
Separating Local and Global Aspects of Runtime

Model Recon�guration

Frank Trollmann, Grzegorz Lehmann, Sahin Albayrak

DAI-Labor, TU Berlin
Faculty of Electrical Engineering

and Computer Science
Frank.Trollmann@dai-labor.de, Grzegorz.Lehmann@dai-labor.de,

Sahin.Albayrak@dai-labor.de

Abstract. There is a growing need for applications that are able to
adapt themselves to the context of use. One promising approach for the
adaptation of an application during its execution is the use of models at
runtime. In this approach models of the application and its context of
use are kept alive during the execution. The application can be adapted
by recon�guring the structure of these models.
Model Recon�guration has local aspects as it handles the structure of a
model and has to deal with its speci�c properties. It also possesses global
aspects, as the joint recon�guration of several models is required due to
consistency considerations. This paper aims at solving possible con�icts
between the global and the local aspects of Model Recon�guration by
introducing a distinction between two Levels of abstraction that enables
the designer to separate and interrelate global and local aspects of Model
Recon�guration.

1 Introduction

There is a growing need for applications that are able to adapt themselves to the
current context of use. Especially in dynamic and personalized areas like smart
homes such adaptive applications are important as they can adjust to the user's
speci�c needs as well as her environment. Adaptations trigger changes in the
applications user interface or behavior. In [1] the need for adaptations as well as
special challenges in this �eld of research is stressed.

Adaptability results in a growing complexity of software applications and
their development. According to [2], one promising approach for dealing with
this complexity is the models at runtime approach (also called models@run.time
approach). This approach is similar to Model Driven Engineering (MDE) [3],
where the development of a software application is accompanied by the creation
and transformation of a set of models. The di�erence between these approaches
is in their goal. MDE aims to generate the �nal application code from the in-
termediate models. The goal of the models@run.time approach is to keep the
models alive at runtime. In this approach the running application results from
an interpretation of these models.



In the models@run.time approach a running application consists of a set
of models. These models represent di�erent aspects of the application and its
context of use. The applications user interface and behavior result from the
interpretation of these models within a certain framework. The advantages of this
approach for adaptations are twofold. First, the current state of the application
and its context of use can easily be retrieved by querying the representing models.
This is essential because the application is supposed to react to these states by
adapting itself. Second, a change in the structure of one or more of these models
automatically a�ects the execution of the application. Thus, the adaptation of
an application can be achieved by changing the structure of its models. We call
such a structural change a Model Recon�guration.

Some adaptations of an application require the joint recon�guration of several
models. This can be necessary if an intended adaptation is within the scope of
several models at once. Another reason for a joint recon�guration of models is
to maintain the consistency in models that partially overlap in the aspects they
represent. According to this, Model Recon�guration needs to have global aspects
that enable the designer to express joint recon�gurations of several models.

A models@run.time framework may contain di�erent models expressed in dif-
ferent modeling languages. Recon�guration techniques are often speci�c to one
modeling language. This allows them to optimally deal with the speci�c struc-
tural and behavioral properties of this modeling language. This means Model
Recon�guration also needs to have certain local aspects.

When implementing a framework for Model Recon�guration, there can be
a con�ict of interest between these local and global aspects. In this publication
we propose a distinction between a Recon�gurable Model and a Recon�guration
Model. This distinction serves to establish a separation of concern between the
local and global aspects of Model Recon�guration, which allows the designer to
model and interrelate both.

The paper is structured as follows. First, in Section 2 the problems arising
from the global and local aspects of Model Recon�guration are subsumed. Re-
con�gurable Models are then discussed in Section 3. Afterwards, our description
of the Recon�guration Model is given in Section 4. In Section 5 existing ap-
proaches to Model Recon�guration are introduced and related to the concepts
introduced in this paper. Section 6 gives a conclusion and hints to future work.

2 Problem Statement

While authors are clear about the overall goals of Model Driven Engineering,
the actual set of models required to build an application is far from �xed. One
possible set of models is described in the CAMELEON Reference Framework
[4]. Current approaches di�er in the set of used models, as well as the modeling
languages these models are described in.

