agrams and scenario-based sequence diagrams covering the interaction between
objects or generally traces of a system [18, 21, 22]. Moreover, behavioral models
in the form of statecharts, state machines, or generally automatons are used to
reflect the current state of objects or of a running system [23–25].

Configuration and Architectural Models are at a higher level of abstraction
than Implementation Models, but they usually also provide causally connected
representations of running systems. Such a model reflects the current configura-
tion of a system and it is the core model for monitoring and adapting the system.
Since software architectures are considered as an appropriate abstraction level
for performing adaptations, such models often provide architectural views on
a running system [3–7, 17]. Thus, these models are often similar to component
diagrams, which are often annotated or enhanced with elements or attributes to
address non-functional properties, like performance or reliability [6, 7]. There-
fore, these models are also the basis for analysis either by directly performing
the analysis on them or by transforming them to specific analysis models, like
queuing networks in the case of performance management. At a even higher level
of abstraction, process or workflow models are also feasible to describe a run-
ning system from a business-oriented view [26]. Moreover, model types of the
Implementation Models category, like statecharts or sequence diagrams, are also
conceivable in this category, but at a higher level of abstraction. For example, a
sequence diagram would consider the interactions between component instances
instead of the interactions between objects.

In general, models of this category are rather related to problem spaces and
they abstract from the implementation models and from underlying technologies
to provide platform-independent views. This corresponds to the view of Blair et
al. [2] on runtime models. With respect to a self-adaptive system, these models
enable the self-awareness of the system at an appropriate level of abstraction,
which is used as a basis for the feedback loop, i.e., for monitoring and analyzing
the system, and for planning and executing adaptations on the system.

Context and Resource Models describe the operational environment of a
running system. This comprises the context of a system, which is “any infor-
mation that can be used to characterise the situation of an entity”, while “an
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application” [27, p.5] or in general to the operation of
the application. Especially for a context-aware system, which is a system that
adapts its behavior to changes in its context, the context has to be observed by
sensors and described by a model. A simple example for a context is the user’s
location, which can be used in mobile systems to find services, like restaurants, in
the vicinity of the user. To represent a context, a variety of models can be used:
semi-structured tags and attributes, object-oriented or logic-based models [28],
or some form of variables, like key value pairs [4, 28]. Even feature models have
been proposed for modeling context [29].
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Moreover, the operational environment consists of resources a running sys-
tem requires for operation. These are logical resources, like any form of data, or
physical resources, like hardware. An example for a resource model reflects the
hardware infrastructure, like computing nodes and network links among nodes,
on which the system is running. Therefore, such a resource model provides in-
formation whether any adaptation of a system is feasible based on the currently
provided resources, like on which node a subsystem can be deployed.

Configuration Space and Variability Models specify potential variants of
a running system, while Configuration and Architectural Models reflect the cur-
rently running variant of the system. Therefore, models of this category describe
a system at the type level to span the system’s configuration space and variabil-
ity. Considering a component-based system, the configuration space is defined
by the available types of components that can be instantiated and deployed to
a running system. Thus, adaptation points in a running system and possible
adaptation alternatives can be identified using these models.

Examples for models in this category are component type diagrams [16, 17],
feature models originating from dynamic software product lines [4, 30, 31], or
aspect models describing variants of a system and instances of these aspects are
woven into configuration or architectural models for adapting the system [4, 32].

Rules, Strategies, Constraints, Requirements and Goals may refer to
any model from the other categories and, therefore, their levels of abstraction
are similar to the levels of the referred models. However, considering require-
ments or goals at runtime aims at higher levels of abstraction, even above the
level of software architectures [33]. Models in this category define, among oth-
ers, when and how a running system should be adapted. According to Fleurey
and Solberg [34] there are two general approaches to specify adaptations. First,
adaptation rules or reconfiguration strategies usually in some form of ECA rules
describe when (periodically or at the occurrences of context or system events)
and under which conditions, a system is adapted by performing reconfiguration
actions. The second approach is based on goals a running system should achieve,
and adaptation aims at optimizing the system with respect to these goals. This
optimization process is based on utility functions to find the best or at least
an appropriate target system configuration fulfilling the goals. Both approaches
use models reflecting the current system, context, and resources to search the
configuration space for a variant that is appropriate for the current state. For
example, a goal-based optimization model is used in [4, 31, 35], and adaptation
rules or reconfiguration strategies are used in [6, 29, 36].

Moreover, constraints on models of the other categories regarding functional
and non-functional properties are used for runtime validation and verification
purposes, and for guiding adaptations. If a constraint is violated, an adapta-
tion can be triggered, as it is done in [6], or constraints may exclude certain
kind of adaptations. Constraints can be expressed, among others, in the Ob-
ject Constraint Language (OCL), like in [7] to check architectural constraints, or
formally in some form of Linear Temporal Logic (LTL), like in [23] to verify adap-
tive systems at runtime. Though constraints can be seen as requirements that
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are checked at runtime, recently the idea of requirements reflection has emerged,
which explicitly considers requirements as adaptive runtime entities [33]. Thus,
requirements models, like goal models, become runtime models that have to
be related to Configuration and Architectural Models since any changes at the
requirements level have to be reflected in the running system, and vice versa.

The presented categories show that different kinds of runtime models are pos-
sible and even employed simultaneously. Which categories are used, and which
kind of and how many models for each of the used categories are employed is
specific to each approach. This depends, among others, on the purposes of an
approach (which functional and non-functional concerns are of interest, which
management activities, like monitoring, analysis or adaptation, are supported,
etc.) and on the domain of the managed system (embedded, mobile, or server-
side systems, or even IT infrastructures, etc.). Based on the model categories,
conceivable relations between runtime models are presented in the next section.

2.2 Relations Between Runtime Models or Model Elements

In the following, we outline exemplars of relations between runtime models to
motivate the need for runtime management of relations together with the models.

As already mentioned, models of the category Rules, Strategies, Constraints,
Requirements and Goals may refer to models of the other categories. For example,
goal modeling approaches refine a top-level goal to subgoals recursively until each
subgoal can be satisfied by an agent being a human or a software component [37].
Having a goal model at runtime, it is of interest which component of a running
system actually satisfies or fails in satisfying a certain goal. Therefore, goals being
reflected in a goal model refer to corresponding components of Configuration
and Architectural Models such that a goal model and an architectural model
are related at runtime. Moreover, goal satisfaction can be influenced by the
current context of a system, such that goals and elements of a context model
and, therefore, the goal model and Context Model are related with each other.

Another exemplar describes an instance-of relation between Configuration
Models and Configuration Space Models. For example, a configuration space is
defined by the types of available components and an actually running system
consists of instances of these types. At runtime, this relation is useful for navi-
gating from configuration model elements to corresponding configuration space
model elements to find potential variability points for adaptations. Regarding
the same dimension of abstraction, Implementation Models can be seen as refine-
ments of Configuration and Architectural Models as they describe how a config-
uration and architecture is actually realized using concrete technologies. Thus,
refinement relations are conceivable between models of these two categories.

Another relation can reflect the deployment or resource utilization of a system
by means of relating Architectural Model elements and Resource Model elements,
or in other words, which components of a running systems are deployed on which
nodes and are consuming which resources. Context and Resource Models can also
refer to Configuration Space and Variability Models since the configuration space
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and variability of a system can be influenced by the current context or resource
conditions. For example, a certain variant is disabled due to limited resources.

Besides relations between models of different categories, there can also exist
relations between models of the same category. For example, in [7] several Archi-
tectural Models are employed reflecting the same system, but providing different
views. However, these views overlap with each other, which can be considered as
a kind of relation between these models. Furthermore, each model focuses on a
certain non-functional concern, like performance, and any adaptation optimizing
one concern might interfere with another concern. Thus, overlaps, trade-offs or
conflicts between concerns respectively between the models are conceivable.

Finally, considering the levels of models, metamodels, and meta-metamodels,
there exists conformance and instance-of relations between models of those levels.

The presented exemplars show that runtime models are usually not indepen-
dent from each other, but they rather compose a network of models. Therefore,
besides the runtime models also the relations between those models have to be
managed at runtime. The concrete relations emerging in an approach depend,
among others, on the purposes of the approach, the domain of the system and
especially on the models that are employed.

3 Megamodels at Runtime

As it turned out in the previous sections, for runtime management different
kinds of models and relations between models emerge. In such scenarios, it is
important that these relations are maintained at runtime because this makes the
relations explicit and, therefore, amenable for reasoning or analysis purposes. For
example, an impact analysis is leveraged when knowing which models are related
with each other. Then, the impact of any model change to related models can
be analyzed by following transitively the relations and propagating the change.
Moreover, relations can be classified, for example in critical and non-critical ones,
and for certain costly analyses only the critical relations may be considered.

Nevertheless, relations to other models are usually not covered originally by
all models because they were not foreseen when designing the corresponding
modeling languages. Thus, a language for explicitly specifying all kinds of re-
lations between various models is required for supporting the management of
runtime models. Rather than applying ad-hoc and code-based solutions to re-
late models with each other, megamodels provide a language that supports the
modeling of arbitrary models and relations between those models. Therefore,
the management of models and relations itself is done in a model-driven manner
enabling the use of existing MDE techniques for it. In general, megamodels for
the model-driven development serve organizational and utilization purposes that
should also be leveraged at runtime. Organizational purposes are primarily about
managing the complexity of a multitude of models. Therefore, megamodels help
in organizing a huge set of different models together with their relations by stor-
ing and categorizing them. According to Bézivin et al., megamodels act as some
kind of registry for models [12] or even as a global map for the information assets
of a company [10]. Likewise, megamodels can serve as a means to organize and
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maintain runtime models and their relations in the domain of runtime system
management since several models and relations can be simultaneously employed
at runtime (cf. Sections 2.1 and 2.2).

Utilization purposes of megamodels are primarily about navigation and au-
tomation. Megamodels can be the basis for navigating through models by using
relations between models. Thus, starting from a model, all related models can be
reached in a model-driven manner instead of using mechanisms at a lower level
of abstraction like programming interfaces. Having the conceivable relations be-
tween runtime models in mind (cf. Section 2.2), navigating between models at
runtime is essential for a comprehensive system management approach.

Automation aims at increasing the efficiency by treating relations between
models as executable units that take models as input and produce models as
output. Thus, a megamodel can be considered as an executable process, and
additional automations for executing a megamodel can be defined on top of a
megamodel. For example, a megamodel can be used to automatically analyze the
impact of model changes to other related models. Therefore, relations can be used
to synchronize model changes to related models and these synchronized models
are then analyzed to investigate the impact of the initial changes. This can be
used at runtime to validate a planned adaptation on different models before the
system is actually adapted. Finally, automation also considers the maintenance
of models and relations, which should be automated as far as possible since
models and relations are often both dynamic and they change over time.

Having outlined the application of megamodels at runtime, the following
section presents two case studies exemplifying megamodels at runtime.

4 Case Studies

In this section, we outline two case studies from our previous works and how
these case studies benefit from the application of megamodels at runtime.

4.1 IT Service Management

In [16] we presented a model-driven configuration management system (CMS)
for advanced IT service management (ITSM) by applying several MDE tech-
niques. The core of a model-driven CMS is a configuration management database
(CMDB) that stores an as-is and a to-be Configuration Model of a managed sys-
tem. Configuration models consist of configuration items and relations between
items, while items are manageable units of a managed system, like servers or
applications. On top of a model-driven CMS, we realized three simplified ITIL
processes by using MDE techniques, namely, change management, release & de-
ployment management, and service asset & configuration management.

The service asset & configuration management process is responsible for pro-
viding an up-to-date as-is Configuration Model in a CMDB. Furthermore, key
performance indicators (KPIs) are implemented to provide more control on this
process. An example KPI is the degree of discrepancy between the to-be and the
as-is configuration models, which is the number of covered configuration items
in both models divided by the number of items in the to-be configuration model.
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Fig. 2. A simplified megamodel example for ITSM

The change management process provides capabilities to define changes to
a managed system based on models. Thus, an operator models changes directly
on the as-is configuration model and then stores it as a to-be configuration
model, which is further used by the release & deployment process to perform
the modeled changes. Therefore, a set of change operations are automatically
derived by comparing the defined to-be with the as-is configuration model.

Such a CMS can be appropriately captured by a megamodel, which is shown
as a simplified example for ITSM in Figure 2. Additional actors are integrated
for indicating manual interventions. The megamodel shows the models used in
this system and the relations between these models. The As-Is and the To-Be
Configuration Models belong to the category of Configuration and Architectural
Models, and they are both used for the KPI Analysis. This analysis evaluates the
KPIs specified as rules in the KPI Model, which therefore belongs to the model
category of Rules, and the analysis results are described in a KPI Report.

Furthermore, model relations can be mapped to operations that are automat-
ically executed, e.g., the Compare relation is implemented by an EMF Compare1

operation or the Compare2Change Operations is a model transformation. Thus,
whenever changes occur, i.e., the To-Be Configuration Model is modified, Change
Operations are automatically derived and performed on the system, while the
KPI Analysis observes the progress of performing the changes to the system.

4.2 Self-Adaptive Software

In the field of self-adaptive software, we presented an approach that employs
several runtime models simultaneously for monitoring [7] and adapting [17] a
system. This is outlined in Figure 3. A running Managed System is reflected by
an Implementation Model and both are causally connected. However, the imple-
mentation model is platform-specific, complex, at a low level of abstraction, and
related to the solution space of the system. Therefore, abstract runtime models
1 Eclipse Modeling Framework Compare, http://wiki.eclipse.org/EMF_Compare
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Fig. 3. A megamodel example for self-adaptive software

are derived from the implementation model using incremental and bidirectional
Model Synchronization techniques. These abstract models can be causally con-
nected to the system via the implementation model, and they belong to the cat-
egory of Configuration and Architectural Models. Each of these abstract models
focuses on a specific concern of interest, which leverages models related to prob-
lem spaces. An Architecture Model, a Performance Model, and a Failure Model
are derived focusing on architectural constraints, performance, and failures of the
system, respectively. Thus, specific self-management capabilities are supported
by distinct models, like self-healing by the failure model or self-optimization by
the performance model. Consequently, specialized autonomic managers, like a
Performance Manager working on the performance model, can be employed.

However, adaptations performed by a certain manager due to a certain con-
cern might interfere with other concerns covered by other managers. For example,
adaptations based on the performance model, like deploying an additional com-
ponent to balance the load, might violate architectural constraints covered by
the Architecture Model, like the affected component can only be deployed once.

Since each concern is covered by a different model, megamodels can be used
to describe relations, like interferences or trade-offs, between different models or
concerns. Moreover, the coordination between different managers can be mod-
eled with megamodels, which can be enacted at runtime to balance competing
concerns, as outlined by the following scenario. Before any adaptation proposed
by the performance or failure manager who change the performance or failure
model, respectively, is executed on the system by triggering the Model Synchro-
nization, the changes are automatically propagated to the architecture model
(cf. Change Propagation relations in Figure 3). Then, the architecture manager
takes the updated architecture model and the Constraint Model to analyze and
validate the proposed adaptations (Adaptation Analysis). The resulting Adap-
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tation Report is sent to the manager proposing the adaptation and it instructs
either the execution of the proposed adaptation on the system or the rollback of
the corresponding model changes depending on the analysis results.

Both presented case studies exemplified potential use cases for megamodels
at runtime and benefits of megamodels for advanced system management ap-
proaches using multiple runtime models simultaneously.

5 Conclusion and Future Work

In this paper we have shown that the issue of complexity in the domain of model-
driven development, caused by the amount of models and their relations, is also
a problem in the domain of runtime system management and runtime models.
Since for the latter domain this problem is rather neglected, we addressed it
by presenting a categorization of runtime models and potential relations that
can exist between models of the same or different categories. Based on that, we
showed that megamodels are an appropriate formalism to manage runtime mod-
els and their relations. This has been exemplified by two case studies outlining
the benefits in the domain of runtime system management by providing a high
level of automation for organizing and utilizing runtime models and relations.

As future work, we plan to elaborate our categorization to incorporate other
preliminary classifications comparing development and runtime models [1, 38]
and describing dimensions of runtime models [2]. This includes possible catego-
rizations of relations between runtime models. Finally, to evaluate this proposal,
we will investigate the application of our megamodel approach designed for the
development and deployment time [39] to the domain of runtime management.
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25. Höfig, E., Deussen, P.H., Coskun, H.: Statechart Interpretation on Resource Constrained Plat-
forms: a Performance Analysis. In: Proc. of the 4th Intl. Workshop on Models@run.time. Volume
509 of CEUR-WS.org. (2009) 99–108

26. Sanchez, M., Barrero, I., Villalobos, J., Deridder, D.: An Execution Platform for Extensible
Runtime Models. In: Proc. of the 3rd Intl. Workshop on Models@run.time, Technical Report
COMP-005-2008, Lancaster University (2008) 107–116

27. Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Comput. 5(1) (2001) 4–7
28. Schneider, D., Becker, M.: Runtime Models for Self-Adaptation in the Ambient Assisted Living

Domain. In: Proc. of the 3rd Intl. Workshop on Models@run.time, Technical Report COMP-
005-2008, Lancaster University (2008) 47–56

29. Acher, M., Collet, P., Fleurey, F., Lahire, P., Moisan, S., Rigault, J.P.: Modeling Context
and Dynamic Adaptations with Feature Models. In: Proc. of the 4th Intl. Workshop on Mod-
els@run.time. Volume 509 of CEUR-WS.org. (2009) 89–98

30. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic Computing through Reuse of Vari-
ability Models at Runtime: The Case of Smart Homes. Computer 42(10) (2009) 37–43

31. Elkhodary, A., Malek, S., Esfahani, N.: On the Role of Features in Analyzing the Architecture
of Self-Adaptive Software Systems. In: Proc. of the 4th Intl. Workshop on Models@run.time.
Volume 509 of CEUR-WS.org. (2009) 41–50

32. Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., Tigli, J.Y., Riveill, M.: Models at Runtime:
Service for Device Composition and Adaptation. In: Proc. of the 4th Intl. Workshop on Mod-
els@run.time. Volume 509 of CEUR-WS.org. (2009) 51–60

33. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements reflection: re-
quirements as runtime entities. In: Proc. of the 32nd ACM/IEEE Intl. Conference on Software
Engineering (ICSE), ACM (2010) 199–202

34. Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Specification, Sim-
ulation and Execution of Dynamic Adaptive Systems. In: Proc. of the 12th Intl. Conference on
Model Driven Engineering Languages and Systems (MODELS). Volume 5795 of LNCS., Springer
(2009) 606–621

35. Ramirez, A.J., Cheng, B.H.: Evolving Models at Run Time to Address Functional and Non-
Functional Adaptation Requirements. In: Proc. of the 4th Intl. Workshop on Models@run.time.
Volume 509 of CEUR-WS.org. (2009) 31–40

36. Dubus, J., Merle, P.: Applying OMG D&C Specification and ECA Rules for Autonomous
Distributed Component-based Systems. In: Proc. of 1st Intl. Workshop on Models@run.time.
(2006)

37. Cheng, B.H., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling Approach to Develop
Requirements of an Adaptive System with Environmental Uncertainty. In: Proc. of the 12th Intl.
Conference on Model Driven Engineering Languages and Systems (MODELS). Volume 5795 of
LNCS., Springer (2009) 468–483

38. Bencomo, N.: On the Use of Software Models during Software Execution. In: Proc. of the ICSE
Workshop on Modeling in Software Engineering (MISE), IEEE (2009) 62–67

39. Seibel, A., Neumann, S., Giese, H.: Dynamic Hierarchical Mega Models: Comprehensive Trace-
ability and its Efficient Maintenance. Software and Systems Modeling 9 (2009) 493–528

5th Workshop on Models@run.time at MODELS 2010 24



Applying MDE Tools at Runtime: Experiments
upon Runtime Models

Hui Song, Gang Huang ?, Franck Chauvel, and Yanchun Sun

Key Lab of High Confidence Software Technologies (Ministry of Education)
School of Electronic Engineering & Computer Science, Peking University, China

{songhui06,huanggang,franck.chauvel,sunyc}@sei.pku.edu.cn

Abstract. Runtime models facilitate the management of running sys-
tems in many different ways. One of the advantages of runtime models is
that they enable the use of existing MDE tools at runtime to implement
common auxiliary activities in runtime management, such as querying,
visualization, and transformation. In this tool demonstration paper, we
focus on this specific aspect of runtime models. We discuss the require-
ments of runtime models to enable the use of model-driven tools, and
present our tool to help provide such runtime models on the target sys-
tems. We apply this tool on a wide range of target systems, modeling the
Android mobile system, the Eclipse GUI, the Java class structure, and
the JOnAS inner structure. With the help of these runtime models, we
perform the runtime management on these systems using classical MDE
tools including OCL, QVT, and GMF.

1 Introduction

For a running system, developers often need to retrieve and update its data at
runtime. The runtime data depict the system’s configuration, structure, state, or
environment. By analyzing and changing these runtime data, developers monitor
and control the system at runtime to fix system defects, adapt to the changed
environment, or meet newly emerged requirements. Take a mobile phone as a
sample system, we may care about what wireless network (Wi-Fi) channels are
currently available, as well as their signal intensity. We may also need to switch
channels when necessary and possible.

However, manipulating the runtime data is not an easy task. Currently, most
systems only provide low-level APIs for manipulating the runtime data [1], and
developers have to write low-level code to invoke the APIs. For example, the
code below illustrates how to invoke the Android (a mobile OS) API to print
the signal IDs of available Wi-Fi channels.

1 WifiManager wm=( WifiManager) this
2 .getSystemService(Context.WIFI_SERVICE );

3 List <ScanResult > srs = wm.getScanResults ();

4 for (ScanResult sr in srs)

5 Log.i("Wi -Fi_Signal_ID",sr.ssid);

? corresponding author
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Fig. 1. A runtime model and its meta-model

It is tedious and error-prone to manage the system by directly using the manage-
ment APIs. First, there lacks explicit definition about the data types. Second,
there are different invocation manners for different systems or even different
types of data inside the same system. Third, people have to re-implement many
common auxiliary management activities on each of the APIs, such as querying,
aggregation, visualization, etc.

Runtime model [2, 3, 1] provides a promising way to liberate people from the
tedious APIs, and allow them to manipulate the runtime data in a higher ab-
straction level, utilizing the rich and mature MDE (model-driven engineering)
techniques and tools, such as OCL for evaluation or querying, QVT for aggrega-
tion and analysis, visualization, etc. Figure 1 illustrates a sample runtime model
and its meta-model for the Android system. Developers could use the following
OCL rule to query the signal IDs of Wi-Fi channels.

self.wifiManager.scanResult ->collect(e|e.ssid)

To enable the application of existing MDE tools, the runtime model should
satisfy the following three requirements. Firstly, the model should be organized
in a standardized form. Second, the runtime model must have an explicit meta-
model which defines its semantics. Thirdly and most importantly, the model
must have a causal connection with ever-changing system. That means if the
system evolves, the model will change immediately, and if the model is modified,
the system will change correspondingly.

These requirements call for a software agent to represent the runtime data as
a standard model conforming to a specific meta-model, and to synchronize the
model with the runtime data. We name such agents as “synchronizers”. For a tar-
get system, runtime model providers, who are experts of the system and its API,
develop such synchronizers, and runtime model consumers, usually the common
developers, use the runtime model maintained by the synchronizer to manipu-
late the runtime data, using the MDE tools. Existing approaches on runtime
model usually require runtime model providers to develop such synchronizers by
hand [4, 1].

In this paper, we demonstrate a generative tool, SM@RT 1, which generates
synchronizers for a wide class of systems. As shown in Figure 2, for a kind of

1
SM@RT: Supporting Models at Run-Time, the tool and the case studies are available on line:
http://code.google.com/p/smatrt
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target systems, like Android, we require the runtime model providers to define a
system meta-model which specifies the types of the runtime data, and an access
model which specifies how to manipulate the data through the API. From these
two inputs, SM@RT automatically generates the synchronizer, which maintains
a MOF standard runtime model for a running system instance, and ensures the
causal connection between this model and the system’s runtime data.

Our contributions can be summarized as follows.

– We propose that runtime models could facilitate the management of systems
by enabling the use of existing model-driven techniques at runtime. We also
identify the key requirements for such runtime models.

– We provide a generic synchronization solution between runtime models and
system data, and based on this solution, we provide a generative tool to
construct synchronizers for a wide class of systems.

– We successfully apply this tool on several systems, and undertake several
experiments to utilize the provided runtime models for managing the sys-
tems. These case studies illustrate how the runtime models facilitate the
management of systems by using model-driven tools, and how our SM@RT
tool implement such runtime models.

The rest of the paper is structured as follows. Section 2 discusses the require-
ments of runtime models. Section 3 presents our SM@RT tool to implement
such runtime models. Section 4 reports our case studies. Section 5 presents some
related approaches and Section 6 concludes this paper.

2 Requirements of Runtime Models

In this section, we discuss what the runtime model should be like in order to
facilitate the system management with the help of MDE techniques and tools.
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We summarize the following three requirements, considering the feature of both
runtime management and the MDE tools.

Standardized. First, the format of the runtime models should conform to
some widely accepted modeling framework (the meta-meta-model and the ex-
change format), such as MOF, fractal, XML, etc. Standardized models provide
the runtime model consumers a consistent basis for understanding and manipu-
lating the data. Moreover, since many MDE techniques and tools are defined and
implemented on specific modeling standards, they can be directly reused only if
the model conforms to the same standard. As the OMG’s Meta-Object Facilities
(MOF) has became the most accepted standard, with rich tool support, in this
paper we only consider the runtime models conforming to the MOF standard.

Explicitly defined. The types of runtime models should be explicitly de-
fined by meta-models. Such meta-models provide an intuitive guidance and a
strict constraint for runtime model consumers to understand and reconfigure
the runtime models, and are also necessary reference for MDE tools to process
the models. According to the MOF standard, a meta-model defines the types
of model elements by the classes. For each class, the meta-model defines the
data type of attributes that can be contained by the elements, and the potential
relation between them and the elements of other classes.

Causally connected. Finally, we require the runtime models to have the
causal connection with the running systems. The management agents monitor
and reconfigure the system by reading and writing the model. The causal con-
nection ensures that each time the management agent reads the model, it gets
the information representing the current system state, and similarly, each time
it writes the model, the information it writes causes the proper system change.
Considering the Android example, if the device enters into the scope of a new
Wi-Fi service, there will be a new ScanResult element appearing in the model
immediately, so that the OCL query in Section 1 returns the ID of the new Wi-
Fi service. Causal connection is an important feature of runtime models, which
distinguishes them from the models used in design and development phases.

Notice that there are multiple levels for causal connection. The above re-
quirement is just a basic one. Advanced usages of runtime models may require
the model changes launched by the management agent would be stable as sys-
tem evolves, or even require the model to hold some predefined constraints. But
in this paper, we cares about the minimal requirement to enable MDE tools to
be used for runtime management, and leave the advanced work as the task for
“using the tool in a correct way”.

3 The SM@RT Tool to Implement Runtime Models

We provide a generitive tool, the SM@RT, to help implement runtime models
that satisfy the above requirements. Specifically, for a target system with a
management API, the tool accepts a MOF meta-model defining the system data,
and a description about the management API to access such data. Then it
automatically generates a synchronizer for the target system, which represents
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the system data as a MOF standard model conforming the system meta-model,
and maintain the causal connection between the model and the system data.

3.1 Tool Input

To provide a runtime model for a specific system, we need the information about
“what kind of data can be manipulated” in this system, and “how to manipulate
them through the system’s API”. The former is defined by the MOF meta-model
as discussed in Section 2. For the latter, we defined an API description language
to specify how to access (invoke) the API to manipulate each type of the data.

The API access is described as code snippets annotated with their effects on
the data. Look over the sample code in Section 1 for invoking the Android API.
The first line tells us that from the root system element this, whose type is
Context, how we can get its child named wifiManager. The above statement
comprises three kinds of information for manipulating the system data, i.e., the
manipulation target (an aggregation named Context.wifiManager), the manip-
ulation type (get), and the action (Lines 1-2 in this code snippet). From this
point of view, we define the access model for an API as follows.

AccItem : MetaElement×Manipulation −→ Code

Here MetaElement is the set of all the elements in the system meta-model
(classes, attributes, etc.), Manipulation is the set of 9 types of manipulations,
including getting and setting attribute values, creating and deleting model
elements, etc., and Code is a piece of Java code [5].

3.2 Tool Output

The output of SM@RT is a “synchronizer” that maintains the causal connection
between the runtime model and the running system.

The mechanism inside such synchronizers can be briefly described as “lazy
and local refreshment”. Specifically, the synchronizer maintains an in-memory
MOF standard model, in the form of a set of Java objects implementing the
EObject interface defined in Eclipse EMF. During runtime, the synchronizer
keeps on listening to the external reading and writing operations on this run-
time model. For reading operation, the synchronizer calculates what system data
are required, collects the data via the management API, and refreshes or com-
plements the model according to the collected data. Similarly, for a writing
operation, the synchronizer identifies the modifications on the model, calculates
the corresponding changes on the system, and invokes the API to implement the
changes. For different kinds of operations (getting, setting, adding etc.) and their
target meta-elements (classes, attributes, single or multiple valued associations),
the calculation methods are different. We name these methods as the synchro-
nization strategies. We summarized and designed a set of synchronization strate-
gies covering all the potential combinations of operations and meta-elements, as
presented in our previous work [5].
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3.3 Generating the Synchronizer

SM@RT automatically generates the synchronizers from the API description.
The tool has two parts, a common library and a code generation engine. The
common library implements the generic solutions inside the synchronizers, such
as maintaining the mapping between model elements and system parts, and
the hard-coded synchronization strategies for different kinds of elements and
different operations. The code generation engine generates the parts of the syn-
chronizers which are specific to the target system, such as all the standard model
operations (depending on the system meta-model) and the effective API invoca-
tions to manipulate each kind of system data (depending on the access model).
We generate the model operations by directly reusing Eclipse EMF generator,
and generate system operations according to the items defined in the access
model, using the defined API-invoking code snippets as the body of the system
operation. The generated operations follows a strict naming convention, so that
the synchronization strategy know the semantical relation between model and
system operations, automatically.

4 Demonstration

We demonstrate four case studies for SM@RT, using it to provide runtime mod-
els for four different target systems, including Android mobile systems, Eclipse
SWT windows, Java classes and JOnAS JEE enterprise systems. We describe
the Android case in detail, showing how to construct the system-model synchro-
nizer, how to use the MDE tool (the OCL query engine in this case) upon the
runtime model, and how the synchronizer works to maintain the runtime model.

4.1 The Android Case

Android is a mobile operating system developed by Open Handset Alliance2. It
allows developers to write managed code in Java to manipulate (read or write)
a device, by invoking the API of a set of Google-developed Java libraries.

Figure 3 shows the system meta-model we define for Android runtime data.
In this demonstration, we care about the memory, connections, running tasks
and Wi-Fi. We define each type of system data as a class, and define the relations
between them as properties. For example, this meta-model tells us that from a
root element in type of Context, we can first get its wifiManager, and then get
the manager’s scanResult to enumerate all the Wi-Fi signals. For each scanned
signal, we can get its attributes like ssid, frequency, etc. This meta-model is
not only an input to our synchronizer, but also a guidance for using the runtime
model (like writing the OCL query) and a reference of the MDE tool (like the
OCL engine).

Figure 4 shows an excerpt of the access model, which defines how to get
a Context’s wifiManager. The annotations (keywords starting with “@”) in-
dicates the constitution of the item, i.e. a AccItem containing a MetaElement,

2
http://www.android.com
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Fig. 3. Tool overview

1 @AccItem @MetaElement=Context::wifiManager
2 @Manipulation=Get @Code=@Begin
3 $sys::result=($sys::type)$sys::this
4 .getSystemService($sys::type.WIFI_SERVICE);

5 @End @EndAccItem

Fig. 4. Access model for Android

Manipulation and a Code fragment, and whose values are defined on the right
hand side of the equal signs. Inside the code fragment, we define a piece of Java
code to say that to get a wifiManager ($sys::result) from a Context instance
($sys::this), we should invoke a method named getSystemService with a pa-
rameter Context.WIFI SERVICE. The entire access model contains 95 items like
this, with 431 lines of code (including the structural lines like "@AccItem").

We use these two inputs to generate the synchronizer. The generation result
is in the form of Java source code. We compile it as an Android package, and
deploy it onto an Android supported mobile phone, the “HTC Magic (G2)”.

The generated synchronizer allow the device users to use OCL for querying
the device data. Figure 5 shows the snapshots of four scenarios for executing OCL
rules on Android. For the first scenario, we want to list the IDs of all the Wi-Fi
signals available for the device. Initially, we know that the root element (we refer
to it as self in the OCL rules) is in type of Context. Then we check the system
meta-model and find that Context has an association named wifiManager. The
target class WifiManager has an multiple-valued association named scanResult.
And finally, the target class ScanResult has an attribute named ssid. According
to terminology of Wi-Fi technique, we know that we can list the signal IDs
by querying out the values of these ssids. We input the OCL rule as shown
in Figure 5(a), click the button, and the result is printed under the button.
Similarly, Figure 5(b) shows how we print the detailed information of the first
Wi-Fi channel. Figure 5(c) shows how we calculate the total number of clients
registered on all the running services. Figure 5(d) shows a relatively complex
query: We want to see what services have more than one clients listening to them.
The OCL rule means “getting the running services, selecting the ones from them
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Fig. 6. A sample behavior of the synchronizers

whose client count is greater than 1, and finally retrieving the process name of
the selected running services”.

The above scenarios are implemented by directly using the Eclipse OCL
engine. We compile the OCL engine on Android platform, and deploy it on the
same device. After the user clicking the Apply button, the GUI retrieves the
inputted OCL rule, instantiates a root element in type of Context from the
synchronizer, and invoke the evaluate method of the OCL engine using this
root element and the OCL rule. During the execution of the OCL engine, it
will manipulate the model from this root element, by means of standard model
invocation defined by EMF. And in the same time, the synchronizer breaks the
invocation, and synchronizes the model with system on-demand.

Figure 6 illustrates how the synchronizer works, when we evaluate the OCL
query in Section 1 on the runtime model as shown in Figure 1. Each life-line
in this sequence diagram represents a component that constituting the syn-
chronizer. At first, the initial model only contains one root model element, in
type of Context. Following the query, the interpreter first retrieves the root’s
child named wifiManager, by invoking get on the model. The model listener
interrupts this invocation, and asks the planner to perform synchronization. Ac-
cording to the synchronization strategy for “getting single-valued aggregation”
[5], the planner first looks up the image pool and finds that this root element
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corresponds to a context object provided by the Android API. Then the planner
performs get on this context object. The logic of this system get operation is
just the one defined in the description item shown in Figure 1. This get opera-
tion returns a system object which points to the Wi-Fi manager, and the planner
creates a model element in type of WifiManager as an image for this object,
refreshes the image pool, and notifies the model listener about the end of this
synchronization. The model listener then invokes get on the model again, and
returns the newly created model element as a result to the interpreter. Following
the remaining parts of the OCL query, the interpreter performs get operations
successively to obtain the WifiManager’s scanResult, and to obtain these re-
sults’ ssids. The behavior of the synchronizers is similar as shown before.

4.2 The Eclipse-SWT Case

In this case, our target systems are SWT-based Eclipse UI parts, which could be
“views”, “editors” or “dialogs” running on an Eclipse platform. Such UI parts,
also known as Shells according to the SWT terminology, are constituted of a
set of Controls, like the Labels for presenting information, the Text fields for
inputting texts, the Buttons for triggering commands, etc. Each Control has its
own configurations which can be retrieved and updated at runtime, such as the
presented text, the background color, etc. The Controls and their configurations
form the runtime data of such Shells. The main idea of this case study is to
provide runtime models for Eclipse windows, so that developers could reconfig-
ure the windows intuitively at runtime. That means developers do not need to
completely decide the appearance of the windows, and reconfigure the window
at runtime. Moreover, this configuration is simply editing models, through visu-
alized model editors. This is a prototype for “design at runtime”, and may be
useful in customizable GUIs or WYSIWYG GUI development.

The foreground image of Figure 7 presents a simplified version of the sys-
tem meta-model. We defined three common types of controls, and defined some
typical attributes for them. The background snapshot illustrates how to use the
runtime model. The snapshot is an Eclipse platform, with the target system
(the bottom part, an Eclipse “view”) and the runtime model (the top part, a
model opened in a tree-based visual model editor), together. The model elements
reflect the controls in the window, and their attributes reflect the controls’ con-
figurations. We change the system by typing “Hi” on the text field, the model
element’s text attribute changes instantly. We can edit the model to manipulate
the system: We change the background of the first Label into “red”, and then
the color of the system label changes automatically. Finally, we add a new model
element in the type of Button, and a new button appears in the window .

4.3 The Java Class Structure Case

This case is a reproduction of the Jar2UML tool3, which reflects the class struc-
ture in a Jar file as a UML model. We utilized the UML meta-model (defined

3
http://ssel.vub.ac.be/ssel/research/mdd/jar2uml, a use case of MoDisco
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Fig. 7. Visual management of an SWT window

by Eclipse UML24) as our system meta-model, and define the API provided by
the BCEL library5 for analyzing Java binary code. We used Eclipse UML2 tools
to visualize the reflected UML model as a class diagram.

4.4 The JOnAS Case

Our last case study is to equip a JOnAS JEE application server6 with runtime
model. This model reflects the inner structure (e.g. what applications and EJBs
are deployed), the configuration (e.g. the size of data source’s connection pool),
and the state (e.g. the number of EJB instances) of a running JOnAS server.

The system meta-model defines all the 21 types of MBeans supported by
JOnAS, including EJBs, applications, middleware services, etc. The API descrip-
tion specifies how to manipulate these elements and their properties through
the JMX API provided by JOnAS. We deploy the generated synchronizer on
a JOnAS server with a Java Pet Store application deployed on it, and utilize
Eclipse GMF7 to visualize the runtime model maintained by the synchronizer.
The graphical model editor based on GMF can be used as a graphical JOnAS
management tool: We can see the inner structure of the current JOnAS server,
deploy new applications or EJBs by adding model elements, and check the sys-
tem elements’ current states and modify their configurations. We also use the
QVT transformation to synchronize this runtime model with a software archi-
tecture model in C2 style, reproducing the architecture-based runtime evolution

4
http://www.eclipse.org/uml2

5
Byte Code Engineering Library, http://jakarta.apache.org/bcel/

6
http://jonas.ow2.org

7
http://www.eclipse.org/modeling/gmf
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Table 1. Summary of case studies

system API meta-model access model generated compared tools
elems items/LOC LOC LOC

Android Android 87 95/431 21732 - OCL

Eclipse SWT 43 36/220 11290 - EMF

Java class BCEL 29 13/109 10518 3108 UML2

JOnAS JMX 305 47/270 37263 5294 GMF, QVT

proposed by Oreizy et al. [6]. The details of this case study could be found in
our earlier work [7]

4.5 Summary and discussion

Table 1 summarizes the case studies. For each case, we list the target system
and its management API, the number of elements in the system meta-model,
and the number of items in the API description. After that, we list the size of
the generated synchronizer. For the last two cases, we also list the sizes of the
hand-written programs with the equivalent capabilities, which are developed by
ourselves or other developers [4]. Finally, we list the model-driven techniques we
applied upon the runtime model to implement runtime data manipulation.

These case studies illustrate the following aspects of SM@RT.

– Feasibility. The case studies covers a wide class of systems, from enterprise
systems to mobile devices.

– Efficiency for development. It is not a hard task to define the system meta-
model and API description, comparing with the multi-time-larger generated
code (which approximately reflects the work required to support runtime
model) and the actual manual effort to realize runtime models.

– Effectiveness. The generated synchronizers enable the existing MDE tools
to be directly used for runtime management. In particular, we use OCL for
runtime data querying, and use GMF/EMF, and UML2 for different purpose
of visualization and manipulation of runtime data. All the MDE tools are
directly used upon the synchronizers.

5 Related Work

There are many research approaches towards runtime models, according to a
recent survey [3] and the annual workshops [2]. As an emerging topic, many
of these approaches focus on how to utilize the runtime models, but not how
to implement runtime models on existing systems, which is exactly the target
of SM@RT. We share the similar idea with Sicard et al. [1] and the MoDisco
project [4], i.e. wrapping the systems’ APIs to reflect runtime data as standard
models. Their wrappers or discoverers play the similar role as our synchronizers.
The difference is that they require runtime model providers to manually develop
the wrappers or discoverers, while our SM@RT tool automatically generates the
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synchronizers. Our API description language shares the similar idea as feature-
based code composition [8]. The common synchronization mechanism roots in
the earlier research on reflective middleware [9], and the model synchronization
approach towards runtime management [10].

6 Conclusion

In this paper, we focus on a specific usage of runtime models, i.e., facilitating the
runtime management by enabling the use of existing MDE techniques and tools
at runtime. We discuss the requirements of such runtime models, and present
our SM@RT tool to help on providing them. We evaluate our idea and the tool
through a set of case studies on a wide range of target systems.
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Abstract. Software must be constantly adapted due to evolving domain
knowledge and unanticipated requirements changes. To adapt a system
at run-time we need to reflect on its structure and its behavior. Object-
oriented languages introduced reflection to deal with this issue, however,
no reflective approach up to now has tried to provide a unified solution to
both structural and behavioral reflection. This paper describes Albedo1,
a unified approach to structural and behavioral reflection. Albedo is a
model of fined-grained unanticipated dynamic structural and behavioral
adaptation. Instead of providing reflective capabilities as an external
mechanism we integrate them deeply in the environment. We show how
explicit meta-objects allow us to provide a range of reflective features and
thereby evolve both application models and environments at run-time.

1 Introduction

Classical software development plays out like a finite game with fixed rules and
boundaries. However, evolving software systems are rather an infinite game with-
out fixed rules or boundaries [2]. Large systems not only evolve in the develop-
ment phase, but also at run-time. Development itself is part of the infinite game
of the system. The system may continue to evolve while running.

To enable change at run-time, a system must be self-aware and be able to fully
reflect on itself [14]. A reflective system provides a description of itself that can
be queried (introspection) and changed (intercession) from within. Consequently
the system can reflect on itself and can change its structure and behavior. How-
ever, this is not enough to support full run-time evolution of models. To evolve
a model at run-time it is necessary to access the dynamic representation of a
program, that is, the operational execution of the program. This is called behav-
ioral reflection, pioneered by Smith [18, 19] in the context of Lisp. A reification
not related to the structure of the language might be required, for example, a
message send.
1 In astronomy, albedo is the proportion of the incident light or radiation that is

reflected by a surface, typically that of a planet or moon [The Oxford Dictionary of
English]
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As an example, let us look at a financial model and how to make it available to
an external audit system. Such a model typically contains sensitive information
and certain properties should not be accessible and modifiable by everybody. We
therefore need a representation of the model that has the same behavior except
for certain restricted accessors. To achieve this, we need to change the model
and integrate contextual security checks. However, such a transformation is not
straightforward and might add unnecessary complexity to the application code.
What we need is to modify the system so that security concerns can be quickly
changed to adapt to new requirements. A reflective system where we can express
from the inside these structural constraints to access or modify certain state will
solve our problem.

It can be argued that this problem can be solved by using Aspect-Oriented
Programming (AOP) [10]. AOP provides a general model for modularizing cross
cutting concerns. Join points define points in the execution of a program that
trigger the execution of additional cross-cutting code called advice. Join points
can be defined on the run-time model (i.e., dependent on control flow). Although
AOP is used to introduce changes into software systems, the focus is on cross-
cutting concerns, rather than on reflecting on the system. Modeling the changes
in the financial problem through AOP will deliver a set of join points which have
a larger semantic gap to the actual requirement than using the reifications of the
system. The reflective approach is better suited for continuous evolution since
join points are harder to reflect upon.

The first object-oriented language to propose a clean reflection approach
was Smalltalk-80 [7] by introducing meta-classes. ObjVlisp [3] and Classtalk [1]
followed this line of research. Meta-classes define the internal structure and be-
havior of a class. There can be only one meta-class per class. There is a sec-
ond approach to reflection in object-oriented languages introduced by Pattie
Maes in 3-KRS [11, 12]. This approach states that each object is related to one
meta-object. A meta-object specifies the structure of the object and how this
object handles messages. Maes also benefited from the work of Kiczales et al. [9]
on meta-object protocols (MOPs) over the CLOS language, an object-oriented
extension of Lisp. The protocol of a meta-object encodes the behavior of the
language. If the MOP is changed the language is changed as well.

To solve the financial model security issue we can either remove methods
from classes or from meta-objects. Depending on the reflection approach we will
be affecting one object or all instances of a class. But the key point to highlight
is that we are dealing with structural elements only.

Regardless of the differences between the reflection approaches, they are built
on structural reifications of the concepts that form the language (classes, objects,
methods, instance variables, etc.), however, this structural approach does not
solve all reflection problems. Assume there is a new requirement which says that
every time the interest rate of a financial instrument is changed a message should
be sent to the central audit system. Thinking in terms of classes, objects and
methods is not enough to solve this requirement.
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Following Smith’s work on behavioral reflection McAffer [13] developed CodA,
a system that approaches reflection from the point of view of operational decom-
position. He proposed to separate the description of the computational behavior
of an object from that of its base language structure. This approach divides
the execution of an object into basic operations (e.g., message send and receive,
state access, object creation and deletion, etc.).

Iguana [8] further improved this approach by providing a mechanism, known
as fine-grained MOP, to allow multiple reflective object models to coexist. For
example, one object can have a distributed object model while other objects
in the system have a centralized object model. Although structural approaches
have the advantage of organizing the meta-level in terms of concepts known to
the user like classes and methods, it is hard to integrate new concepts that are
not represented in the language. This is important since it allows the language
to evolve beyond its predefined structure. This approach provides a way of inte-
grating reified concepts that are not originally part of the language through its
operations. There are seven reification categories: object creation and deletion;
message sends, receive and dispatch; and state read and write. Iguana was later
ported to Java [15,16]

The audit requirement can be solved by specifying that a message is sent to
the central audit system every time a state write event related to the financial
instrument interest rate is issued.

Up until now, no approach has tried to provide a unified solution to these
two domains of reflection: structural and behavioral. In this paper we present
Albedo, a model of fine-grained unanticipated dynamic structural and behav-
ioral adaptation. Instead of providing reflective capabilities as an external mech-
anism we integrate them deeply in the environment. We show, by modeling
meta-objects explicitly, how we can extend the environment from both a struc-
tural and behavioral standpoint.

The most relevant characteristics of Albedo are:

– It provides a meta-object approach to reflection.
– The meta level can be organized with language concepts and operational

decomposition.
– The fine-grained MOP allows us to control the scope of the change.

Outline. Section 2 explains how the model behind the Albedo environment
solves both structural and behavioral requirements. In Section 3 we present the
internal implementation of our solution in the context of Smalltalk. Section 4
presents a couple of structural and behavioral reifications and how they are
modeled with meta-objects. In Section 5 we summarize the paper and discuss
future work.

2 Albedo Approach

The Albedo mechanism is placed at the center of the system where every lan-
guage construct is expressed in terms of an Albedo meta-object. In this section

5th Workshop on Models@run.time at MODELS 2010 39



we show the two building blocks of Albedo and how they can solve the previ-
ously presented problems.

..
MetaObject

.interpret: anObject
desinterpret: anObject

.

StructuralMetaObject

.

addMethodNamed: aName performing: aBlock
removeMethodNamed: aName
addStateNamed: aName
removeStateNamed: aName

.

BehavioralMetaObject

.

when: aReificationCategory do: aBlock

Fig. 1. Meta-Objects class diagram.

Figure 1 shows a simplified meta-object class hierarchy diagram. The meta-
object abstraction is reified and it has the responsibility to adapt objects. The
idea is that meta-objects specify how an object meta-level should work.

2.1 Structural Meta-object

The StructuralMetaObject abstraction reifies the meta-object responsible for mod-
eling the structures of a program. An object-oriented program’s canonical struc-
tures are objects and messages. In class-based languages, classes have too many
responsibilities. They are used to model an abstraction, provide an instance cre-
ation mechanism, define the messages the instances know how to answer, and
provide a template that subclasses can extend. In prototype-based languages
the idea of generalization does not exist and new abstractions are built by del-
egating to other abstractions or objects. Traits are an example of a structural
meta-object, created for sharing behavior. A trait [17] is a composable unit
of behavior that can be shared among objects. If several objects share a trait
then they all will be able to understand the messages defined in the trait. The
StructuralMetaObject abstraction provides the means to define meta-objects like
classes, prototypes and traits. New structural abstractions can be defined to ful-
fill some specific requirement. For example we can define the concept of traits
as we discuss in Section 4.

A StructuralMetaObject acts on the basic structural units of an object-oriented
language which are messages, objects and the object state. The responsibilities
of a StructuralMetaObject are:

– Adding a method. A new method is added to the object. A name and the
source code is provided. When the object receives the message it executes
the compiled source code. The source code compilation is performed when
the object is associated with a meta-object. If there is a compilation error
the meta-object association is rolled back.
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– Removing a method. The adapted object will not understand a particular
message any more.

– Replacing a method. The method will have another behavior. Source code or
a closure can be provided.

– Adding state. The addition of new state to an object allows the user to add
methods that use that state.

– Removing state. Specific state is removed.

These responsibilities are modeled as meta-actions. A StructuralMetaObject
can be defined as a particular set of these meta-actions that structurally adapt
a particular object. When an object is associated to a meta-object these actions
are executed and the object is adapted accordingly.

Let us consider the financial domain and pick a financial instrument which
has to be audited by an external company. The auditors do not want to see
a report, they want to see the real system and interact with it. This financial
instrument is still active and should become due in some months. Financial
instruments can be renegotiated, changing the due date and recalculating the
taxes under a new contract. We want to hide this kind of behavior from the
audit committee to assure the integrity of the instrument.

The following code fragment shows how this scenario can be achieved with
Albedo:

1 anImmutableBehavior := StructuralMetaObject default.
2 anImmutableBehavior removedMethodNamed: #renegotiate.
3 anImmutableBehavior boundTo: aFinancialInstrument.

Listing 1. Making a financial instrument immutable regarding the renegotiation
behavior.

First, we get the default structural meta-object (line 1) whose responsibil-
ity is to define the allowed behavior for immutable financial instruments. Then
we remove the renegotiate method from the meta object (line 2). Finally, the
meta-object is associated with the financial instrument (line 3). This association
triggers the adaptation of the objects thus removing renegotiate from the set
of messages understood by the financial instrument. If this message is sent to
the financial instrument an error is thrown, however, if this message is sent to
any other financial instrument, even to another instance of the same class, the
original behavior is preserved.

Structural meta-objects deal with the definition of meta-level structural reifi-
cations. How and when they are introduced at run-time is the job of the behav-
ioral meta-object.

2.2 Behavioral Meta-object

The BehavioralMetaObject abstraction reifies the meta-object responsible for
modeling the dynamic representation of a program. By dynamic representa-
tion we refer to the language’s dynamic reifications. This abstraction coresponds
to the work done in Iguana and later used by McAffer in Coda. As McAffer
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pointed out, the system is modeled as a set of operations whose occurrences
“can be thought of as events which are required for object execution” [13].

To dynamically adapt the behavior of an object we need to describe what
we would like to do and when. To specify what we would like to apply we
delegate to a specific meta-object with the responsibility of managing an event.
We specify when it should be adapted by using a computational event in the
execution of a program, for example, the creation of an object, sending a message,
etc. A set of canonical events models the basic operations known as dynamic
reification categories. These are not the only reifications possible. New dynamic
reifications can be defined, the only requirement being to specify when they
should be triggered.

The dynamic reification categories are:
– Object creation
– Object deletion
– Message send
– Message receive
– Message dispatch
– State read
– State write

We selected these categories following the Iguana approach. With these basic
categories we are capable of adapting an object’s behavior regarding operations
that are executed over the language building blocks.

For example, let us consider a new requirement which specifies that every
time the interest rate of a financial instrument is changed, a message should be
sent to the central audit system.

1 aMethodLookupMetaObject := BehavioralMetaObject default.
2 aMethodLookupMetaObject
3 when: (StateRead new)
4 do: [:owner :state |
5 CentralAuditSystem
6 interestRateOf: owner
7 changedTo: state].
8 aMethodLookupMetaObject boundTo: aFinancialInstrument.

Listing 2. Dynamically reifying method lookup for a financial instrument.

In line 1 the default behavioral meta-object is obtained. Lines 2–7 show
the usage of reification categories to define when the meta-behavior should to
happen. In this case the central audit system is informed of a change in the
interest rate of an object. In line 8 the object is associated to the meta-object,
and from this point on the new meta-behavior is obtained every time the interest
is changed.

3 Implementation

Albedo is the prototype of our meta-object model approach built in Pharo
Smalltalk2. Reflectivity [4] was used for dynamic adaptation. Reflectiv-
ity provides unanticipated partial behavioral reflection at the sub-method level,
2 http://pharo-project.org/
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using ASTs rather than source code or bytecode as underlying model of the
software. We decided to use Reflectivity since partial behavioral reflection
as pioneered by Reflex [20] is particularly well-suited for dynamic reifications
because it supports a highly selective means to specify where and when to reify
an abstraction in the system. Partial behavioral reflection offers an even more
flexible approach than pure behavioral reflection. The key advantage is that it
provides a means to selectively trigger reflection, only when specific, predefined
events of interest occur.

The core concept of the Reflex model of partial behavioral reflection is the
link. A link invokes messages on a meta-object at occurrences of marked opera-
tions. The attributes of a link enable further control of the exact message to be
sent to the meta-object. Additionally, an activation condition can be defined for
a link which determines whether or not the link is actually triggered.

source code 

(AST)

meta-object

activation

condition

links

Fig. 2. The reflex model.

Links are associated with AST nodes. Subsequently, the system automatically
generates new bytecodes that take the link into consideration the next time the
method is executed.

Reflectivity integrates itself into Pharo by using the Reflective Meth-
ods abstraction. A Reflective Method knows the AST of the method it repre-
sents. In Pharo classes are first class objects that are available to any program.
They have an instance variable named methodDict which holds an instance of
MethodDictionary – a special sub-class of Dictionary. All methods of a class are
stored in its method dictionary. The VM directly uses the class objects and their
method dictionary when performing message sends. Normally, only instances of
CompiledMethod are stored in the method dictionary of a class but Pharo allow
us to store any kind of object there. The VM recognizes objects that are not
instances of CompiledMethod and instead of executing bytecode the VM sends
run:with:in: to the object stored in the method dictionary. When a reflective
method receives this message it processes the adaptations specified in the meta-
object on the AST and generates a new compiled method which is eventually
executed. If no adaptation is present the reflective method caches the compiled
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method for performance savings. Figure 3 visualizes this relationship between a
class, the method dictionary and the methods.

..Class. MethodDictionary. CompiledMethod.

ReflectiveMethod

. methodDict.
1

.
*

Fig. 3. Reflective Methods in Method Dictionaries

Reflectivity was conceived as an extension of the Reflex model of Partial
Behavioral Reflection [20]. Reflex was originally realized with Java. Therefore,
our approach can in be implemented in a more static mainstream language like
Java. The reason for choosing Smalltalk and Reflectivity for this work is
that it supports unanticipated use of reflection at runtime [4] and is integrated
with an AST based reflective code model [5]. A Java solution would likely be
more static in nature: links cannot be removed completely (as code cannot be
changed at runtime) and the code model would not be as closely integrated with
the runtime of the language.

4 Discussion

Albedo is not only useful for evolving systems at run-time but it is also useful
for developing new language features. By modeling meta-objects explicitly we
can extend the environment from both a structural and behavioral standpoint.
In this section we discuss the language impact of having a system that can be
extended from a structural and behavioral point of view. Next, we introduce two
examples of reifying language features to show how the language itself can be
modified.

4.1 Traits Example

A trait [17] is a composable unit of behavior that can be shared among objects. If
several objects share a trait then they all will be able to understand the messages
defined in the trait.

Let assume that we want all financial instruments to share the same behavior.
For example, suppose we want to provide a common implementation for the
renegotiation feature. Furthermore we do not want to impose a class hierarchy
structure on all financial instruments to introduce this feature, but instead keep
the possibility to assign the feature dynamically to an instrument. We can easily
fulfill these needs by defining the feature as a trait, however if the host language
does not implement traits we cannot introduce this feature as we would like.
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Albedo provides a mechanism to define dynamically the trait abstraction thus
modifying the language model.

1 aTrait := StructuralMetaObject default.
2 aTrait addMethodNamed: #regenerate performing: 'self recalculateTaxes.
3 self recalculateDates'.
4 aFinancialInstrument := aFinancialInstrumentClass new.
5 anotherFinancialInstrument := aFinancialInstrumentClass new.
6 aTrait boundTo: aFinancialInstrument.
7 aTrait boundTo: anotherFinancialInstrument

Listing 3. Building the trait abstraction with structural meta-objects.

First, we introduce the trait abstraction itself as a structural meta-object in
line 1. The message renegotiate is defined in line 2 for this trait, its behavior is
to recalculate taxes and dates. By using the existing Class abstraction defined
with meta-objects we create two financial instruments in lines 4-5. The class
abstraction is built using a structural meta-object and adding a message new
that creates an instance of a class. The class is bound to the instance as a meta-
object. Finally, we associate the trait as the meta-object to both objects thus
making them capable of answering the message renegotiate.

A trait is defined as a StructuralMetaObject. However, by definition, traits
should not have state. To achieve this we need to remove the possibility of
adding state in the trait structural meta-object.

1 aTraitBehavior := StructuralMetaObject default.
2 aTraitBehavior removedMethodNamed: #addStateNamed: .
3 aTraitBehavior removedMethodNamed: #removeStateNamed: .
4 aTraitBehavior boundTo: aTrait.

Listing 4. Making traits stateless.

We first define another structural meta-object called TraitBehavior (line 1).
This abstraction has the responsibility of defining which are the messages a trait
meta-object is capable of answering. In lines 2–3 both state-related messages are
removed from the trait behavior definition. Finally, in line 4 the TraitBehavior is
set as the meta-object of the trait meta-object defining its responsibilities.

4.2 Method Lookup Example

The method-lookup reification defines the process that specifies which method
should be executed when an object receives a message. To reify method-lookup in
some languages it is necessary to perform complex computations, apply method
wrappers, manipulate method dictionaries [6] or adapt byte-code.

Most languages, including Java and Smalltalk, do not reify method lookup.
Being able to change the way a message is mapped to a method has many
applications, for example test coverage, benchmarking and logging. Moreover,
class-based languages impose a method lookup strategy that follows the class
hierarchy. In some cases we need to have a strategy different from the traditional
method lookup. We might not be so sure about how the class hierarchy should be
organized. Here we have to provide a different strategy for matching a message
to a method. For example, a financial instrument needs to reuse the behavior
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defined in another financial instrument which is not its super-class. We are not
yet sure how the hierarchy should be reshaped, or if we should use composition
instead of inheritance. So we decide to provide a new method lookup strategy to
the financial instrument for checking first if the method is defined in the second
financial.

To implement method lookup a two-level meta-object structure is required
as shown below.

1 aMethodLookupBehavior := StructuralMetaObject default.
2 aMethodLookupBehavior addStateNamed: #strategy.
3 aMethodLookupMetaObject := BehavioralMetaObject default.
4 aMethodLookupMetaObject
5 when: (MessageReceived new)
6 do: [:receiver :message :args |
7 strategy
8 resolve: message
9 for: receiver

10 with: args ].
11 aMethodLookupBehavior boundTo: aMethodLookupMetaObject
12 aMethodLookupMetaObject boundTo: aFinancialInstrument.

Listing 5. Reifying method lookup with behavioral meta-objects.

The method lookup meta-object itself is a behavioral meta-object that rei-
fies a message received by delegating to a predefined strategy. In lines 1–2 we
define the structural meta-object and introduce a strategy instance variable.
This is a meta-meta-object named aMethodLookupBehavior that specifies that
the interpreted object will have a strategy instance variable. In lines 4–10 the
method lookup meta-object is defined and the MessageReceived behavioral reifi-
cation category is used to adapt how the method lookup should be resolved.
The resolution of the lookup is delegated to the strategy active at run-time. The
strategy can be changed at any point in time, thus delivering different behavior
for the same object receiving the same message. Finally, aMethodLookupBehavior
is associated to the meta-object of aMethodLookupMetaObject. Any object that
is associated with aMethodLookupMetaObject will change the way the method
lookup is resolved for that particular object.

5 Conclusion

In this paper we have introduced Albedo, a unified approach to behavioral
and structural reflection. Albedo is a reflective model and environment for
dynamically defined unforeseen language feature reifications. Even the most basic
constructs of a language are expressed in terms of it. We have shown how different
structural and behavioral meta-objects like traits and method lookup can be
modeled with this environment.

What is more, we provide the means to dynamically define or modify ab-
stractions thus eliminating the limitations of reflective models. This allows us
to redefine static or run-time abstractions and manipulate their structure and
behavior thus helping in the evolution of run-time models.

As future work we would like to analyze the performance impact of Albedo.
We also would like to analyze various use cases to further validate the model.
We would like to further research the composition of different meta-objects.
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Abstract. Graphical user interfaces play a key role in human-computer
interaction, as they link the system with its end-users, allowing infor-
mation exchange and improving communication. Nowadays, users in-
creasingly demand applications with adaptive interfaces that dynami-
cally evolve in response to their specific needs. Thus, providing graphical
user interfaces with runtime adaptation capabilities is becoming more
and more an important issue. To address this problem, this paper pro-
poses a component-based and model-driven engineering approach, illus-
trated by means of a detailed example.

Keywords: runtime model adaptation, model transformation, graphical
user interface

1 Introduction

Graphical User Interfaces (GUIs) play a key role in Human-Computer Inter-
action (HCI), as they link the system with its end-users, allowing information
exchange and improving communication. Nowadays, users increasingly demand
“smart” interfaces, capable of (semi-)automatically detecting their specific pro-
file and needs, and dynamically adapting their structure, appearance, or be-
haviour accordingly.

GUIs are increasingly built from components, sometimes independently de-
veloped by third parties. This allows end-users to configure their applications
by selecting the components that provide them with the services that better fit
their current needs. A good example of this is iGoogle, as it provides end-users
with many gadgets, allowing them to create personal configurations by adding
or removing components on demand.

Following this trend, the proposal presented in this paper considers GUIs as
component-based applications. Furthermore, it considers the components inte-
grating GUIs software architectures at two different abstraction levels: (1) at
design time, components are defined in terms of their external interfaces, their
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internal components (if any), and their visual and interaction behaviours, while
(2) at runtime, the former abstract components are instantiated by selecting
the most appropriate Commercial-Off-The-Shelf (COTS) components (i.e., those
that better fit the requirements imposed both by the abstract component and
by the global GUI configuration parameters) from those available in the existing
repositories.

Our proposal does not only rely on a component-based approach but also, and
primarily, on a Model-Driven Engineering (MDE) approach. As detailed in the
following sections, we propose a GUI architecture description meta-model that
enables (1) the definition of component-based abstract GUI models at design-
time, and (2) the runtime evolution (be means of automatic model-to-model
transformations) of these architectural models according to the events detected
by the system. The instantiation of these abstract models at each evolution step
is out of the scope of this paper.

The remainder of the article is organized as follows. Section 2 reviews related
works. Section 3 describes the proposed approach and its constituting elements,
namely: the proposed GUI architecture meta-model, and a set of model transfor-
mations enabling runtime GUI adaptation. In order to illustrate the proposal, a
GUI model evolution example is also described in detail in this section. Finally,
Section 4 draws the conclusions and outlines future works.

2 Related Work

There are many model-driven approaches in the literature for modelling user
interfaces, as detailed in [1]. Some of them use a MDE perspective for web-based
user interfaces [2]. However, in most cases, models are considered static entities
and no MDE technique is applied to add dynamism, for instance, using model
transformations.

Model transformations enable model refinement, evolution or even, automatic
code generation. In [3], the authors investigate the development of plastic user
interfaces (which have the context adaptation ability), making use of model
transformations to enable their adaptation. However, these transformations are
used at design-time and not at runtime, as we propose here. In [4], the authors
propose an approach that makes use of model representations for developing
GUIs, and of model transformations for adapting them. This work, in which the
research described in this paper is based on, also considers these GUI models as
a composition of COTS components.

The adoption of Component-Based Software Development (CBSD) propos-
als for software applications design and implementation is increasingly growing.
An example can be found in [5], where the authors identify the multiple GUI
evolution possibilities that come from working with component-based software
architectures (e.g., addition of new components, interface reconfiguration, adap-
tation to user actions or task, etc.). However, this proposal implements GUI
evolution by programming GUI aspects, instead of using model transformation
techniques, as we propose in this work. Another example is shown in [6], which
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presents a combined MDE and CBSD approach to enable the modelling of struc-
tural and behavioural aspects of component-based software architectures. How-
ever, this proposal is aimed at general-purpose software architectures, and not
particularly suited for GUI development. In [7], the authors focus their research
on component retrieval, composition and re-usability in standalone DSLs (Do-
main Specific Languages). This is useful in web applications, especially in those
making use of the semantic web. However, as before, this work does not apply
these ideas directly to compose GUI applications.

On the other hand, recent software engineering proposals advocate for the
use of models at runtime (models@runtime) [8]. Existing research in this field
focuses on software structures and their representations. Thus, significant bodies
of work look at software architecture as an appropriate basis for runtime model
adaptation [9]. Our vision of models@runtime is completely aligned with this
idea as our GUIs are, in fact, architecture models. In [10], the authors study the
role of models@runtime to manage model variability dynamically. Their research
focuses on reducing the number of configurations and reconfigurations that need
to be considered when planning model adaptations. However, this work is not
focused on GUIs, but in Custom Relationship Management (CRM) applications.

Next section presents the proposed GUI modelling and runtime adaptation
approach, in which GUIs will be modelled as component-based architectures.
These architecture models will be capable of evolving through model transfor-
mations in order to self-adapt according to the events detected by the system.

3 Runtime GUI Adaptation

This paper focuses on applications with Graphical User Interfaces (GUI). In fact,
our application models may contain any number of GUIs (e.g., one for each type
of user). Each GUI, in turn, is built by assembling components, in particular
COTS, which are well known in the CBSD literature. We call these compo-
nents cotsgets for their similarity to the gadgets, widgets and other components
frequently used in GUI development.

All the cotsgets included in each GUI, together with their behaviour and
the composition and dependency relations that may exist among them, conform
the GUI architecture. As we have opted for a MDE approach, we model GUI
architectures using a meta-model. This architecture meta-model can be seen as
an aggregation of three parts or subsets, namely: (1) an structural meta-model,
(2) an interaction meta-model, and (3) a visual meta-model.

Firstly, the structural meta-model allows designers to model composition
and dependency relationships among components. Dependencies are modelled
by connecting component ports, which may provide or require any number of
interfaces (sets of services). Secondly, the interaction meta-model is used for
modelling the behaviour associated with user-level interactions, defined in terms
of the performed tasks. This meta-model includes concepts such as roles, sub-
tasks, choreography, etc. Finally, the visual meta-model aims to describe the
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component behaviour from the point of view of its graphical representation on
the user interface.

As a solution to the interface adaptation process, this work proposes a MDE
approach to GUI model evolution [11], where interface architectures are con-
sidered as models capable of evolving at runtime. To achieve this, we have im-
plemented a two-stage process, where: (1) the interface architecture models, de-
fined in terms of abstract components, are evolved by means of a model-to-model
transformation according to the (user or application) events detected by the sys-
tem, and (2) the resulting abstract models are then instantiated by means of a
regeneration process, where a trader selects (from the existing repositories) the
cotsgets that better fulfill the requirements imposed by the abstract architecture
model, and then regenerates the application in terms of the selected executable
components. Thus, the first stage of the process (transformation phase) deals
with the runtime adaptation of the abstract interface architecture models, while
the second one (regeneration phase) deals with their instantiation (see Figure 1).
It is worth noting that this article is focused only on the transformation phase.

 

Transformer 

Rules

Transformation phase 

Regeneration phase 

Definition Architecture Modeln  
Structural Modeli 

Interaction 
Modeli 

Runtime Component 
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Architecture Modeli Architecture Modelj 

Visual 
Modeli 

abstract 
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Trader Architecture Modelj 

 
Structural Modelj 

Visual 
Modelj 

Interaction 
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Fig. 1. Schema of Model Adaptation

The model-to-model transformation, implementing the first stage of the pro-
cess, comprises a set of rules that define how to evolve the current abstract
interface architecture model depending on the events detected by the system.
As an output, the transformation generates a new abstract interface architec-
ture model, defined in terms of the same meta-model as the input one (i.e., the
transformation evolves the input model rather than translating it from one mod-
elling language into another). For the sake of clarity, we have implemented this
transformation in two parts: (1) the first one, takes the input interface model
and evolves the state machines associated to its components according to the
detected event, and (2) the second one executes the actions associated to the
new current states of the evolved state machines. Further details about this
transformation will be given next in section 3.2.
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3.1 Architecture Meta-model

In this paper, we focus on the structural and the visual subsets of the architec-
ture meta-model. The former enables the description of the software architecture
in terms of its internal components and the connections existing among them.
Similarly, the later enables the specification of the system visual behavior ac-
cording to the expected runtime adaptation to certain user or application events.
An excerpt of the architecture meta-model, showing the main concepts included
in these two subsets, is shown in Figure 2.
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Fig. 2. Architecture Meta-model

The concept ArchitectureModel is the meta-model root, and it contains com-
ponent interfaces (Interface), simple component definitions (SimpleComponent-
Definition), and all the events considered relevant for the system evolution
(Event). Being defined in the root of the model, these three kinds of elements
can be reused by all the other elements in the model. Both ComplexCompo-
nents and SimpleComponents are subtypes of the abstract meta-class Compo-
nent. SimpleComponents have a reference to their corresponding SimpleCompo-
nentDefinition, while ComplexComponents are defined in terms of their internal
Components, which can be, in turn, either simple or complex. Each Component
contains two behavioural descriptions: (1) a VisualBehavior which, using a state
machine model, defines how each component visually evolves depending on cer-
tain Events, and (2) an InteractionBehavior, which enables designers to model
user’s interaction and cooperation (this is out of the scope of this paper).
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The StateMachines used to model the component visual behaviour may con-
tain any number of orthogonal (i.e., concurrent) Regions which, in turn, may
contain any number of States. Each State contains a ComponentActivity that
models the workflow of ComponentActions that need to be executed when the
component reaches that state. On the other hand, the Transitions between states
are associated to one of the Events defined in the ArchitectureModel.

It is worth noting that this work is not intended not prescribe how to con-
struct or deduce the state machine model that better describes each component
visual evolution. Conversely, this work is focused on the model transformation
supporting that evolution, which implementation is detailed next.

3.2 Runtime Model Adaptation Process

As previously stated, the runtime adaptation of the abstract inteface architec-
ture model has been implemented by means of a model-to-model transformation
(Figure 3). This transformation, defined as a set of rules, takes the current inter-
face model (AMA) and a detected event as its inputs, and generates an evolved
interface model (AMB) as its output. Although the process seems quite straight
forward, implementing it in one step is not that easy. Thus, for the sake of
simplicity, we have splitted the transformation in two.

 

   AMA T1 T2    AMAi    AMB 

Fig. 3. Adaptation process

The first part of the model transformation (T1) takes the interface archi-
tecture model and the event collected by the system as an input (AMA), and
produces an intermediate interface architecture model (AMAi) where all the
state machines being affected by the collected event are appropriately updated.
To achieve this, the transformation finds, for all the currentStates (one for each
region in every state machines in every component), all the outgoing transi-
tions being fired by the collected event, and updates the currentState to the
target of the fired transition. Once the state machine models have been up-
dated, the second model transformation (T2) is exectuted, taking the resulting
AMAi model as an input. The role of this second transformation is to execute
the ComponentActions contained in all the updated currentStates. As a result,
a new interface architecture model (AMB) is generated. In this first approach
to model GUI evolution, we have defined six types of actions that might be exe-
cuted on a component (as a result of an event launched either by the user or by
other component): Create, Delete, Activate, Deactivate, Execute Service

and Launch Event (see Figure 2). Table 1 shows two example rules, each one
belonging to one of the transformations.
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Table 1. Example of ATL rules

T ATL rule

T1 rule RegionEvolution
{ from f: INMM!Region

(f.smParent.parent.parent.currentEvent.eventTransition->exists(t |
t.source = f.currentState) )

to o: OUTMM!Region
(name<-f.name,transitions<-f.transitions,vertex<-f.vertex,
currentState<-f.smParent.parent.parent.currentEvent.eventTransition->
select(t |t.source = f.currentState)->collect(t | t.target),

update<-true) }

T2 rule CreateActionExecutable(f: INMM!Create)
{ to t: OUTMM!Create(parameters<-f.parameters,

sourceComponent<-f.sourceComponent, parent<-f.parent),
c: OUTMM!SimpleComponent

(name<-f.parent.parent.parent.smParent.parent.name +
f.sourceComponent.name,

parent<-f.parent.parent.parent.smParent.parent,

definition<-f.sourceComponent) }

The first of these example rules (RegionEvolution) belongs to T1 and is re-
lated to Region elements. This rule only affects those Regions containing a tran-
sition that (1) has the Region’s current state as its source, and (2) is fired by the
current event. As a result of apply this rule, the value of the current state will
be changed (to the state being the target of the fired transition) and the ‘up-
date’ attribute will be set to ‘true’ (to inform the second transformation that the
actions associated to that state need to be executed). The second example rule
(CreateActionExecutable) belongs to T2 and it is called when the transforma-
tion finds a Create type action that needs to be executed. Its purpose is to copy
the CreateAction element to the output model and also to add the Component
associated to this action (sourceComponent) to the interface model.

We have implemented our two model transformations using ATL (ATLAS
Transformation Language) [14]. The ATL language is a Domain Specific Lan-
guage (DSL) aimed at describing model-to-model transformations. ATL is in-
spired on QVT and is a hybrid language that allows both declarative and imper-
ative constructs. We decided to use ATL as its implementation is quite robust,
and it is widely spread in use by the MDE community.

In this first approach, random events are simulted and both transformations
are manually launched one after the other. However, we are working on an im-
proved implementation that automatically invokes both transformations every
time an event is detected, making use of the ATL facilities for programatically
executing transformations.

3.3 A GUI Runtime Adaptation Example

In order to illustrate the proposed approach, this section presents a case study
on an example GUI runtime adaptation. It describes in depth a few steps of the
adaptation process.
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The example shows an interface architecture model composed by two graph-
ical user interfaces (GUI1 and GUI2). Each of these GUIs has two simple com-
ponents (C1 and C2). We will simulate an event that adds a Chat compo-
nent to GUI1. This event will also produce the addition of a Chat compo-
nent to GUI2. Finally, we will also simulate the generation of a new event that
deletes GUI2 (and all its subcomponents) from the architecture model. Fig-
ure 4 shows a snapshot of the interface architecture model at the initial stage
(ArchitectureModel0).
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Fig. 4. Initial Architecture Model

Given the initial interface architecture model, when an event occurs the adap-
tation process starts. An example of this process is shown in Figure 5, which
illustrates the model transformation steps executed after the GUI1.startChat

event happens. As result, the first transformation (T1) evolves the state machine
associated to GUI1, changing its current state to s2, as indicated by the model.
Then, when the T2 transformation is launched, it executes the Create(Chat)

and LaunchEvent(GUI2.startChat) actions. The first action implies the ad-
dition of a Chat component within GUI1, while the second action causes the
launching of a GUI2.startChat event. We obtain Model B as result.

The adaptation process concludes when all the events haven processed. How-
ever, the GUI2.startChat event still needs to be attended. Thus, T1 is launched
again and the GUI2 component changes its current state to s2. Finally, T2 exe-
cutes the Create(Chat) action, resulting in the addition of a new Chat compo-
nent within GUI2. In this case, we obtain Model C as a result.

Next, figure 6 shows another adaptation example starting from Model D (ob-
tained by setting GUI2.closeComponents as the system currentEvent in Model
C). In this case, we show the models involved in the adaptation process using the
reflective model editor provided by the Eclipse Modeling Framework (EMF). In
the first step, T1 changes the current state of GUI2 to s3 and sets the ‘update’
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Fig. 5. Transformation Steps

attribute to ‘true’, as shown in Model Di (central column in figure 6). Then, T2

executes the Delete(all) action, producing the deletion of all the components
in GUI2, including itself, as shown in Model E (right column in figure 6).

Fig. 6. From Model D to Model E

4 Conclusions and Future Work

Nowadays, the increasingly growing number and complexity of Information Sys-
tems force developers to make them more flexible, easy to adapt and evolve,
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and accessible for being manipulated at runtime. Graphical User Interfaces play
a key role in this kind of systems, as they ease communication between ap-
plications and their end-users. Thus, it is necessary to obtain GUI dynamism
and adaptability to user profiles and context. It is also very important to get
this adaptation while the system is running, without stopping its execution and
without re-modelling its components; in other words, to support a runtime adap-
tation process. However, most GUIs are still built based on traditional software
development paradigms, which do not take into account that they have to be
distributed, open, changeable and adaptable. In contrast, GUIs should be able
to regenerate themselves at runtime depending on the context, the user interac-
tions, and the changing application requirements.

In this paper, we have presented a MDE approach for the development of
adaptable graphical user interfaces. The proposed approach aims to build these
applications as assemblies of GUI components. These GUIs will be architec-
ture models that can evolve over time through model transformations with the
purpose of changing and adapting on system events. We describe a combined
MDE and CBSD proposal to GUI architecture modelling and runtime adapta-
tion. This approach revolves around (1) a meta-model for formally specifying
the component-based structure and the visual and interaction behaviour of GUI
architectures, and (2) a model-to-model transformation that enables GUI model
evolution according to the behavioural rules and the actions performed by the
user at runtime. Finally, a runtime adaptation example has been presented that
illustrates the proposed approach.

As future work, we would like to develop a graphical tool using the Eclipse
Graphical Modeling Framework (GMF) [15] in order to easily draw new GUI
models conforming to the proposed architecture meta-model. We also plan to
evaluate how the use of other MDE tools, in particular those enabling the in-
clusion of action semantics in meta-models (e.g., Kermeta [16] or AMMA [17,
18]) can help us improving our runtime adaptation process. Besides, we plan
to enable the inclusion of alternative behaviours that can be appropriately ac-
tivated depending, e.g., on previous GUI evolution records or on any relevant
contextual information (i.e., enabling the adaptation not only of the interface
models but also of the model-to-model transformation itself, also at runtime).
Furthermore, we also plan to automate the adaptation process by making use of
the ATL facilities for programatically executing the transformations.

Finally, we are interested in studying possible change detection in the interac-
tion meta-model (not covered in this article) by means of automated co-evolution
mechanisms and meta-model adaptations [19, 20].
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Monitoring Model Spe
i�
ations inProgram Code PatternsMoritz Balz, Mi
hael Striewe, and Mi
hael Goedi
kePaluno � The Ruhr Institute for Software Te
hnologyUniversity of Duisburg-Essen, Essen, Germany{moritz.balz,mi
hael.striewe,mi
hael.goedi
ke}�s3.uni-due.deAbstra
t. Numerous approa
hes exist that derive exe
utable systemsfrom well-de�ned spe
i�
ations. However, model spe
i�
ations are notavailable in program 
ode of su
h derived systems, whi
h impedes 
on-tinuous validation and veri�
ation at run time. We earlier proposed toembed model spe
i�
ations into well-de�ned program 
ode patterns tobridge this semanti
 gap. We now present an elaboration of our approa
hto monitor su
h systems at run time with respe
t to the underlying ab-stra
t models. For this purpose, di�erent te
hniques are 
onsidered thatallow to a

ess the modeling information without relying on additionalmetadata. Based on this, we present a tool that monitors the exe
utionof state ma
hines.1 Introdu
tionThe 
reation of software based on formal models is supported by means of variousmodeling, simulation and veri�
ation tools. However, 
urrent te
hnologies formodel-driven software development (MDSD) 
ause a loss of semanti
 informationwhen su
h models are transformed into sour
e 
ode by manual or automated 
odegeneration [1℄: The inherent loss of semanti
 information entails that models arerelated to derived systems only impli
itly [2℄, thus preventing us from being ableto monitor the exe
ution with respe
t to the model semanti
s.To bridge this semanti
 gap, we proposed to embed model spe
i�
ations inobje
t-oriented program 
ode [3℄, for example for state ma
hines [4℄. Su
h embed-ded models introdu
e program 
ode patterns representing the abstra
t syntax ofmodels. This single-sour
e approa
h allows not only to verify programs at devel-opment time with respe
t to the related models, but also to exe
ute embeddedmodels at run time by frameworks relying on stru
tural re�e
tion. In this 
on-tribution we 
onsider this an opportunity to monitor the exe
ution: Sin
e theseprogram 
ode patterns represent model spe
i�
ations 
ompletely, di�erent de-grees of abstra
tion are available in the 
ode at the same time. Hen
e we 
anmonitor model exe
ution at run time without using other representations thanthe program 
ode. At the same time we 
an observe how models behave withappli
ation data.This paper is stru
tured as follows: Se
tion 2 des
ribes the monitoring ap-proa
h by introdu
ing 
on
epts for embedding and identifying modeling infor-mation in program 
ode. Then we des
ribe di�erent possible te
hniques to a

ess
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the related program 
ode fragments at run time in se
tion 3. Based on these,a tool for monitoring state ma
hines is introdu
ed in se
tion 4. Afterwards wegive an overview of related work in se
tion 5 and draw 
on
lusions in se
tion 6.2 Approa
hThe obje
tive of this 
ontribution is to monitor exe
uted software with respe
tto high-level spe
i�
ations, but without using additional meta information, sothat no in
onsisten
ies 
an o

ur and the tool 
hain is as small as possible. Whilemonitoring as a way of verifying the exe
ution of software systems at run timeis well-established, few approa
hes realize veri�
ation with respe
t to formalmodels the software is based on. The reason, as mentioned in the introdu
tion,is that the related spe
i�
ations are not naturally available in the program 
odethat 
onstitutes programs at run time: The 
ode usually des
ribes exe
utionlogi
 only and not its abstra
t semanti
s. When it is monitored or veri�ed, theresulting information is generi
, fo
uses on te
hni
al details of program 
ode, ormust rely on tra
ing metadata to relate the 
ode to formal models. Consideringthese problems, we introdu
e in this se
tion our general approa
h of 
ouplingmodel spe
i�
ations and program 
ode.2.1 Embedded ModelsA monitoring as des
ribed above means that the program 
ode must 
ontain thespe
i�
ation information. Considering obje
t-oriented programming languageslike Java, we 
an observe a trend to in
rease the expressiveness of program 
odefragments. For example, embedded DSLs [5℄ are domain-spe
i�
 languages thatare embedded into other languages, so that semanti
s of DSLs are used insidea general-purpose language. In addition, some general-purpose languages areable to 
arry type-safe metadata, e.g., Java Annotations. This enables attribute-enabled programming [6℄ making program 
ode interpretable even at run time.Embedded models build upon these 
on
epts to relate program 
ode to ab-stra
t spe
i�
ations systemati
ally. Ea
h embedded model provides a program
ode pattern representing the abstra
t syntax of a formal model so that a bije
-tive proje
tion between both exists. The pattern elements rely on the semanti
sof the underlying programming language and its expressiveness regarding singlefragments and their inter
onne
tions. The stati
al elements of the programminglanguage and their relations are 
onsidered building blo
ks 
onstituting the pat-tern. They are of interest in our 
ontext sin
e expressiveness of the monitoringdepends on their a

essibility by appropriate me
hanisms at run time.The pattern 
ode is interpreted by means of stru
tural re�e
tion at run timeto exe
ute the model spe
i�
ations. Ea
h embedded model provides an exe
utionframework that a

esses and invokes the language elements and thus 
reatesa sequen
e of a
tions mat
hing the related model semanti
s. Considering themonitoring, it is essential that the program 
ode pattern elements and theirexpressiveness regarding relations to the abstra
t spe
i�
ations are by this meansa

essible at run time.

5th Workshop on Models@run.time at MODELS 2010 61



2.2 Implementation for State Ma
hinesAn instan
e for embedded models exists for the domain of state ma
hines. Sin
emeaningful monitoring in our 
ontext depends on the availability of model el-ements in the program 
ode at run time, we will introdu
e the program 
odepattern here and refer to it later. Figure 1 shows an example 
ontaining all pro-gram 
ode stru
tures of interest. The 
lass at the top represents a state; the
lass name equals the name of the state. The method in the state 
lass repre-sents a transition. It is de
orated with metadata (the annotation �Transition)referring to the target state 
lass and a �
ontra
t� 
lass 
ontaining guards andupdates. An interfa
e type referred to as �a
tor� is passed to transition meth-ods. Its methods are interpreted as a
tion labels whi
h 
an be 
alled when atransition �res. Thus, a sequen
e of a
tor method invo
ations inside a transitionmethod is interpreted as a sequen
e of a
tion labels for this transition.

Contract Definition in Source Code

public class AfterMeasurementState implements IState

{

@Transition(target = UpUpState.class , contract = BeginUpUpContract.class )

public void beginUpUp(MeasurementModule actor) throws MeasurementAbortedException

{

  actor.doMeasure ();  

}

// ... 

}

State Definition

Target State Pointer Contract Pointer

Action Label

Transition

State and Transition Definition in Source Code

} 

public class BeginUpUpContract implements IContract< IMeasurementVariables >

public boolean checkCondition( IMeasurementVariables vars )

{

  return (!vars.getAbort() && !vars.getRestart() && vars.getTooLow());

}

{

public boolean validate( IMeasurementVariables before , IMeasurementVariables after )

{

  return ( after.getNumberOfWorkers() == ( before.getNumberOfWorkers() + before.getWorkerDistance()) );

}

Contract Definition

Variable DefinitionsCurrent Variable Values

Guard

Update

Variable Labels
Current Variable Values

Cached Variable Values

Variable LabelsFig. 1. A state de�nition with an outgoing transitions and its 
ontra
t. The �rstmethod of the 
ontra
t evaluates a pre-
ondition with respe
t to the 
urrent variablevalues, while the se
ond method evaluates a post-
ondition by 
omparing the 
urrentvalues to the previous values.Guards and updates are implemented as two methods in a �
ontra
t� 
lasswhi
h is shown at the bottom of �gure 1. Both evaluate boolean expressions
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and return a single boolean value. The guards use the 
urrent variable valuesof the state ma
hine to determine if a transition is able to �re, the updates
ompare the 
urrent values with the values from the point in time before thetransition �red to determine the 
hanges to the state spa
e. For this purposeboth methods a

ess a �variables� type whi
h is a fa
ade type representing thevariables 
onstituting the state spa
e of the state ma
hine. This type 
ontains�get� methods for ea
h variable. The name and return type of ea
h method areinterpreted as name and data type of the 
orresponding variable.The exe
ution framework interprets and invokes these fragments at run time.The surrounding program 
ode a

esses for this purpose the exe
ution frameworkand passes the 
lass de�nition of the initial state as well as the variables anda
tor fa
ade types as parameters. The state ma
hine is then exe
uted as follows:1. The initial state's 
lass and variables interfa
e are passed to the exe
utionframework. All states rea
hable from the initial state are instantiated.2. The 
urrent state is set to the initial state.3. All transition methods of the 
urrent state are visited and the variables typeinstan
e is passed to the related guard method to determine if the transitionis able to �re.4. The 
urrent variable values are 
a
hed.5. The method representing the transition that is able to �re is invoked.6. The 
urrent variable values and the 
a
hed variable values are passed to theupdate method for the validation of variable updates.7. The 
urrent state is set to the target state of the exe
uted transition. Thepro
ess is 
ontinued until the 
urrent state is a �nal state or the state ma
hineruns into a deadlo
k.2.3 Monitoring at Run TimeAs 
an be seen in the state ma
hine example, embedded models introdu
e pro-gram 
ode patterns whose elements are related to model spe
i�
ations. Themodels are thus views on the program 
ode and need not to be stored in sep-arate notations, so that no in
onsisten
ies between model and implementation
an o

ur. Consisten
y is not only maintained at development time, but also atrun time: Sin
e the related 
ode fragments are not supplementary or optional,but instead used by the exe
ution framework, exe
uted systems with embeddedmodels 
arry 
omplete information about related spe
i�
ations naturally.This availability of models at run time is important for our obje
tive tomonitor programs with respe
t to models, sin
e the model views 
an be extra
tedfrom the 
ode during exe
ution. For this purpose the well-de�ned elements ofthe program 
ode patterns serve as entry points for interpreting and monitoringthe program 
ode. This enables a validation of programs with two purposes:First, the model view itself is of interest for monitoring the model exe
ution bythe framework, so that inferen
es 
an be made on 
orre
tness of the model fromthis information. Se
ond, embedded models are tightly integrated with arbitraryprogram 
ode. This allows for high �exibility during implementation, but 
auses
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the need to validate 
orre
tness of the surrounding 
ode with respe
t to themodel. This is supported with appropriate monitoring sin
e the behaviour ofthe model with appli
ation data 
an be observed.Monitoring of embedded models thus 
onsiders program 
ode pattern in-stan
es, for example of state ma
hines, as well as program 
ode of the exe
utionframework: Sin
e it 
ontrols the exe
ution, it is an entry point for a
tions tobe monitored. Inside the exe
ution framework for state ma
hines, the followingsteps 
an be 
onsidered:� The exe
ution framework iterates on the state ma
hine �ow until a �nalstate is rea
hed. The 
urrent a
tive state is denoted by a variable inside thisiteration pointing to the state 
lass de�nition. Changes to this variable mustbe monitored in order to determine state a
tivation.� On
e a state is a
tivated, the exe
ution framework iterates the 
ontainedtransition methods. The transition under examination is also denoted by avariable that must therefore be observed.� For ea
h transition the exe
ution framework invokes the guard and updatemethods and passes the variables fa
ade instan
e as a parameter. Of interestare all operations inside this methods, espe
ially those that 
omprise statema
hine variable values. To interpret the guards and updates thoroughly,the 
omposition of the overall result of these methods from single operationresults is also important to monitor.We will now introdu
e appropriate monitoring te
hniques and afterwards atool that implements the approa
h.3 Monitoring Te
hniquesOur obje
tive is to use this approa
h for monitoring program exe
ution withrespe
t to models at run time, but without arti�
ial tra
ing information. Thusit is important to 
onsider the a

essibility of the program 
ode patterns andtheir elements during exe
ution. We will introdu
e the basi
 te
hnologi
al ap-proa
hes for this purpose here. While all of them have already been used by otherapproa
hes for monitoring, our 
ontribution here is the appli
ation to program
ode patterns 
arrying the abstra
t syntax of formal models. We will thereforenot fo
us on the general te
hnologies, but on their adequa
y for monitoring thereferen
es to model spe
i�
ations at run time, in whi
h we en
ounter importantdi�eren
es.3.1 Listener Approa
hSin
e all information about the running system and the embedded state ma
hinesemanti
s is available inside the state ma
hine exe
ution framework, the easiestway for monitoring is to extend this framework in order to emit information ofinterest for monitoring. The exe
ution framework is based on stru
tural re�e
tion
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and a

esses and interprets a 
onsiderable part of the program 
ode stru
tures
onstituting the pattern. Besides setting listeners programmati
ally, module-based platforms (like OSGi [7℄ in the 
ontext of Java) allow for a loose 
oupling ofexe
ution framework and 
omponents re
eiving information about the exe
ution.In the 
ase of state ma
hines, listeners 
an be noti�ed about events for everyoperation performed on the embedded model:� Initialization and start of a state ma
hine. This in
ludes information aboutall states, transitions and variables as extra
ted from the Java 
ode viare�e
tion. States are uniquely identi�ed by their fully quali�ed 
lass names.� A
tivation of states. This indi
ates that guard evaluation and transitionsele
tion in this state will happen subsequently.� Sele
tion of transitions. This indi
ates that program 
ontrol will be handedover to the business logi
 in this transition.� Validation of updates after a transition. The variable values are updatedin this event. Additionally, the 
a
hed variable values are supplied to allowfor 
omparisons. Additional information is supplied if the validation failed.When this event is �red, program 
ontrol has been taken over by the statema
hine exe
ution framework again.The advantage of listeners is their easy integration into tools based on theJava platform, espe
ially in module-based environments. Sin
e the listeners area

essible from inside the same Java Virtual Ma
hine (provided appropriateprogramming interfa
es or module lookup servi
es exist), even self-monitoringof appli
ations is possible. Thus an appli
ation 
an gain information about itsown exe
ution inside the state ma
hine. This is possible without 
on
urren
yproblems sin
e the framework passes 
ontrol of the program �ow to the listenersduring noti�
ations, so that all a
tions are handled sequentially.While the approa
h is working at this level, the degree of detail is limited:Method 
ontents in Java are not a

essible by means of re�e
tion and thus bla
kboxes. For this reason operations inside guards and updates are not visible, butonly their results after the related method was invoked by the framework.3.2 Aspe
t-Oriented Approa
hAspe
t-oriented programming (AOP) aims to separate 
ross-
utting 
on
ernsfrom business logi
. Monitoring and tra
ing are often-mentioned examples forAOP usage: Emission of monitoring information is formulated as aspe
ts thatare woven into program 
ode. To monitor state ma
hine exe
ution, the 
odestru
tures of interest are a

essed by point
uts. Appropriate advi
e written inAspe
tJ [8℄ are shown in listing 1.1. The �rst and the third point
ut wrap aroundguard and update methods, invoke them and read the result. Afterwards themonitor is noti�ed about the 
ontra
t 
lass and the 
urrent result. The se
ondpoint
ut is invoked before a transition method is exe
uted, i.e., any method ina 
lass implementing the IState interfa
e. It noti�es the monitor about therelated state 
lass and transition method name.
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// Wrap guard method invo
ation and notify about the resultboolean around(Obje
t vars) : exe
ution(* IContra
t.
he
kCondition(..)) && args(vars) {boolean result = pro
eed(vars);monitor.notifyGuard(thisJoinPointStati
Part.getSignature().getDe
laringType(), result);return result;}// Notify about forth
oming transition method invo
ationbefore() : exe
ution(* *.*(..)) && target(IState) {monitor.notifyTransition(thisJoinPointStati
Part.getSignature().getDe
laringType(),thisJoinPointStati
Part.getSignature().getName());}// Wrap update method invo
ation and notify about the resultboolean around(Obje
t before, Obje
t after) :exe
ution(* IContra
t.validate(..)) && args(before, after) {boolean result = pro
eed(vars);monitor.notifyUpdate(thisJoinPointStati
Part.getSignature().getDe
laringType(), result);return result;}Listing 1.1. The Aspe
tJ monitoring aspe
t. All points of interest in theprogram 
ode pattern are 
learly identi�able by simple rules regarding their
lasses and method names, so that point
uts 
an be de�ned unambiguously.The main advantage of AOP in this 
ontext is that monitoring 
an be appliedwithout the need to modify the exe
ution framework. With load-time weaving,monitoring 
apabilities 
an even be supplemented in systems after the program
ode has been 
ompiled. This allows for �exible me
hanisms that 
an be applieddepending on the 
ontext. This is enabled by the fa
t that the pattern elementsof embedded models are well-known and obligatory: Aspe
ts 
an identify themso that advi
e and point
uts 
an address program 
ode elements related to modelelements. Similar as with listeners, this also allows for self-monitoring.However, while this exterior view on the pattern allows for dynami
 exten-sion of su
h software, it prevents full a

ess to information of interest: Point
uts
an handle information regarding the lo
ation of program 
ode in whi
h theyare exe
uted (keyword thisJoinPointStati
Part). But, they do not gain a
-
ess to information in terms of sequen
es of point
uts: In ea
h state, a 
ertainnumber of guards is evaluated. Afterwards, one transition method is invoked.While point
uts are informed about the single a
tions, they 
annot determinewhi
h guard belongs to the transition being exe
uted; this information has to beguessed or supplemented by interpreting the program 
ode afterwards. To solvethis problem, the exe
ution framework 
ould be 
hanged to make pointers to theobje
ts of interest available as �elds.3.3 Debugging Approa
hThe debugging approa
h delegates low-level observation of the program stateto the exe
uting platform. The related Java Platform Debugger Ar
hite
ture(JPDA) [9℄ provides well-de�ned programming interfa
es to a

ess related eventsso that those of interest for our monitoring approa
h 
an be �ltered from the
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event queue. In the 
ase of embedded state ma
hines, state a
tivation and transi-tion sele
tion are monitored by observing �elds 
ontaining the related referen
esin the exe
ution framework with Modifi
ationWat
hpointEvents. For guardsand updates, MethodExitEvents are of interest that are triggered after all 
odeof a method has been exe
uted, but before the method is left. We use them toa

ess return values of variable interfa
e methods when they are invoked. To-gether with information about lo
al variable values we 
an monitor evaluation ofguards and updates with su
h events, too: Sin
e only expressions are used insidethese methods, the evaluation is fully 
omprehensible afterwards by inspe
tionof the values of lo
al variables. The return value of the method and thus theresult of the evaluation is also available in this event.A debugger 
an hen
e a

ess all elements of the program 
ode pattern inmodel implementations as well as all lo
al variables in the exe
ution framework.Di�erent to the listener and AOP approa
hes, this allows for monitoring guardand update method 
ontents. Sin
e all details of expressions are available, theevaluation of guards and updates 
an be re
orded and presented to the devel-oper for ea
h step. The debugging approa
h is therefore the only one able toa

ess all elements of the program 
ode pattern. A

ess to variables and methodinvo
ation results is possible without additional e�ort when they are a

essedby the appli
ation itself. For the state ma
hine model this is su�
ient sin
e thevariables are of interest only when they are evaluated in guards. A debuggerwould also allow to invoke methods at any time. This 
ould be of interest forvariable methods to determine their 
urrent value. This is, however, intrusive tothe program �ow, sin
e variable methods may 
ontain arbitrary business logi
,whi
h would be exe
uted at times not expe
ted by the developer.The main in�uen
e of debuggers, however, is the need for two running in-stan
es: The appli
ation being debugged and the debugger itself that 
ontrolsexe
ution. All information that 
an be gained is a

essible only by the latter, sothat a self-monitoring of appli
ations is not possible. In addition, debuggers ingeneral have a strong impa
t on performan
e, so that a monitoring of produ
tionsystems is 
urrently not desirable with this te
hnology. We thus expe
t that thisapproa
h 
an be used as debuggers are used in general � when the appli
ationsare validated during development or maintenan
e. In this 
ase the relation toabstra
t models is more meaningful than debugging at the sour
e 
ode level only.4 Monitoring ToolThese approa
hes enable monitoring of program 
ode based on embedded modelswithout using tra
ing information or other metadata, but by 
onsidering well-de�ned 
ode stru
tures only. We will now introdu
e a tool that is based on su
happroa
hes and monitors the related information. Its user interfa
e shown in�gure 2 re�e
ts our requirements for the pra
ti
al use of the monitoring.The graphi
al view allows to wat
h a
tivated state 
lasses and transitionmethods. Current and 
a
hed variable values are shown to exhibit the 
urrentstate spa
e and to enable monitoring of 
hanges during transitions. Updates that
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Fig. 2. A state ma
hine model being monitored. Left hand we see the state ma
hinewith the a
tive state and transition highlighted, right hand the variable values 
onsti-tuting the state spa
e.
ould not be validated su

essfully are listed separately; sin
e updates do nothave impa
t on the program �ow, this information allows developers to look forthe 
auses of su
h in
onsisten
ies later on. The state ma
hine �ow altogether
an be paused and resumed by the user. This is possible sin
e business logi
 isinvoked during transitions, and exe
ution 
ontrol will afterwards return to thestate ma
hine. The third button visible on top of the s
reenshot noti�es theexe
ution framework that the state ma
hine �ow should pause after the 
urrenttransition; the button to the right allows then for stepwise exe
ution.The tool is realized on the E
lipse platform, making it easy to be integrated inE
lipse-based development tools. It uses listeners that are loosely 
oupled overthe OSGi servi
e registry that is provided by the E
lipse platform: Listenerslike our tool are hen
e OSGi bundles being deployed alongside, but independentfrom business logi
. The listener is registered as a named OSGi servi
e that isdete
ted by the exe
ution framework. The resulting ar
hite
ture as sket
hed in�gure 3 allows to use almost arbitrary tools to be noti�ed about events for everyoperation performed on the embedded state ma
hine.5 Related WorkFollowing our obje
tive to monitor the exe
ution of program 
ode that is re-lated to model spe
i�
ations, we must 
onsider related work with respe
t to two
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Fig. 3. Component ar
hite
ture with the monitoring listener. Appli
ations are 
om-posed of 
omponents using the exe
ution framework based on the OSGi platform. Thelistener 
omponent is optional and hen
e only 
oupled via the servi
e registry.topi
s: First, general approa
hes that relate program 
ode to high-level spe
i�-
ations whi
h are in theory appropriate for monitoring; se
ond, the appli
ationof monitoring in spe
i�
 te
hnologi
al environments.Round-trip engineering [10℄ relates generated program 
ode to models buttargets the development time instead of the run time and 
annot be fully auto-mated [11℄. Informal spe
i�
ations 
an be inferred from program 
ode by dete
t-ing patterns [12℄, and similar, spe
i�
ations 
an be extra
ted from program 
odebased on design patterns [13℄. However, this requires manual e�ort or is basedon heuristi
s and not appropriate for a pre
ise monitoring. Exe
utable models[14℄ are a

essible at run time, too. However, they are only appropriate for ap-pli
ations 
ompletely expressed as models, while we 
onsider 
ases where modelsare 
onne
ted to program 
ode and thus monitor the related data ex
hange.Monitoring for 
omplian
e with so-
alled design models [15℄ or design pat-tern 
ontra
ts [16℄ is based on low-level semanti
s of detailed patterns. Similarly,model 
he
kers for program 
ode work with low-level semanti
s of the program-ming language and thus 
onsider whole appli
ations as models [17℄. In 
ontrast,monitoring with embedded models is related to abstra
t spe
i�
ations. For thisreason it 
an also 
learly be distinguished from general debugging approa
hes.We do not aim to present a notation for the spe
i�
ation of all possible sys-tem models like the Java Modeling Language (JML) [18℄ or the approa
hto use Smalltalk with its introspe
tion 
apabilities as a meta language [19℄. In
ontrast to stati
 analysis tools like Dis
oTe
t [20℄ we do not target dete
-tion of unknown stru
tures and models, but fo
us on well-known models that
an thus be examined more thoroughly and with respe
t to a formally-foundedba
kground. We also do not require 
hanges in the program 
ode to introdu
ereferen
es to spe
i�
ations as is ne
essary for PathFinder's veri�
ation state-ments [21℄ or the approa
hes to monitor OCL 
onstraints with aspe
t orientation[22, 23℄, whi
h rely on metadata in sour
e 
ode 
omments. Instead, we 
an inferall model spe
i�
ations dire
tly from the program 
ode pattern.6 Con
lusionWe presented our approa
h to monitor model spe
i�
ations that are embeddedin obje
t-oriented program 
ode. We were a
ting on the assumption that the re-
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lated program 
ode pattern stru
tures are pre
ise enough to allow for inferen
eto model spe
i�
ations even at run time. To show this, di�erent approa
hes forinformation retrieval have been evaluated as possible alternatives. Our 
on
lu-sion is that all are appropriate to monitor the state ma
hine semanti
s, althoughin di�erent degree of detail and with di�erent impa
t on the ne
essary 
hangesto the program 
ode. All are non-intrusive regarding the sour
e 
ode of the mon-itored system and two of them are even non-intrusive to the sour
e 
ode of theexe
ution framework. However, the degree of detail varies sin
e only debuggingapproa
hes allow to monitor guards and updates in detail. On the other hand,listeners and AOP require less overhead at run time. With AOP, monitoringaspe
ts 
an even be atta
hed dynami
ally to the programs sin
e they 
an workon the pattern spe
i�
ations after 
ompilation.For the 
urrent implementation of a monitoring tool, the listener approa
hwas 
hosen sin
e it allows to a

ess the most important information with littlee�ort and provides the ability for self-monitoring. However, if the required en-vironment is available, the debugging approa
h is more thorough and allows tomonitor every detail of the state ma
hine exe
ution. Future work will thus in-
lude the development of an appropriate monitoring tool. Due to the maturity ofthe JPDA and related user interfa
es in integrated development environments,we will then be able to integrate the monitoring with the debugging user in-terfa
e of development environments. With this integration, the monitoring ofabstra
t model spe
i�
ations 
an be seamlessly integrated with debugging of ar-bitrary Java appli
ations, thus making model validation at run time an integralpart of the development pro
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Abstract. There is a growing need for applications that are able to
adapt themselves to the context of use. One promising approach for the
adaptation of an application during its execution is the use of models at
runtime. In this approach models of the application and its context of
use are kept alive during the execution. The application can be adapted
by recon�guring the structure of these models.
Model Recon�guration has local aspects as it handles the structure of a
model and has to deal with its speci�c properties. It also possesses global
aspects, as the joint recon�guration of several models is required due to
consistency considerations. This paper aims at solving possible con�icts
between the global and the local aspects of Model Recon�guration by
introducing a distinction between two Levels of abstraction that enables
the designer to separate and interrelate global and local aspects of Model
Recon�guration.

1 Introduction

There is a growing need for applications that are able to adapt themselves to the
current context of use. Especially in dynamic and personalized areas like smart
homes such adaptive applications are important as they can adjust to the user's
speci�c needs as well as her environment. Adaptations trigger changes in the
applications user interface or behavior. In [1] the need for adaptations as well as
special challenges in this �eld of research is stressed.

Adaptability results in a growing complexity of software applications and
their development. According to [2], one promising approach for dealing with
this complexity is the models at runtime approach (also called models@run.time
approach). This approach is similar to Model Driven Engineering (MDE) [3],
where the development of a software application is accompanied by the creation
and transformation of a set of models. The di�erence between these approaches
is in their goal. MDE aims to generate the �nal application code from the in-
termediate models. The goal of the models@run.time approach is to keep the
models alive at runtime. In this approach the running application results from
an interpretation of these models.
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In the models@run.time approach a running application consists of a set
of models. These models represent di�erent aspects of the application and its
context of use. The applications user interface and behavior result from the
interpretation of these models within a certain framework. The advantages of this
approach for adaptations are twofold. First, the current state of the application
and its context of use can easily be retrieved by querying the representing models.
This is essential because the application is supposed to react to these states by
adapting itself. Second, a change in the structure of one or more of these models
automatically a�ects the execution of the application. Thus, the adaptation of
an application can be achieved by changing the structure of its models. We call
such a structural change a Model Recon�guration.

Some adaptations of an application require the joint recon�guration of several
models. This can be necessary if an intended adaptation is within the scope of
several models at once. Another reason for a joint recon�guration of models is
to maintain the consistency in models that partially overlap in the aspects they
represent. According to this, Model Recon�guration needs to have global aspects
that enable the designer to express joint recon�gurations of several models.

A models@run.time framework may contain di�erent models expressed in dif-
ferent modeling languages. Recon�guration techniques are often speci�c to one
modeling language. This allows them to optimally deal with the speci�c struc-
tural and behavioral properties of this modeling language. This means Model
Recon�guration also needs to have certain local aspects.

When implementing a framework for Model Recon�guration, there can be
a con�ict of interest between these local and global aspects. In this publication
we propose a distinction between a Recon�gurable Model and a Recon�guration
Model. This distinction serves to establish a separation of concern between the
local and global aspects of Model Recon�guration, which allows the designer to
model and interrelate both.

The paper is structured as follows. First, in Section 2 the problems arising
from the global and local aspects of Model Recon�guration are subsumed. Re-
con�gurable Models are then discussed in Section 3. Afterwards, our description
of the Recon�guration Model is given in Section 4. In Section 5 existing ap-
proaches to Model Recon�guration are introduced and related to the concepts
introduced in this paper. Section 6 gives a conclusion and hints to future work.

2 Problem Statement

While authors are clear about the overall goals of Model Driven Engineering,
the actual set of models required to build an application is far from �xed. One
possible set of models is described in the CAMELEON Reference Framework
[4]. Current approaches di�er in the set of used models, as well as the modeling
languages these models are described in.

The same goes for models@run.time approaches. Several possible runtime en-
sembles of models do exist and several modeling languages are used for describing
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these models. Techniques for Model Recon�guration are often local to a certain
modeling language. This determines the local aspects of Model Recon�guration.

These local aspects are important because Model Recon�guration is tightly
interwoven with the structure that is recon�gured. The advantage of a recon-
�guration technique, speci�cally tailored to a modeling language, is that it can
handle or preserve certain properties, speci�c to this modeling language. One
example for such a speci�c approach is the Graph Transformation technique,
analyzed in [5]. This technique can only be applied to P/T nets. Due to this
exclusiveness it is able to preserve the �ring behavior of these net.

It is also important to change the structure of several models at the same
time. This enables the designer to treat the set of runtime models as a consistent
whole. For example, the CAMELEON Reference Framework contains three dif-
ferent models for user interfaces: the Abstract, Concrete and Final User Interface
Model. When these models are used at runtime they have to be kept consistent
with each other. This can be best done by recon�guring them jointly and thus
ensuring consistency after each recon�guration.

The set of runtime models within an application is not restricted to a �xed set
of models. In addition, the models, used within one runtime ensemble are likely to
be modeled in di�erent modeling languages. This constitutes a potential con�ict
between global and local aspects of Model Recon�guration. According to the
local aspects it is possible that the designer chooses a di�erent recon�guration
technique for each model in the runtime ensemble. These techniques are local
to their modeling language and cannot be applied the other models. This is a
problem for the global aspects of Model Recon�guration which require a joint
recon�guration of the set of runtime models.

Our approach towards these potential problems is to separate the local and
global aspects within two di�erent components. The idea is to unite each model
and its local recon�guration as a so-called Recon�gurable Model. A component,
called a Recon�guration Model, steers the global recon�gurations. This model
uses the Recon�gurable Models in order to accomplish this goal.

For this separation to work, the Recon�guration Model should be able to
abstract from the following properties of the Recon�gurable Models:

� Model Kinds: The Recon�guration Model should be independent of the kinds
of used models as well as their purpose in order to not restrict the designer
to a �xed set of models.

� Modeling Language: The Recon�guration Model should not be limited in the
set of modeling languages it is able to recon�gure. This way the designer is
free in her choice of modeling languages.

� Recon�guration Technique: The Recon�guration Model should be able to
abstract from the used recon�guration technique. This way the designer is
free in her choice of recon�guration technique.

In Sections 3 and 4 the concepts of Recon�gurable Model and Recon�guration
Model are introduced and discussed in detail.

Figure 1 shows an example for excerpts of a Task and User Interface model
which are part of a runtime ensemble. The Task Model represents the applica-
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tions structure of task and subtasks. The User Interface Model represents its
user interface. These two models represent the user interface of a login window
and its part of the task tree. The user is able to input username and password
in parallel and then �nish the task �Login� by clicking on the login button.

Fig. 1. Running Example: Two Models of a Login Mask

One possible adaptation of the user interface is to show the input of user-
name and password in consecutive windows. A reason for this adaptation is the
availability of di�erent authentication protocols. In this case it is not certain
that the user needs a password to log into the system. For example, he could
also be identi�ed by the MAC Address of his devices. In this case the input of
a password becomes obsolete. Such an adaptation requires changes in the User
Interface Model and the Task Model. The user interface has to be adapted to
showing two windows. One to input the username and one to input the pass-
word. In addition the task model has to re�ect the fact that �Input Username�
and �Input Password� are now executed consecutive.

This example is oversimpli�ed as the recon�guration is really more com-
plex than indicated here. The changes in the models are more complex due to
the requirement to re�ect more than one authentication method. In addition,
other models have to be recon�gured to connect the new user interface and its
execution logic. Nevertheless, this toy example already requires the joint recon-
�guration of two models and will serve as a running example throughout the
rest of the paper.

3 Recon�gurable Model

The notion of a Recon�gurable Model is introduced in order to encapsulate
the local aspects of Model Recon�guration. In each Recon�gurable Model the
designer is able to concentrate on the structural changes of one model. In this
scope she is able to choose a recon�guration technique that suits her preferences.
In this Section the notion of a Recon�gurable Model is de�ned and discussed.

A Recon�gurable Model is a model that can be recon�gured. In addition to
the models structure it contains means for changing this structure. A scheme for a
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Fig. 2. Scheme of a Recon�gurable Model

Recon�gurable Model can be seen in Figure 2. A Recon�gurable Model consists
of a Structure and a set of Recon�guration Operations. The Recon�guration
Operations can be executed, resulting in a change of the structure. A more
formal de�nition of a Recon�gurable Model can be seen in De�nition 1.

De�nition 1 (Recon�gurable Model). A Recon�gurable Model r=(S,OPs)
consists of a model S, determining the Structure of the Recon�gurable Model,
and a set of Recon�guration Operations OPs, that can be applied to change this
Structure.

The Structure S of a Recon�gurable Model is not restricted. An arbitrary
model conforming to an arbitrary meta model may constitute this structure.
Recon�guration Operations OPs represent ways to change S in a way that it
still conforms to its meta model. A more formal de�nition of a Recon�guration
Operation is given in De�nition 2.

De�nition 2 (Recon�guration Operation). A Recon�guration Operation
for a meta model MM is a function OP : M → M mapping one model, that
conforms to MM to another one. M is the set of all models that conform to MM.

A Recon�guration Operation is a function that can be applied to the current
Structure S to generate a new Structure. This operation strictly acts within the
set of models conforming to the meta modelMM of S. Thus, the Recon�guration
Operations cannot violate the conformity to the meta model. A Recon�guration
Operation can be executed from outside of the Recon�gurable Model without
any knowledge of S. For each Recon�guration Operation OP, a Recon�guration
Endpoint OP' is available which automatically applies OP to S.

While modeling a Recon�gurable Model the designer has to provide the cur-
rent Structure S as well as the set of Recon�guration Operations OPs. In prin-
cipal, any model can be used for de�ning S, regardless of its modeling language.
Based on this model and its modeling language, the designer then chooses the
most suitable recon�guration techniques to model OPs.

This process represents the standard case of producing a Recon�gurable
Model. Other variations are also imaginable. For example the Recon�guration
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Operations could be generated automatically from another description of vari-
ability, like an enumeration of all possible structures.

At runtime, S is used as the initial structure of the Recon�gurable Model. The
Recon�guration Operations can be executed in order to change this structure.
These operations and their Recon�guration Endpoints enable external models,
like the Recon�guration Model, to trigger changes in S.

Fig. 3. Running Example: Recon�gurable User Interface and Task Model

In our Running example there are two models that need to be made recon-
�gurable. These are the Task and User Interface Model, introduced in Figure 1.
In Figure 3 their recon�gurable versions are depicted. In both cases the struc-
ture S consists of the models introduced in Figure 1. Each model contains one
Recon�guration Operation. In the Recon�gurable Task Model the two parallel
tasks �Input Username� and �Input Password� can be made consecutive. The
Recon�guration Operation of the Recon�gurable User Interface Model splits the
login window and distributes the input elements for username and password.

In the Figure it is not mentioned how these Recon�gurations are imple-
mented. The techniques, used in both models are independent from each other
and can be chosen by the designer. Due to the graphical representation of a
user interface she might decide to use a form of Graph Transformation in the
Recon�gurable User Interface Model. For changing one temporal operator in the
Recon�gurable Task Model she might choose an action as provided by the Ker-
Meta environment. These two Recon�guration Operations describe the changes,
required for our Running Example. However, on the level of Recon�gurable Mod-
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els it is not possible to interrelate these two model changes. This is the purpose
of the Recon�guration Model, introduced in the next Section.

4 Recon�guration Model

In the previous section Recon�gurable Models as an encapsulation of the local
aspects of Model Recon�guration, are described. This section introduces the
notion of a Recon�guration Model. This model builds upon the de�nition of
Recon�gurable Models and re�ects the global aspects of Model Recon�guration.

Fig. 4. Scheme of a Recon�guration Model

A scheme for a Recon�guration Model can be seen in Figure 4. A Recon�g-
uration Model contains High Level Recon�guration Operations. Each of them
is connected to a trigger, which is responsible for determining when to execute
this Operation. The Recon�guration Model can adapt a set of Recon�gurable
Models. This is done by executing the Recon�guration Endpoints of their Re-
con�guration Operations.

The triggers serve as Guards for executing the High Level Recon�guration
Operations. Whenever a trigger �res the High Level Recon�guration Operation
is executed and calls the Recon�guration Operations it requires.

The designer models the High Level Recon�guration Operations to describe
complex joint recon�gurations of several models. The structural changes in each
model are accomplished by calling the Recon�guration Operations, provided by
their Recon�gurable Model. This represents the global aspects of Model Recon-
�guration. Inside this global description of recon�guration logics she is able to
abstract from the properties mentioned in Section 2:
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� Model Kinds: The Recon�guration Model can work with any Recon�gurable
Model regardless of its inner implementation or purpose. Therefore, it is
independent of the actual set of models used at runtime.

� Modeling Language: The structure that is recon�gured is hidden within the
Structure S of a Recon�gurable Model. The Recon�guration Model only
triggers the Recon�guration Operations for changing this structure and does
not touch the structure directly. Thus, the Recon�guration Model can work
independent of the Modeling Language.

� Recon�guration Technique: The Recon�guration Model only needs a refer-
ence to the Recon�guration Operations in order to execute them. It does
not have to know how they are implemented. Thus, it can work indepen-
dent of the recon�guration technique used to describe the Recon�guration
Operations.

Fig. 5. Running Example: The Recon�guration Model

A Recon�guration Model for our running example is depicted in Figure 5.
This Recon�guration Model uses the Recon�gurable Task Model and Recon-
�gurable User Interface Model depicted in Figure 3. It contains one High Level
Recon�guration Operation, which consists of two steps. In the �rst step the Task
Model is recon�gured, using Recon�guration Operation A. In the second step
Recon�guration Operation B of the Recon�gurable User Interface Model is trig-
gered. This High Level Recon�guration Operation executes all changes discussed
in our running example.

The purpose of this publication is to propose the di�erentiation between local
and global aspects of Model Recon�guration and their separate handling by in-
troducing two levels of abstraction. The complete de�nition of both components
is still work in progress. Although a High Level Recon�guration Operation is de-
picted as a series of consecutive steps in the running example, we do not believe
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this to be the �nal or best solution. Some hints on possible implementations are
given in the remainder of this section.

There are several possible ways to implement a High Level Recon�gura-
tion Operation. For example, a visual language could be used for describing the
work�ow of application of the Recon�guration Operations. Languages like UML
- Statecharts, Flowcharts or Petri Nets could be utilized for this task. Several
lessons can also be learned from the �eld of Graph Transformation, where several
means for high level transformation logic are proposed. Imperative programming
languages, like Java or C++, could also be utilized.

Before deciding on one of these alternatives a detailed analysis of the prop-
erties and control structures, required for a comfortable modeling of high level
recon�gurations has to be carried out. In the next section, related work in the
�eld of Model Recon�guration is discussed. This work is then related to the local
and global aspects of model recon�guration and the concepts introduced in this
paper.

5 Related Work

Several approaches towards Model Recon�guration have been implemented. This
section serves to introduce some of these approaches and interrelate them to the
local and global aspects identi�ed in this paper and our notion of Recon�gurable
Model and Recon�guration Model.

One of the most recognized techniques for recon�guring models is Graph
Transformation. A Graph Transformation rule searches and substitutes one oc-
currence of a pattern within a graph with another one. The concrete syntax of
several modeling languages can be described as a graph. For this reason a vari-
ation of a Graph Transformation technique is an obvious choice for structural
adaptations in these languages. A variety of applications for Graph Transfor-
mations to dynamic systems can be found in [6]. Although neither of these ap-
plications is specially applied to the recon�guration of models at runtime, they
all contain an initial structure that is recon�gured using graph transformation
rules. This is very similar to our notion of a Recon�gurable Model.

Several speci�c Graph Transformation languages do exist. These languages
are dedicated to a certain modeling language and can only be applied to models
within this language. For example, in [5] a Graph Transformation approach for
rewriting P/T nets is introduced. This technique preserves the �ring behavior of
P/T nets. This shows the capability of speci�c Graph Transformation languages
to preserve properties of the transformed models and their structure. A spe-
ci�c Graph Transformation Language can be a good choice of a recon�guration
technique to describe Recon�guration Operations.

In [7] this speci�c Graph Transformation language for P/T nets is applied to
model a �exible emergency scenario. In this publication, the initial scenario is
modeled using a P/T net and the possible changes to this scenario are modeled
as a set of Graph Transformation rules, speci�c for P/T nets. This setup is very
similar to our notion of a Recon�gurable Model. The P/T net can serve as the
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current Structure S and the set of Graph Transformation rules are similar to
our Recon�guration Operations OPs.

In [8], Schürr studies approaches towards building programmed graph re-
placement systems from Graph Transformation rules. He also proposes his own
approach towards unifying these approaches. The purpose of programmed graph
replacement systems is to provide means for de�ning complex schemes of recon-
�guration out of Graph Transformation rules and thus enable the designer to
take a global view on Graph Transformation. However, an abstraction from the
concrete recon�guration technique or modeling language was out of scope for
Schürr. For this reason programmed graph replacement systems do not make
these abstractions. Nevertheless, we consider this publication to be a valuable
source of inspiration for the design and implementation of High Level Recon�g-
uration Operations.

USIXML [9] uses Graph Transformation techniques in a more general scope.
In this framework all models are described in XML. This format is used as the
basis for Graph Transformation. This enables a transformation between di�er-
ent models, used for backward and forward engineering. The approach towards
Graph Transformation taken in USIXML is also an interesting one for Model
Recon�guration as it enables the designer to describe several models as one
joint XML �le and then recon�gure them jointly. This approach captures cer-
tain global aspects. However, it can only be applied to models that are described
within an XML structure. Thus, it is not general enough to satisfy our require-
ments from Section 2.

Graph Transformation is not the only concept that has been tested within
the scope of Model Recon�guration. In [10] Morin et Al. describe their approach
towards modeling adaptive systems using models and aspects. The system is
speci�ed as a set of aspect models. They are weaved into one runtime model,
which represents the whole running application. The system is adapted by recon-
�guring the aspect models and weaving a new runtime model. This newly woven
runtime model is then compared to the old one and a script for transforming
the old into the new one is generated. In this publication model recon�guration
also clearly has local and global aspects. Recon�gurations are speci�ed for each
aspect model but are then woven into one runtime model. Global consistency
can be checked by specifying a set of consistency constraints. However, this can
only serve to check consistency after the recon�guration. In our opinion a way
for specifying how two aspects are recon�gured jointly in order to preserve their
consistency is still required.

The meta modeling language KerMeta [11] can also proof as a useful tool for
Model Recon�guration. The purpose of this language is to provide a language
that is able to model the structure and behavior of a modeling language. The
behavior is modeled by an action language. This way the designer of a modeling
language can model the structure and behavior of this language jointly. This ap-
proach can also proof interesting for model recon�guration as structural changes
of such models can also be described by this action language. The KerMeta
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action language can be used as a technique for implementing Recon�guration
Operations.

In this section we introduced a selection of approaches towards runtime re-
con�guration of models. None of these approaches were explicitly able to model
all local and global aspects of Model Recon�guration. However, several similar-
ities between these approaches and the components and separation introduced
in this paper have been found. This leads us to expect that the separation and
components we introduced, even given their current level of abstraction, capture
many of the aspects, also addressed by these publications and are a good starting
point for further research towards a universal Recon�guration Model.

6 Conclusion and Future Work

This paper proposes a separation between a Recon�gurable Model, which is a
model that o�ers certain Recon�guration Operations that can be executed at
runtime, and a Recon�guration Model, which is responsible for triggering and
steering the recon�gurations in all models used at runtime. The aim of this sep-
aration is to provide an approach to Model Recon�guration that captures local
and global aspects. Local aspects are strongly interwoven with the used mod-
els and modeling languages. Global aspects concern the interrelation of several
models and their joint recon�gurations.

The Recon�gurable Model re�ects local aspects of Model Recon�gurations
and enables the designer to model Recon�guration Operations that are close
to the used modeling languages. In the Recon�guration Model the designer can
take a global view on Model Recon�guration and interrelate the recon�gurations
of di�erent models.

Several existing approaches have been analyzed regarding their capability to
capture the global and local aspects of Modeling Recon�guration. Although none
of the analyzed approaches had the �exibility to deal with all our requirements,
they had several similarities to our approach.

In the near future the notions of Recon�gurable Model and Recon�guration
Model have to be further detailed. For example, the current de�nition provides no
means for expressing additional application conditions for Recon�guration Op-
erations. For this step several sources of inspiration have been identi�ed within
the related work.

In Future Work we also plan to de�ne a speci�c language for describing Re-
con�guration Models. In Section 4 some ideas on how the components within
this Recon�guration Model can be implemented are given. These sources of in-
spiration have to be analyzed for their actual usability before a decision towards
the �nal implementation can be made. In addition to a language for express-
ing such high level recon�guration operations, a set of control structures, like
conditional or repeated application of rules has to be de�ned and formalized.

Additionally, we plan on de�ning and executing a case study with the de�ned
recon�guration language as a proof of concept.
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Abstract. The emergence of software-intensive systems connecting phys-
ical devices to network-based applications involves new design challenges.
As an example, flexible manufacturing systems composed of multiple
networked devices in interaction with the physical world, are subject to
imprecision and to unpredictable breakdowns. Applications and control
software are therefore highly complex, and must operate in heterogeneous
and rapidly changing environments.
To address these issues, we describe an approach using models at runtime
for efficiently monitoring and adapting the software controlling mecha-
tronic devices. We consider a decentralized system, in which each device
is represented as an agent. Each agent maintains a model integrating
a representation of itself, of its environment and of the agent society,
and uses this model to detect inconsistencies, to envision possible future
states and to create explanations based on past states. In this paper,
we focus on presenting our model and highlighting the results, benefits
and challenges arising from using models at run-time with networked
physical devices.

1 Introduction

The emergence of software-intensive systems connecting physical devices to network-
based applications offers new exciting possibilities. Among them, flexible manu-
facturing systems providing a faster, more efficient response to market changes
are envisioned [10]. However, engineering such complex systems operating in
heterogeneous and rapidly changing environments poses numerous challenges.
Traditional control approaches cannot cope with new requirements, due to their
rigidity and limited capability for agile adaptation to unexpected internal and
external disturbances [8]. The application of decentralized control architectures,
based on autonomous and co-operative agents, is considered as a promising ap-
proach. Intelligent agents offer a convenient way of modeling processes that are
distributed over space and time, making the control of the system decentral-
ized [7], increasing flexibility and enhances fault tolerance. Using agent-based
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software for controlling a flexible manufacturing system has been largely investi-
gated in the recent years. However, most work focus on planning and scheduling
issues [8] (disconnected from the actual control of physical devices [3]) or use sim-
ple, reactive agents for producing specialized adaptation behaviors. Currently,
concerns about robustness and stability prevent the wide industrial adoption
of these initial solutions [15]. Advances on self-awareness, self-adaptation and
self-healing are needed [4].

To address these issues, we proposed an approach in which agents use mod-
els for efficiently monitoring and adapting the software controlling mechatronic
devices. Each agent manages a model integrating a representation of itself, of its
environment and of the agent society, and enabling it to detect inconsistencies,
to envision possible future states and to create explanations based on past states.
In recent works [18, 11, 9], we showed how this approach supports complex tasks
such as detection of anomalies of sensor reading, failure recovery and runtime
reconfiguration. In this paper, we focus on presenting our use of models at run-
time with networked physical devices and discussing the challenges arising from
this approach.

This paper is structured as follows. Section 2 introduces some background
and example about distributed intelligent control of a flexible manufacturing
system. Section 3 details the world model of an automation agent, forming the
central piece of our approach. Section 4 discusses our results and lessons learned.
Section 5 discussed related work and section 6 concludes with a summary.

2 Background: Distributed Intelligent Control of a
Flexible Pallet Transfer System

As an example for monitoring and adapting software in interaction with net-
worked physical devices, our current studies focuses on flexible manufacturing
systems. In this paper, we use the example of a pallet transport system, located
in the Odo-Struder-Laboratory4. Due to their role to connect different parts of
the system and to carry and route materials between them, transportation sys-
tems are in most cases seen as a key element, but the increasing need for more
flexibility significantly complicates the control of these systems.

Overview of the Pallet Transfer System The pallet transfer system (Fig.
1) consists of software-controlled manufacturing components: transport compo-
nents such as conveyor belts (dark green lines) and diverters (yellow circles); and
assembly machines (colored rectangles with round corners). Product parts are
transported on pallets (colored rectangles; colors represent the target machines).
Each pallet carries an RFID tag providing information on its destinations, which
diverters can access through RFID readers (rectangles on conveyors). Figure 2

4 Industrial automation systems laboratory of the Automation and Control Institute,
Vienna University of Technology
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Fig. 1. Overview of the pallet transfer system
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Fig. 2. Automation agent controlling a diverter
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(a) depicts the mechatronic component realizing a diverter. It is mainly com-
posed of a switch (directing a pallet), sensors (detecting the presence of a pallet)
and blockers (preventing a pallet from moving).

Architecture of an Automation Agent In order to support the design of
distributed intelligent control software for manufacturing systems, we introduced
a generic architecture for automation agents in [17]. The architecture is depicted
on Fig. 2 (b), and consists of two software layers, in addition to the mecha-
tronic component. The low-level control (LLC) layer is in charge of controlling
the hardware. The high-level control (HLC) layer is in charge of diagnostics, of
coordination with other agents and of self-adaption based on the representation
of the world. In the case of the diverter, a “diverter agent” contains a LLC layer
responsible for moving the switch depending on the destination of on incoming
pallets, and a HLC layer responsible for , e.g, redefining routes in response to
disturbances at other components or validating sensor readings with information
from other agents. Distinguishing LLC and HLC within each automation agent
is fundamental for devices in interaction with the physical world. In our architec-
ture, the LLC is responsible for performing all necessary operations in real-time,
while the HLC is only responsible for non-functional monitoring and adapta-
tion, which might require longer computation time and interactions with others
agents or even with human operators. To enforce this layering while enabling ef-
ficient adaptation, we base our LLC on the IEC 61499 standard, enhanced with
programmable reconfigurations capabilities [22, 9].

Figure 2 (b) also depicts more precisely the four main modules composing
the inner architecture of the HLC. The world model repository contains a world
model, i.e., a symbolic representation of the world of the agent. The low-level
interface enables the HLC to monitor and to adapt the LLC. It especially pro-
vides facilities for receiving event notifications about the current operations of
the LLC and for requesting reconfiguration in the LLC. The communication
manager provides facilities for managing the communication with other agents.
The decision-making component is in charge of coordinating the reasoning about
states of the world and deciding what to do (e.g., communicate with other ma-
chines, request an operation from the LLC, issue notifications to an operator).
Event notifications generated by the LLC, by communication with other agents
or by the world model trigger the decision-making procedures.

3 World Model of an Automation Agent

The world model plays a central role in the architecture of an automation agent.
In this section, we describe its content and illustrate it using the example of the
diverter agent.

3.1 Properties

The world model has to provide two key properties. Firstly it should integrate
information about different views of the world, which are sometimes overlapping.
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It must integrate information about the state of its environment (the physical
world in which it is evolving), about the agent society (the other agents with
which it is interacting, their roles and tasks), and about its own internal structure
and processes. Clearly, this is related to reflection, so the representation of the
agent itself is a key element of the world model [17].

Secondly and most importantly, the world model must support a flexible
synchronization with the real world. In particular, it is in general not possible
to assume that the model provides a complete and up-to-date view on the real
world. We must cope with partial and scarce observations, and we use models to
compensate for the lack of direct information with assumptions about what the
state of the world should be. As a consequence, the model must be validated and
revised anytime new information is received. More precisely, it should provide
three key features:

– The detection of inconsistencies between the current world model and new
information (received from LLC or other agents). In a real world setting,
inconsistencies may arise both from inaccuracy of the model on the one side,
and from imprecision of the information sources on the other side.

– The derivation of possible future states of the world and their relevant char-
acteristics (answering “what-if” questions). It should be possible to define
expectations about the future state of the world, and to plan meaningful
observations accordingly. It should also be possible to envision multiple pos-
sibilities about the future in order to be prepared for adaptation.

– The derivation of explanations from past states of the world (answering
“why” questions). Although all information about the world may not be
accessible, models can be used to explain current observations with assump-
tion about past states of the world which could not be observed directly. In
some casesw, this can trigger additional observation to confirm assumptions.
This is particularly useful for diagnosis, when root causes for failures can be
identified from reasoning on the world model.

3.2 Elements of the World Model

The world model consists of two parts. Figures 3 and 4 illustrate the world model
for the diverter agent example.

The situation model (Fig. 3) holds knowledge about the agent situation. The
situation of an agent consists both of its own characteristics and its relations to
other entities in the world. The domain models (top) are models of the type of
entities in the domain of the agent. They defines relevant classes of entities as
well as relations between entities. For our example, we define that a diverter is
connected to conveyors and can have a pallet located inside. Such concepts and
relations can be extracted from existing models, such as the one presented in
[12]. The facts (bottom) express the current knowledge about the world. Facts
are expressed using the vocabulary defined by the models. They represent an
abstraction of some meaningful aspects of the world, which can be used for
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realizing high-level control tasks. For our example, facts express that D1 is a
diverter, which is connected to conveyors C12, C25 and C33.

The activity model (Fig. 4) contains knowledge about the activities of the
agent, i.e., the events and processes occurring in the world in which the agent is
participating (as actor or observer). The classification of activities(top) models
the types of activities in which the agent can be involved. Types are defined
formally using description logic formulas and are organized hierarchically based
on the subsumption relationship [2], noted subClassOf . Primitive types are de-
fined as direct subclasses of Activity. Derived types are defined by restricting the
primitive types to take into account the actual world of the agent. For instance,
the generic type “Routing Pallet” is refined to more specific types like “Routing
palletToDS2 on C25” corresponding to the case of the diverter agent.

The expectations and observations (bottom) model the activities that are
expected and observed by the agent. Expectations and observations are defined
by the specification of a type (based on the classification of activity types) and
timing, expressed using time intervals [1]. Expectations are linked by depen-
dencies, indicating how observations on one expectation can have consequences
on other expectations. For instance, it is expected that “Routing palletToDS2
on C25”, taking place between t0 and t1, requires both that “Observing Pallet
entering from C12” takes place at t0 and “Observing Pallet leaving to C25” takes
place at t1 (with a given tolerance). Additionally, it is expected that this activ-
ity would be prevented by “Detecting Switch Failure” during the same interval of
time. Assuming that a pallet P123, with destination DS2, enters the diverter, an
observation is added to the model, indicating that the activity “Observing P123
entering from C12” takes place at time 15.

3.3 Runtime Synchronization

The world model, and in particular the model of expectations and observations
about activities, is synchronized incrementally, whenever new information is re-
ceived from the LLC or from other agents. It is thus constantly evolving at
runtime to reflect the current knowledge about the world as well as the current
expectations that could be derived from this knowledge. Conversely, the changes
in the model can be reflected in the underlying software, especially thanks to
the LLC reconfiguration abilities.

Figure 5 depicts the general workflow for updating the model:

1. Integration. Whenever new information about the world is available, it is
integrated in the world model by expressing the related type of activity and
timing.

2. Identification. Forming a new observation requires identifying how it relates
to existing expectations in the model. A matching is performed using the
type and timing information. In case no expectation can be identified, an
anomaly is reported.

3. Propagation. The addition of a new observation may trigger the creation
of new expectations, Propagation occurs by considering dependencies be-
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Fig. 5. Runtime synchronization of the world model

tween expectations and creating new expectations if needed. At this step,
inconsistencies may be detected.

4. Scheduling. When new expectations are added to the world model, new
decision-making tasks may be added to reflect them. We use monitoring
tasks to trigger observations based on timing constraints (typically, these
are observations about something that did not happen). Action tasks trigger
external actions, either from the LLC or from other agents.

5. Activation. Relevant changes and anomalies in the activity model are noti-
fied to the decision making component, which is in charge of initiating the
appropriate actions. Typical actions are setting up a communication behav-
ior (i.e., initiating/terminating an interaction or cooperation protocol with
other agents) or a LLC feature (i.e., adding/removing components in the
LLC).

4 Results and Lessons Learned

We used the automation agent architecture and the world model as a basis
for designing flexible manufacturing systems. In this section, we summarize our
results by giving an overview of tasks involving the world model at runtime. We
then discuss some important points and lessons learned.

4.1 Benefits of using a Model at Runtime

We designed the automation agent architecture and its world model to be generic
and to apply to different classes of problems. Indeed, we could address several is-
sues in a flexible manufacturing system using the model described in the previous
section.
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Detection of anomalies When interacting with the physical world, we are
constantly faced with anomalies, disturbances and failures. Detecting anomalies
before they cause more critical disturbances and failures is a definite advan-
tage. Using its world model, an automation agent is able to detect anomalies
which would otherwise be unnoticed by classical control software. For instance,
we showed in [18] how an automation agent models its expectation about the
completion of a transport task, and monitors relevant sensors to verify it. In case
the sensor reading does not occur as expected, an anomaly is raised, indicating
that a pallet is possibly stuck, or that the sensor in not working properly. Such
a mechanism also benefits from the decentralized approach, enabling scalability
and direct detection close to the relevant hardware.

Online diagnostics To enable the robust operation of a flexible manufacturing
system, diagnostics and fault-recovery mechanisms are needed. The presented
world model is especially helpful for the identifications of causes for a failures,
and supports searching for explanations when an anomaly is observed [11]. This
mechanism relies on defining expectations that could lead to the observation,
and trying to verify them. Several directions can be exploited for verifying an
expectation, for instance self-testing (e.g., trying to detect if a pallet was stuck
by moving the switch to release it) and cooperation with other agents (e.g.,
asking a neighboring agent whether it detected a pallet which seems lost).

Runtime reconfiguration One of the most advanced features of a flexible
manufacturing system is runtime reconfiguration, which is especially helpful to
address challenges posed by an heterogeneous and continuously changing envi-
ronment. As an example, in a pallet transport system, a destination may become
unreachable due to the unexpected breakdown of a component. In order to keep
the system running, we have studied solutions based on local reconfiguration,
enabling conveyor belts to run in the opposite direction and intersections to
modify their routing behavior. This requires a profound reconfiguration of the
low-level control software, which our architecture allows. As presented in [9], the
world model is directly involved in this task, both for identifying the need for
reconfiguration and for preparing reconfiguration operations.

4.2 Lessons Learned

Besides the presented benefits, we can point out some lessons learned. They
underline some important issues about the usage of models at runtime with net-
worked physical devices, such as the ones encountered in a flexible manufacturing
system. We identify three main challenges:

Challenge 1: Modeling dynamic aspects of the world. For dealing with
a physical system, modeling dynamics is very important. A static view, even
if regularly updated, is insufficient, as relevant information may not be acces-
sible or integrated it in a timely manner. Modeling dynamic aspects enable
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to obtain information from reasoning rather than from direct observation.
Models and formal methods for managing time, time dependencies [21] as
well as time imprecision are required.

Challenge 2: Synchronizing models incrementally. Physical devices op-
erate under time constraints, and real-time execution is often incompatible
with expensive model-based representation and reasoning. In order to cope
with time constraints, we adopted an approach in which a fast LLC is fully
responsible for performing all the functional operations of the system, while
the slower HLC only performs complementary tasks to adapt and improve
the behavior of the system. We found this approach suitable, but it also
brings new challenges in terms of how the world model can reflect the reality
while having only intermittent access to information from the world, and
how it can synchronize to the real-world. Incremental synchronization of a
model at runtime is essential [19].

Challenge 3: Integrating models in evolving systems. Working with net-
worked physical devices requires the management of fragmented models
over distributed agents. Moreover, large-scale systems require components to
evolve independently. Ontologies are a general solution for interoperability
[13], but are often unsuitable at runtime, since processing is overly complex.
Considering that the system is rarely open, we consider just-in-time model-
based generation of adapters and ad-hoc classifiers as more efficient, while
ontologies provide a suitable abstraction for designers at design time.

5 Related Work

Model-driven engineering in gradually taking up in manufacturing systems [16].
However, these efforts mostly focus on models at design time, and do not seek
to address issues regarding flexibility and robustness at runtime.

Previous works on using models at runtime are therefore highly relevant to
our work. The general approach of using reasoning on a model to reconfigure a
component-based system was already described by Oreizy et al. [14]. More recent
effort have been focusing on modeling variability and adaptation in this approach
in a generic way [5], providing a basis for the specification and validation of dy-
namic adaptive systems. One of the shortcomings for a direct application of
such solutions in our domain is the lack of modeling of the dynamic behavior
of the system, which we require for anticipating future states, detecting anoma-
lies, as well as diagnosing past states in the presence of limited observations.
Some works address more directly the behavioral modeling of some aspects of a
dynamic adaptive system [20], as well as model-based runtime detection of er-
rors [6]. However, we are not aware of a general solution for modeling activities
among a distributed system of networked devices, which is required in our case.

6 Summary

In this paper, we presented an approach in which automation agents use mod-
els for efficiently monitoring and adapting the software controlling mechatronic
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devices. Each agent manages a model integrating a representation of itself, of
its environment and of the agent society, and enabling it to detect inconsisten-
cies, to envision possible future states and to create explanations based on past
states. We detailed the generic architecture and the model we use for represent-
ing the world of an agent. This model features a static part, called the situation
model, and a dynamic part, called the activity model. One essential feature of
our approach lies in the incremental synchronization of the activity model using
information from low-level control software and from other agents.

As a further contribution of this paper, we presented results and lessons
learned in this work. We have showed that the proposed approach using a model
at runtime is the basis for monitoring and adapting control software in a flexible
manufacturing systems. It provides significant improvement in terms of flexibil-
ity, robustness and performance. However, we point out that this approach raises
new challenges regarding modeling dynamic aspects of the world, synchronizing
models incrementally, and integrating models in evolving systems. Although our
work partially addresses this challenges, further research in these directions is
needed.
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Abstract. Development, debugging and test of embedded systems get
more and more complex due to increasing size and complexity of im-
plementations. To dominate this complexity, nowadays designs are often
based on models. However, while the design is on model level, the mon-
itoring and debugging are still either on signal or on code level. This
paper presents a continuous concept that allows monitoring and real-
time recording of executions on reconfigurable hardware at model level.
Besides developed hardware debugger modules, a development environ-
ment has been integrated. It allows on model level generation of the
implementation, control of the recording and monitoring at runtime and
visualization of the execution. An algorithm, running in the background,
maps acquired data from the hardware to the model and commands from
the model-based development environment to the hardware. The method
is demonstrated using the example of statechart diagram monitoring.

Keywords: debugging, model-based control, monitoring, back annota-
tion, real-time recording

1 Introduction

In software and hardware development costs, time-to-market and quality are
often contradicting to each other, which increase with the complexity of the
system. The complexity arises mainly by the increasing demands in terms of
functionality, energy efficiency and the ongoing integration on hardware. This
affects especially the possibilities to monitor embedded systems at runtime. To
dominate the increasing complexity, more and more abstract approaches for
the development of embedded systems come up. One option is model-based de-
velopment using graphical languages, for example Unified Modeling Language
(UML)[1], statecharts[2] or signal flow graphs[3]. These models can be used to
automatically generate source code for programming embedded systems.

To preserve the benefits of flexible development and simultaneously achieve
high performance, reconfigurable hardware devices (e.g. Field Programmable
Gate Arrays - FPGAs) are deployed. These offer the possibilities to implement
algorithms in hardware and parallel execution, to gain more computing power.
However, developing reconfigurable systems is more complex, especially in the
area of debugging and testing with regard to real-time conditions.
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The challenge is to combine these domains into a continuous model-based
development process that allows debugging and monitoring on model level [4].
In a previous paper [5] an initial concept for model-based debugging of recon-
figurable hardware has been presented. The paper focused mainly on the overall
concept and the on-chip hardware architecture for real-time recording. This pa-
per presents an advancement of the concept and focuses on the control of the
functionality at runtime and the mapping between the different abstraction lev-
els. In this context, the next chapter describes the state of the art in terms of
monitoring and debugging reconfigurable hardware. In Section 3 the concept
allowing model-based debugging on reconfigurable hardware is described, while
Section 4 gives a brief overview of the on-chip architecture. The following sec-
tion focuses on the software used for instantiation and runtime control. Section 6
introduces the method to achieve a mapping between hardware implementation
and model to allow back annotation to model level and control of the debug-
ging. The next section shows carried out tests and their results. We close with
conclusions and outlook on future work in Section 8.

2 State of the Art

2.1 Simulation vs. Debugging

In the FPGA development process simulation[6] and debugging[7] are used for
the identification of errors. Simulation, compared to debugging, has the advan-
tage that a hardware system is not necessary, therefore it can be performed
earlier in the development process. Using simulation, all signals of the design
are directly accessible and their behavior can be displayed. Using debugging,
the access to internal signals is limited, because the signals need to be either
recorded on-chip (limited memory) or forwarded to output pins (limited num-
ber) for external processing. In general, an embedded system exists in context of
its peripherals and surroundings. In a simulation all these need to be additionally
integrated and it is very complex to consider all parameters. Therefore, there
is always an uncertainty if the simulation represents the real system. With de-
bugging, peripherals and surroundings are present in the real system and do not
need to be simulated. In addition, using simulations it is difficult to determine
non-functional parameters, for example real-time conditions or performance.

2.2 Debugging Reconfigurable Hardware

For debugging FPGAs [8] it has to be mainly distinguished between real-time and
non real-time debugging. In the latter, breakpoints3 stop the clock of the design
under test or it is executed step by step. When the design stops, the status of
the on-chip registers is read back and interpreted to determine the system state.
Disadvantages are that performance and timing cannot be analyzed and it is not
possible to obtain the status of signals before stopping the system. For real-time

3 Configurable event triggered by a set of conditions that halt the system
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debugging essentially two different methods exist: the first forwards the signals of
interest to output pins of the FPGA. Recording and processing is performed by
external hardware (e.g. digital logic analyzer). The number of signals is limited,
because every signal requires an extra output pin. The advantage is that on-chip
logic or memory is not needed. The second option integrates additional on-chip
modules to record the signals and transfer the data via an interface to a PC.
An example is ChipScope[9] by Xilinx, it stores the signal flow in on-chip Block-
RAM and transfers data via the JTAG interface. This method can record many
signals, but recording time is limited by on-chip memory.

All discussed debuggers work and get controlled during runtime on signal
or code level, i.e. breakpoints or trigger conditions for recording are set with
respect to the signals in the design. This it is not suitable for a model-based
design process, because the developer designs the system on model level and
does not know about signals or source code, as this is mostly automatically
generated according to the developed model.

2.3 Model-based Debugging

Debugging on model level for embedded systems is possible, but not widely used.
The commercial software Matlab[10] offers model-based debugging in their State-
flow part, it allows the implementation and debugging of statechart diagrams,
but supports debugging only on special microprocessor platforms.

A general approach for model-based debugging on embedded systems has
been presented in [11], [12], [13]. These papers describe a concept which refers
to different abstraction layers in a model-based design process and a frame-
work for a modular system architecture. Also a prototype implementation and a
connection to a real-time in-circuit emulator are shown. In this paper, these prin-
ciples are extended with real-time aspects within reconfigurable hardware and
the automatic generation of the hardware debugging platform. In this context,
a mapping between model and hardware platform is developed, that addition-
ally allows the control of the debugging during runtime from model level. The
concepts of the presented debugging environment [13] are integrated in a new
developing environment that is based on model-based developing frameworks
and extended with interactive control modules.

3 Model-based Design Flow for Debugging

The development of reconfigurable systems is heading towards a model-based
design flow. Hence also monitoring, debugging and control of the debugging
needs to take place on model level. A continuous concept for debugging on model
level is depicted in Figure 1.

The flow shows on the left side the design and transformation, in the middle
bottom the execution and on the right side the mapping and debugging. In the
middle, a direct connection for model-based control is added. In the beginning,
the user designs his system using different models. In this context, the models
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ARCHITECTURE fsm_SFHDL OF Car_dominated IS

SIGNAL is_Car_dom : type_is_Car_dom;

SIGNAL PedFinished : std_logic;

SIGNAL is_Car_dom_next : type_is_Car_dom;    

BEGIN

initialize_Car_dom : PROCESS (clk, reset)

BEGIN        

IF reset = '1' THEN

is_Lights <= IN_NO_ACTIVE_CHILD;

y1_reg <= to_unsigned(0, 3);   

ELSIF clk'EVENT AND clk = '1' THEN

y1_reg <= ‘1’;
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Fig. 1. Design flow for model-based monitoring and control [10],[14],[16]

have to be sufficiently detailed to generate executable source code. This auto-
matic code generation is currently supported by various toolsets and mainly
allows the generation of C code and partly HDL code. As we examine recon-
figurable hardware, we concentrate on VHDL code. To enable debugging, the
generation process needs to implement an interface for debugging into the hard-
ware design. After generation, the design is synthesized by the FPGA-specific
tools using mapping and routing algorithms to generate a bitstream, which is
used to program the FPGA. The design, which includes the user implementation
and additional debugger modules, is executed on a FPGA. During execution in
the right branch of the process the signals of interest are captured by the de-
bugger modules. The data is transferred to a PC during monitoring or after
recording. Since the data obtained on-chip relates to signal level, it is mapped
to the model. In visualization the user can monitor the execution.

During the whole process, the user is working on model level, the interme-
diate steps are performed by algorithms. Therefore, developing, debugging and
control of the debugging take place on the same abstraction level. The automatic
interpretation and mapping of signals to the model cannot be regarded as reverse
engineering, since information from the left branch of the process is needed. It
is rather a reversal of the transformation from model to hardware.

4 On-chip Architecture

The modular architecture of the debugger modules is depicted in Figure 2. First
the recorded signals of the designs under test are buffered in a FIFO. This first
FIFO can also run in a ring buffer mode, which allows recording signals before
a trigger is released. This mode allows easier identification of the reason of an
error, because the history of events can be recorded and parts of the system
state reconstructed. After the FIFO, the data can be processed by different
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Fig. 2. Architecture of the on-chip debugger modules

compression or coding algorithms to get a reduction of the data. This processing
is optional, but allows to use on-chip memory more efficiently and record a longer
period of time. The second FIFO stores the data into on-chip memory, before
it is transmitted to a PC using a communication interface. This architecture is
described in more detail in [5]. In comparison to the original design, the Pseudo-
Random-Generator is excluded and the coding and compression unit is shirked
to decrease the use of logic resources. The DDR-Interface is no longer supported,
because of its speed in comparison with internal memory in the actual system.

Besides recording, a direct monitoring of the design signals is also possible,
since the transmission is independent of the recording. In this mode compression
is bypassed and the FIFOs are directly read out. However, a restriction is the
bandwidth, which depends on the speed of the interface to the PC and the
processing in the model-based development environment. Therefore, real-time
monitoring is only possible within small systems with few signal changes.

The debugger is managed by the controller, which is a small microprocessor.
It monitors the status, controls recording and the design under test as well as
communicates with the PC. To control the design under test, its clock enable
and reset signal can be changed, which allows to stop and reset the design inde-
pendent of the debugger modules. As inputs, trigger modules monitor signals of
the design under test on the occurrence of certain conditions to start or stop the
recording. The modules can trigger on edges or conditions of signals as well as
compare signals to other signals or with fixed values. The trigger module can be
repeatedly instantiated to allow complex chained comparisons. Additionally, the
trigger conditions can be modified at runtime, switching integrated multiplex-
ers or changing memory cells. The controller also communicates with the PC,
receiving commands for control and transmitting recorded data. The design has
been extended by a timer module to enable time-based recordings.
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5 Software and Model-based Control

For model-based generation of the platform, visualization of the execution and
control of the debugging at runtime a model-based developing environment
has been implemented. The environment is build on Eclipse[14], extended with
the Eclipse Modeling Framework (EMF) and Graphical Modeling Framework
(GMF) for model-based design and the xPand framework for code generation.

Fig. 3. Meta model for statechart diagrams with monitoring extensions

With regard to statecharts in the first step, a meta model has been developed
(Figure 3). As we use Eclipse the meta model is based on the Ecore meta meta
model. The meta model relies on the design of statecharts in Matlab Stateflow
to get the opportunity to convert Matlab files into the developed IDE. It is
similar to the UML statechart meta model [1], but simplified concerning states
and transitions. The additional class VariableData keeps the inputs, outputs
and internal variables that are used within the statechart for communication.
All main classes, namely Node, Transition and VariableData have an attribute
id, which allows direct identification of the individual element. The classes on the
bottom show enum-classes defining different types of elements within the meta
model. The additional visualization classes (... Vis) store layout information, if
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a Matlab Stateflow model is converted. The flag monitor integrated in the class
State and VariableData is used during the generation of the platform to specify
the monitored instances.

According to the meta model, three models are created in the GMF-framework
concerning the graphical editor on model level. The first model describes the
palette in the editor, i.e. the tools that are available to modify the model. In
the example, there are tools to draw simple states, xor-states, and-states and
junctions as well as transitions between states. The second model, the gmfgraph
model, describes the graphical representation of the elements in the model, i.e.
their shape, color etc. The last model layouts a mapping between the three mod-
els, it creates a connection between elements in meta model, tools and graphical
representations. After creation of these models a model-based IDE can be gen-
erated by the framework. The result is depicted in Figure 4 (middle and left
part). In the middle, is the modeling area with the tool palette and on the left
side is the project management. The windows on the bottom and on the right
are additionally implemented and explained in the next paragraph.

Fig. 4. Model-based development environment

The window on the right allows displaying all recorded data with regard to
the model. It displays in addition to the active states, which are shown in the
model, the monitored values of internal variables, inputs and outputs. The view
in the middle below can be used to visualize executions that have already been
recorded and saved to a file. The window on the right below is the controller
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for on-chip recording and monitoring. It integrates a connection to the on-chip
debugger to send commands and receive data during runtime.

The controller window allows controlling the reset and clock enable signal
of the design under test. To control the recording start- and stop-conditions
can be specified. The recording can start on the trigger, with the start of the
design or manually. However, in this context, a manual start does not fulfill
real-time conditions, because the time between the click and the actual start of
the recording in the system cannot be exactly determined. The recording can
stop either on a second trigger, on a timer or when the recording memory is full.
Using the timer the recording time can be specified with regard to the number
of clock cycles. Also the pretrigger time can be specified the same way.

Additionally, the trigger conditions are specified in the controller window.
These are described with regard to the model, for example the string in(Go)
and in(SwitchActive) would specify the trigger to release when state Go and
SwitchActive are active at the same time. The trigger can be specified accord-
ing to states, inputs, outputs and internal variables. The complexity have to
match the implemented number of trigger modules, i.e. if the trigger condition
is compound from three statements also minimal three trigger modules have to
be present in the hardware implementation. In the next step, the design un-
der test can be started, i.e. the clock enable signal is released and/or a reset
performed. When recording is finished the data is transferred and stored in a
XML file, which can be directly visualized to perform a postmortem analysis4.
This enables model-based real-time debugging, but as the parameters have to
be setup before recording, some knowledge according to the error needs to be
present.

In another option, the controller can directly monitor the execution on-chip.
The status of all recorded signals are polled every 100ms and the transmitted
data is directly interpreted and visualized. The clock in the design under test
can run continuously or controlled step by step to enable slow execution. No
real-time debugging is possible using direct monitoring, because it only allows
either slow execution (step by step) or slow monitoring (every 100ms).

6 Mapping of Model and Hardware Implementation

In a model-based development process the design of the system is on model level
and the source code for programming is mostly automatically generated from
the model. If there is an error in the system, the user wants to monitor and
debug his system on model level - the same level it has been designed. However,
the data on a FPGA relies on signal level, therefore a mapping between model
and hardware is needed. In addition, in a FPGA internal signals representing
model elements are not directly accessible, therefore during generation of the
system an adapted debugging interface needs to be integrated.

The design flow for generation of the platform and mapping of model and
hardware system is depicted in Figure 5. In the example Matlab Stateflow is

4 Analysis that is performed after an expected event (e.g. an error / a system crash)
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used to design the statechart diagram and the Matlab HDL-Coder to generate
the VHDL code, which represents the functionality of the statechart. If the
model is designed and the VHDL code generated, both is load into the described
development environment (see Section 5). The Matlab file is converted to an
EMF model file which is based on the meta model shown in Figure 3. For efficient
use of the FPGA resources in the next step the user can specify in the model
the monitored elements.

According to the specifications in the model, the (by Matlab) generated
VHDL code is extended to enable monitoring of inner states and variables.
Transitions cannot be monitored directly, but as they form connections between
states, according to changes from one state to the next, the used transition can
be determined. The monitored signals are grouped together into two vectors,
one for recording and a second for the trigger, and integrated as outputs in the
VHDL code. The debugger modules are connected to the statechart module by a
generated interface file. The interface is a top level VHDL structural description
and connects signals from outside to signals in the design and specifies signals
between the debugger modules and the statechart module. As all names of the
signals are known or read from the Matlab file, the interface file can be directly
generated.

5th Workshop on Models@run.time at MODELS 2010 104



To get the mapping between signals and types in the VHDL file and elements
in the model, an algorithm has been developed. This algorithm uses the fact,
that in the VHDL code all signals and types have the same name as in the
model and that all states in a composite state are grouped together. Therefore,
as the model and VHDL always follow the same principles the mapping can
be identified. This mapping is stored in a XML file, because it is needed later
during debugging. The file contains the name, position, size and the function of
the signals in the vectors with regard to the elements in the model. The file also
contains general information concerning the model, which later allows later an
easier identification.

The generated VDHL code is in the next step synthesized by FPGA specific
tools to generate a bitstream, which is integrated on the hardware. When the
design is executed the debugger modules record the specified signals. The de-
bugger modules are independent of the model and all signals, as described, are
forwarded to the debugger in a vector. Therefore, during debugging additional
information is needed for visualization of the execution on model level and con-
trol of the debugging (e.g. setting the trigger conditions). This information is
contained in the XML file generated in the previous step. Therefore, the user
can debug the system on model level and control the debugging according to the
model notation. The back annotation of the recorded signals to the model and
generation of control commands is performed by algorithms in the background
using the mapping information.

In general, the back annotation from hardware to the model follows the
same principles as the back annotation in a general software debugger [15], af-
ter transmitting the data gained on low level, it is combined with the mapping
information to get a representation on high level. However, with respect to re-
configurable hardware it needs to be regard that processes can run in parallel
and that a single element in the model can be represented by many signals. Also
the coding and interpretation of the signals (binary, high-active, low-active, ...)
according to the status of the elements in the model needs to be considered.

7 Integration and Test

Different tests have been carried out to evaluate the functionality and integrity
of the depicted method and platform. The tests are mainly performed using a
development board, including a Xilinx Virtex II Pro FPGA [16] as well as inter-
faces for communication and programming. The size of the debugger modules is
variable and depends on the number of signals for recording and triggering as
well as the possible recording length. It also depends on the number of trigger
modules (i.e. the possible complexity of the trigger condition) and the type of
compression unit.

Different designs were evaluated from small models used with minimal de-
bugger modules up to large systems recording 128 signals. A common example is
described in more detail. It is based on a model, which describes the traffic light
system at a crosswalk and includes 14 states, 1 input, 2 outputs and 2 internal
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variables. The model is designed in Matlab Stateflow and according VHDL code
generated. Both is load in the model-based development environment (see model
in Figure 4). In the example every element in the model is selected for record-
ing. After specification the according VHDL and XML files are generated. The
VHDL design is integrated on the FPGA using the Xilinx ISE design suite, some
additional adjustments are carried out according to the FPGA, the clock signal
and external connections. The debugger modules record altogether 32 signals at
100MHz with a depth of 1024 clock cycles. Therefore, the recording data rate is
3.2Gbit/s. After recording or during monitoring the data is transferred to the
PC using a RS232 interface. In the example the debugger modules use approx-
imately 4% of the FPGA resources. The debugger does not include coding or
compression, which would significantly increase FPGA resources.

During debugging the development environment connects to the debugger
modules on the FPGA using the integrated RS232 interface. The XML file pro-
vides a mapping between the hardware implementation and the model and allows
the user to control the debugging according to the crosswalk model. Further, the
XML file is used to visualize the internal execution of the system in the model,
highlighting active states and displaying the value of inputs, outputs and in-
ternal variables. Besides the real-time recording and postmortem analysis the
system could be directly monitored during runtime. The transmission, interpre-
tation and visualization of the status of 32 signals in the design every 100ms
are performed without any timing problems. However, this is only a data rate of
320bit/s, therefore there is no real-time monitoring possible. In another design -
with 128 signals - the transmitting interval even needed to be reduced to 250ms
to process the data before the next is transmitted, the most of that time thereby
is consumed by the graphical visualization.

8 Conclusion and Outlook

A method for model-based real-time recording and monitoring on reconfigurable
hardware has been presented. Therefore, the possibilities of an abstract and
complex functional and algorithmic inspection of reconfigurable system have
been increased. In comparison with present techniques, the user does not only
develop on model level, but can also debug and monitor as well as control the
debugging on the same level. All intermediate steps from the model to hardware
implementation and vice versa are carried out automatically by algorithms.

The underlying hardware modules are capable of monitoring and real-time
recording as well as independent of the reviewed model. The debugger pro-
vides high modularity and adjustability during runtime, allowing several ways
to identify causes of errors without re-synthesizing the design. The integrated
development environment allows automatic integration of the debugger using a
generated interface, control of the debugging during runtime and visualization
of the execution - all on model level. The algorithms in the background convert
the received data from hardware to model level and convert the commands from
model level to hardware.
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In future, there will still be many developed modules on code level, there-
fore the concept could be extended to allow mixed debugging on model, code
and signal level. According to the software, the integration of breakpoints on
model level could be added allowing more specific debugging scenarios. Also the
configuration of the debugger in terms of the compression and complexity of
the trigger condition, which is at the moment performed in the VHDL code,
could be integrated into software. In addition, the IDE will be extended to allow
complete code generation of statechart diagrams to get independent of Matlab.
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Abstract. Engineers of complex industrial automation systems need
engineering knowledge from both design-time and runtime engineering
models to make the system more robust against normally hard to iden-
tify runtime failures. Design models usually do not exist in a machine-
understandable format suitable for automated failure detection at run-
time. Thus domain and software experts are needed to integrate the frag-
mented views from these models. In this paper we propose an ontology-
based engineering knowledge base to provide relevant design-time and
runtime engineering knowledge in machine-understandable form to be
able to better identify and respond to failures. We illustrate and eval-
uate the approach with models and data from a real-world case study
in the area of industrial automation systems. Major result was that the
integrated design-time and runtime engineering knowledge enables the
effective detection of runtime failures that are only detectable by com-
bining runtime and design-time information.

1 Introduction

Complex industrial automation systems need to be flexible to adapt to changing
business situations and to become more robust against relevant classes of fail-
ures. Production automation systems consist of components, for which a general
design and behavior is defined during the design phase, but much of the specific
design and behavior is defined during implementation, deployment, and runtime
with a range of configuration options. The educational process plant is used to
simulate complex industrial batch processes (like refineries, breweries, or phar-
maceutical plants). It consists of two tanks holding the process fluids. The liquid
level of the tanks are checked by several analog and digital sensors. The lower
tanks also contains a pump which either transports the process fluid into the
upper tank, or is used to mix up the process fluid in the lower tank. Also the
lower tank contains a heater and a temperature sensor to heat the process fluid
to specified temperatures. Figure 1 shows on the left hand side an image of the
real system, while the right hand side of the figure displays a simplified version of
the underlying data model of the educational process plant. Additionally, some
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Fig. 1. Educational Process Plant - real system and underlying data model

of the data models elements have been colored in the same color as their real-
world representation in the image of the educational process plant in order to
show the links between real-world system and underlying data model.

Engineers, who want to detect failures at runtime which can not be compassed
by analyzing singular sensor values or failures at sensor-less components (e.g.
broken actuators which are not monitored by a sensor), need information from
software models that reflect dependencies between components at design and
runtime, e.g., the workshop layout, recipes and production procedures. During
development design-time software models (representing electrical, mechanical,
and software engineering models), like data-oriented models (e.g., EER models or
P&ID1 (Piping and Instrumentation) diagrams [8]) or work flow-oriented models
(e.g., sequence diagrams or state charts) are the basis to derive runtime models
but are often not provided in machine-understandable format to reflect on fail-
ures at runtime, i.e., the knowledge is kept in an explicit human-understandable
way but cannot be accessed by components automatically. Domain and software
experts are needed to integrate the fragmented views (e.g., propagating model
changes into other models, cross-model consistency checks) from these models,
which often is an expensive and error-prone task due to undetected model in-
consistencies or lost experience from personnel turnover.

Practitioners, especially designers and quality assurance (QA) personnel,
want to make complex industrial automation systems (which like the educa-
tional process plant consist of components defined by general design-time be-
havior, derived runtime configuration, and runtime specific behavior enactment)
more robust against normally hard to identify runtime failures. QA people could

1 Industrial standard for P&IDs: IEC 61346: Industrial systems, Installations and
Equipment and Industrial Products Structuring Principles and Reference Designa-
tions
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benefit from more effective and efficient tool support to check system correct-
ness, by improving the visibility of the system defect symptoms (e.g., exceptions
raised from assertions).

Challenges to detect and locate defects at runtime come from the differ-
ent focus points of models: e.g., components and their behavior are defined at
design time, while configurations may change at runtime and violate tacit en-
gineering assumptions in the design-time models. Without an integrated view
on relevant parts of both design-time and runtime models inconsistencies from
changes and their impact are harder to evaluate and resolve between design and
runtime. Better integrated engineering knowledge can improve the quality of de-
cisions for runtime changes to the system, e.g., better handling severe failures
with predictable recovery procedures, lower level of avoidable downtime, and
better visibility of risks before damage occurs. As shown in [11], with the help
of ontologies and reasoning most of these problems can be addressed.

In this paper we present an approach to improve support for runtime de-
cision making with an ontology: a domain-specific engineering knowledge base
(EKB) that provides a better integrated view on relevant engineering knowledge
in typical design-time and runtime models, which were originally not designed
for machine-understandable integration. The EKB can contain schemes on all
levels and instances, data, and allows reasoning to evaluate rules that involve
information from several models that would be fragmented without machine-
understandable integration. The major advantage of using an ontology for rep-
resenting and querying the domain-specific engineering knowledge is the fact that
ontologies are well suited to model logical relationships between different vari-
ables in axioms which can be used later for the derivation of assertions based on
measured runtime data. We illustrate and evaluate the ontology-based approach
with two types of runtime failure (RTFs) from a real-world use case study in
the area of industrial automation systems. Major result was that the integrated
design-time and runtime engineering knowledge enables the effective detection
of normally hard to identify runtime failures.

In the remainder of the paper we survey relevant engineering models for their
contributions and limitations to support runtime decision making; we describe
a real-world case on runtime failure detection for collecting evidence to which
extent richer and better integrated semantic knowledge can translate into better
decision making.

2 Evolution of Engineering Models towards Runtime
System Analysis and Adaptation

Engineering models have evolved from means to structure complex domains
and designs at design time towards model-driven approaches that bring domain
information closer to implementation and runtime. However, systems that are
designed for adaptation at runtime need more advanced approaches to provide
relevant and accurate engineering knowledge to guide runtime system analysis
and adaptation.
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Structuring design complexity. Models are used on various levels in soft-
ware engineering: Data models like entity relationship (ER) diagrams originate
in the late 1970s [5]. With the Unified Modeling Language (UML) [3] a standard-
ized set of diagrams and modeling techniques were introduced for object-oriented
design. However, these models are mostly used initially during the design time
of a project and get seldom adapted to changes during implementation or oper-
ation.

Connecting design and implementation. There are tool providers, who
claim to support round trip engineering from design models to source code and
back. However, a stronger and more consistent integration between the design
models and the implementation phase artifacts comes from the Model-Driven Ar-
chitecture (MDA), Model-Driven Development (MDD) [16], and Model-Driven
Configuration management. There are several interesting aspects about MDD:
The models develop from high-level abstractions to concrete code over several
intermediate steps. The initial model can be a general UML model or a domain-
specific language model. In MDD (opposed to earlier modeling approaches) the
model is used also in the implementation phase, i.e., used to create platform-
specific code, but is not used at runtime. There also exist approaches for using
MDA for the engineering of automation systems. Melik-Merkumians et al. [10]
present an approach that separates between logical control applications and the
plant model. The logical control application models the intended behavior of
the control application in a target independent way. The plant model defines
the control devices, their abilities, and their interconnections (e.g., communica-
tion system). By mapping both models together the control code executed in
the control devices with their hardware specific parameters can be generated
automatically.

Connections between design, implementation, and runtime. Tradi-
tional software engineering approaches mostly focus on the development phase
and see configuration management (CM) as a support task. However, CM is an
example model that is valuable at design time, implementation, deployment, and
runtime. Some approaches thus suggest including CM and application life cycle
management (ALM) into the MDD concept [6].

Runtime needs of distributed reconfigurable software-intensive sys-
tems. Ahluwalia et al. [1] observe a shift from ”monolithic to highly networked,
heterogeneous, interactive systems” that has led to a ”dramatic increase in both
development and system complexity”, where at the same time the ”demands for
safety, reliability, and other qualitative attributes have increased across applica-
tion domains.” Oreizy et al. [14] additionally mention the necessity of ”runtime
evolution” of modern multi-user, distributed systems. Today many deployed ap-
plications gradually evolve over time (ideally without downtime for users) rather
than undergo ”big bang” version updates. Examples for such applications are e-
Commerce Services like Online-Banking applications as well as most ”Web 2.0”
applications. The problem gets particularly critical in domains like distributed
real-time and embedded systems as in automotive and production automation
industry applications.
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Feedback of runtime experience to design. An underlying trend is to
bring development activities closer to the runtime environments, i.e., using data
from the deployed system for engineering purposes (e.g., QoS parameters). Ad-
ditionally, we observe more intensive research activities [17] to design and apply
MDD where the models do not stop at development but also support the runtime
environment of the system. Recent research investigates mechanisms towards au-
tomatic runtime failure detection [17] and ultimately self-healing systems. Garlan
et al. [6] describe model-based approaches for self-healing autonomous systems
with a similar idea: remove the traditional separation between system creation/-
modification and runtime environment with an integrated approach. The authors
particularly point out that system-internal exception handling and configuration
(hence not always easy to change) is problematic in many modern systems as
they are designed to run continuously, and also updates and reconfiguration
should be done without system shutdown.

Ontologies for connecting design-time and runtime data models.
An ontology is a representation vocabulary for a specific domain or subject mat-
ter, e.g., production automation. More precisely, it is not the vocabulary as such
that qualifies as an ontology, but the (domain-specific) concepts that the terms in
the vocabulary are intended to capture [4]. The infrastructure of MDA provides
architecture for creating models and meta-models, defining transformations be-
tween these models, and managing meta-data. Although the semantics of a model
is structurally defined by its meta-model, the mechanisms to describe the seman-
tics of the domain are rather limited compared to machine-understandable repre-
sentations using, e.g., knowledge representation languages like RDF2 or OWL3.
In addition, MDA-based languages do not have a knowledge-based foundation to
enable reasoning (e.g., for supporting QA), which ontologies provide [2]. Beyond
traditional data models like UML class diagrams or entity relationship diagrams,
ontologies provide methods for integrating fragmented data models into a com-
mon model without losing the notation and style of the individual models [7].
The usage of ontologies for knowledge representation and sharing, as well as
for and high-level reasoning could be seen as a major step towards the area of
agent-based control solutions [13]. Exploitation of semantics and ontologies in
the area of agent-based industrial systems has become one of the major research
areas in the last few years, primarily because of the success and promotion of
semantic web technologies to enable better communication between machines
and people [15]. Ontologies are considered here as an essential technology for
semantic web development guaranteeing data and information interoperability
in heterogeneous and content-rich environments [12].

3 An Integrating Engineering Knowledge Base

In this section, we introduce the Engineering Knowledge Base (EKB), a set
of relevant information elements about components in machine-understandable

2 Resource Description Framework: http://www.w3.org/RDF
3 Web Ontology Language: http://www.w3.org/2007/OWL
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Fig. 2. An Engineering Knowledge Base in Context

format using ontology syntax. Components can query the EKB at runtime to
retrieve information for detecting normally hard to identify failures or implau-
sibilities of the current system.

Figure 2 illustrates 3 major phases in the life cycle of complex industrial
automation systems:

1. Design time: Models that describe the automation system layouts, the recipes
of the manufactured products, etc. are transformed into executable program
code and design-time configuration instructions.

2. In the Deployment phase, the executable program code is deployed into
installable packages and the runtime configuration is derived from the design-
time configuration.

3. At runtime the deployed program code for system operation gets installed to
a set of components and the runtime configuration gets injected into these
components.

This architecture has proven effective for systems whose properties change sel-
dom, since the effort needed for transformation, deployment, and injection is
considerable.

However, typical complex industrial automation systems also suffer from fail-
ures, e.g., if some components fail or become unavailable. To support failure de-
tection, the components need to be able to perform decisions at runtime, since a
complete new iteration of model transformation, program code deployment, and
configuration injection would take too long. A major challenge of runtime failure
detection is to provide access to relevant design-time information that is usu-
ally stripped away during transformation for efficiency reasons. The Engineering
Knowledge Base (EKB) provides a place for storing design-time information that
seems valuable for supporting runtime failure detection of components, especially
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Fig. 3. P&ID of the Educational Process Plant

in the case of handling failures or unplanned situations (but not transformed into
runtime code or configuration to limit their complexity).

Components can query the EKB at runtime with semantic web query lan-
guages like SPARQL4 (SPARQL Protocol and RDF Query Language) or SWRL5

(Semantic Web Rule Language), which provide to the components the full expres-
sive power of ontologies, including the ability to derive new facts by reasoning.
In addition, components can feed back interesting observations into the runtime
information collection of the EKB and therefore help to improve the design-time
models (e.g., by improving estimated process properties with analysis of actual
runtime data) and/or check the information based on a certain set of assertions.
Furthermore, valuable deployment information can also be stored in the EKB in
order to support and enhance for further deployments.

Based on the design-time information, it is possible to define a set of runtime
assertions in the EKB. These runtime assertions observe the runtime information
fed back into the EKB and can notify a specific role or system if the violation
of an assertion has been detected.

4 Real-World Use Case and Results

In this section we describe two real-world failure use cases which could lead to
equipment defects and/or waste of used production material. Especially failures
which are hard to identify by traditional means can lead to subsequent equipment
damage and decrease of process performance. Therefore the identification of such
failures is of great importance. We will show that such failures can be identified
by usage of the EKB. We will also see that the EKB can provide soft sensors by
simple (and therefore easy to implement in PLC (programmable logic controller)
programs) reasoning of process data. The runtime assertions will be given in
pseudo code samples. The assertions can be evaluated periodically, as it would
be in a traditional PLC environment, or in regard to certain events, like the

4 www.w3.org/TR/rdf-sparql-query
5 www.w3.org/Submission/SWRL
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change of a sensor value. As long as all needed sensor inputs and PLC outputs
are available and stable, the current system status is correctly mapped.

The model we use to demonstrate our failure use cases is an educational
process plant in the Odo-Struger-Laboratory6. Figure 3 shows the P&ID (Pip-
ing and Instrumentation Diagram) of the tank model. It consists of two tanks,
T101 and T102, which are on different height levels. The upper tank (T102) con-
tains an ultrasonic level sensor (B101) which measures the distance of the liquid
surface to the upper tank closure, and a float lever which represents a critical
low level of the liquid. The lower tank (T101) consists of three float levers (a
critical upper level (B114), a lower level (B104), and a critical lower level lever
(B113)), a heater (E104), and a temperature sensor (S111). The two tanks are
connected by several pipes which are opened or closed by several valves (the
symbols marked with V). Valves are usually not equipped with sensors to de-
termine their current state, due to financial reasons. The liquid transportation
from the lower to the upper tank is done by the pump P101, The actual flow
caused by the pump is measured by the flow meter (B102). Even as this process
plant is an educational model it represents a typical plant configuration in the
process industry. Listing 1 shows some of the EKB’s triples defining the tank
T101 with blabla. For a complete listing of the EKB’s triples representing the
P&ID model elements please refer to [9].

Listing 1. Example of EKB triples representing P&ID model elements

<Tank rd f : ID=”T102”>
<conta ins>

<Float Lever rd f : r e s ou r c e=”#LS−102”/>
</conta ins>
<conta ins>

<Leve l Sensor rd f : r e s ou r c e=”#LIC−102”/>
</conta ins>
<connected To>

<Pipe Connector rd f : r e s ou r c e=”#PC−B102−1”/>
</connected To>
<connected To>

<Pipe Connector rd f : r e s ou r c e=”#PC−B102−2”/>
</connected To>
<capac i ty rd f : datatype=”xml:# f l o a t ”>1000.0</ capac i ty>

</Tank>

RTF-1: Undetected valve V101 failure in the pump pipe section. In
this scenario the liquid in tank T101 shall be pumped into tank T102. Therefore
valve V104 must be closed and the valves V109 and V101 must be opened.
We now assume that one or both valves that should be open are defect and
therefore unable to get into the open position. As the control has no means to
control the position of the valves the pump P101 starts. Such a situation can lead
to the destruction of the pump, as it is either pumping against the impregnable

6 The industrial automation systems laboratory of the Automation and Control Insti-
tute, Vienna University of Technology
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Fig. 4. P&ID showing RTF-1: Undetected valve V101 failure

resistance of valve V101, or it will be soon out of water as valve V109 inhibits
further water supply, which leads to destruction by for example rotary pumps.

To avoid such equipment failure it is common to use a flow meter (B102 in
Figure 4), which can be used compare the actual flow with the anticipated flow
value. If those two values differ too much the pump can be put into an emergency
shut down. But if the flow meter is defect or the flow meter is omitted for cost
reduction, the failure can not be detected anymore. Such failures can lead to
huge costs due to equipment loss, material waste, and additional down times
and should therefore be avoided. Engineering knowledge can be used to provide
a simple rule to check the functionality of the pump system. As the upper tank
T102 has a level sensor it can be checked if the liquid level of the upper tank is
rising if the pump is activated. A more correct model would additionally be able
to determine if the level rising is proportional to the actual pump power. Through
consequent usage of engineering knowledge such “soft sensors” (instead of a real
sensor the value has been calculated from the process model) can be created.
By comparison of the measured and calculated flow value the system can also
determine if the flow meter or the pump is behaving as expected. Listing 2 shows
this query in pseudo code. For a complete listing of the query in full SPARQL
syntax please refer to [9].

Listing 2. Pseudo code query for detecting failures of V101

whi l e ( P101 . i s A c t i v e ( ) )
f o r ( B102 . getSensorEvent ( ) as x )

f o r ( B102 . getSensorEvent ( ) as y )
i f ( x . getTimestamp ( ) < y . getTimestamp ( ) )

i f ( NOT ( y . ge tLeve l ( ) > x . ge tLeve l ( ) ) )
<< r a i s e alarm >>

RTF-2: Leakage in valve V102 with subsequent material loss. Such
a failure can lead to enormous costs due to material waste, lower quality end
product (perhaps even to low to sell), and wasted production time. Especially the
wasted production time is costly as process engineering processes (like refining
and chemical processes in general) usually need long times to be completed. Such
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Fig. 5. P&ID showing RTF-2: Leakage in valve V102

failures are hard to detect by conventional alarming mechanisms, as traditional
alarms are only issued if a process value reaches a critical threshold.

In this scenario we assume that valve V102 is leaky (Figure 5), which is why
the process material in tank T102 is slowly petering out. In an ordinary control
program would only wait for a longer time until the liquid threshold defined in
the program is attained. There is no way to detect the leakage by simple sensor
or alarm processing, only well grounded personnel in the control room can detect
such a failure in a traditional PLC system.

Listing 3. Pseudo code query for detecting leakage in valve V102

whi l e (NOT ( P101 . i s A c t i v e ( ) ) )
i f (V102 . i sC l o s ed ( ) )

f o r ( B102 . getSensorEvent ( ) as x )
f o r ( B102 . getSensorEvent ( ) as y )

i f ( x . getTimestamp ( ) < y . getTimestamp ( ) )
i f ( NOT ( y . ge tLeve l ( ) == x . ge tLeve l ( ) )
<< r a i s e alarm >>

whi le ( P101 . i s A c t i v e ( ) )
i f (V102 . i sC l o s ed ( ) AND V104 . i sC l o s ed ( ) )

i f (V109 . isOpen ( ) AND V101 . isOpen ( ) )
f o r ( B102 . getSensorEvent ( ) as x )

f o r ( B102 . getSensorEvent ( ) as y )
i f ( x . getTimestamp ( ) < y . getTimestamp ( ) )

i f ( NOT ( y . ge tLeve l ( ) =
x . ge tLeve l ( ) ∗ P101 . getPumpPower ( ) ) )

<< r a i s e alarm >>

Once again the usage of engineering knowledge leads to rules capable to
detect this failure. The first rule is, if the pump P101 is not pumping and valve
V102 is closed, then the fluid level of tank T102 has to be constant. If there is
a leakage in the valve then the level would sink. Assuming that the flow meter
B102 is working correct the second rule is, if the valves V102 and V104 are closed,

5th Workshop on Models@run.time at MODELS 2010 117



and the valves V109 and V101 are open, and the pump P101 is pumping, then
the fluid level of tank T102 must rise proportional to the actual pump power.

The first rule is capable of detecting a leakage in tank T102, but the second
rule can only state that some condition is violated. The solution to this problem
is rather easy and efficient. If the second rule fires than stop pump P101 and
reevaluate rule one for leakage detection. Another benefit of this behavior is that
the material loss is limited to the content of tank T102 or stopped altogether.
Listing 3 shows this query in pseudo code. For a complete listing of the query
in full SPARQL syntax please refer to [9].

5 Summary and Further Work

In this paper we described an ontology-based approach to provide relevant
design-time and runtime engineering knowledge stored in a so called Engineer-
ing Knowledge Base (EKB). The EKB provides a better integrated view on rele-
vant engineering knowledge contained in typical design-time and runtime models
in machine-understandable form to support runtime failure detection. This ap-
proach is useful in the industrial automation domain, and can more generally
be used for other (distributed) engineering systems. We illustrated our approach
with two use cases of runtime failure detection from a real-world case study in
the area complex industrial automation systems. The use cases identified the
needs for a complex decision system for failures that are only detectable by
combining sensor information with engineering knowledge and showed a feasible
query based approach suitable for the task.

Major result of the evaluation of the proposed EKB approach was the pos-
sibility to define assertions in the EKB which are checked based on the runtime
information input of the running components. This can be seen as external Qual-
ity Assurance (QA) without interfering with the original production system and
therefore it has proven to be easier to enrich existing applications without the
need to make changes to legacy systems (smoother migration path). Further, the
quality of information presented to an operator is improved since all informa-
tion both from design-time as well as from runtime is available, leading to more
intelligent runtime analysis and decision support.

Further important practical issues are to investigate the effort needed to
import the data from the relevant models into the Engineering Knowledge Base
and improving the performance of data access and reasoning at runtime. The
use of assertions for checking QoS parameters like system throughput is open to
further research too.
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