The same goes for models@run.time approaches. Several possible runtime en-
sembles of models do exist and several modeling languages are used for describing



these models. Techniques for Model Recon�guration are often local to a certain
modeling language. This determines the local aspects of Model Recon�guration.

These local aspects are important because Model Recon�guration is tightly
interwoven with the structure that is recon�gured. The advantage of a recon-
�guration technique, speci�cally tailored to a modeling language, is that it can
handle or preserve certain properties, speci�c to this modeling language. One
example for such a speci�c approach is the Graph Transformation technique,
analyzed in [5]. This technique can only be applied to P/T nets. Due to this
exclusiveness it is able to preserve the �ring behavior of these net.

It is also important to change the structure of several models at the same
time. This enables the designer to treat the set of runtime models as a consistent
whole. For example, the CAMELEON Reference Framework contains three dif-
ferent models for user interfaces: the Abstract, Concrete and Final User Interface
Model. When these models are used at runtime they have to be kept consistent
with each other. This can be best done by recon�guring them jointly and thus
ensuring consistency after each recon�guration.

The set of runtime models within an application is not restricted to a �xed set
of models. In addition, the models, used within one runtime ensemble are likely to
be modeled in di�erent modeling languages. This constitutes a potential con�ict
between global and local aspects of Model Recon�guration. According to the
local aspects it is possible that the designer chooses a di�erent recon�guration
technique for each model in the runtime ensemble. These techniques are local
to their modeling language and cannot be applied the other models. This is a
problem for the global aspects of Model Recon�guration which require a joint
recon�guration of the set of runtime models.

Our approach towards these potential problems is to separate the local and
global aspects within two di�erent components. The idea is to unite each model
and its local recon�guration as a so-called Recon�gurable Model. A component,
called a Recon�guration Model, steers the global recon�gurations. This model
uses the Recon�gurable Models in order to accomplish this goal.

For this separation to work, the Recon�guration Model should be able to
abstract from the following properties of the Recon�gurable Models:

� Model Kinds: The Recon�guration Model should be independent of the kinds
of used models as well as their purpose in order to not restrict the designer
to a �xed set of models.

� Modeling Language: The Recon�guration Model should not be limited in the
set of modeling languages it is able to recon�gure. This way the designer is
free in her choice of modeling languages.

� Recon�guration Technique: The Recon�guration Model should be able to
abstract from the used recon�guration technique. This way the designer is
free in her choice of recon�guration technique.

In Sections 3 and 4 the concepts of Recon�gurable Model and Recon�guration
Model are introduced and discussed in detail.

Figure 1 shows an example for excerpts of a Task and User Interface model
which are part of a runtime ensemble. The Task Model represents the applica-



tions structure of task and subtasks. The User Interface Model represents its
user interface. These two models represent the user interface of a login window
and its part of the task tree. The user is able to input username and password
in parallel and then �nish the task �Login� by clicking on the login button.

Fig. 1. Running Example: Two Models of a Login Mask

One possible adaptation of the user interface is to show the input of user-
name and password in consecutive windows. A reason for this adaptation is the
availability of di�erent authentication protocols. In this case it is not certain
that the user needs a password to log into the system. For example, he could
also be identi�ed by the MAC Address of his devices. In this case the input of
a password becomes obsolete. Such an adaptation requires changes in the User
Interface Model and the Task Model. The user interface has to be adapted to
showing two windows. One to input the username and one to input the pass-
word. In addition the task model has to re�ect the fact that �Input Username�
and �Input Password� are now executed consecutive.

This example is oversimpli�ed as the recon�guration is really more com-
plex than indicated here. The changes in the models are more complex due to
the requirement to re�ect more than one authentication method. In addition,
other models have to be recon�gured to connect the new user interface and its
execution logic. Nevertheless, this toy example already requires the joint recon-
�guration of two models and will serve as a running example throughout the
rest of the paper.

3 Recon�gurable Model

The notion of a Recon�gurable Model is introduced in order to encapsulate
the local aspects of Model Recon�guration. In each Recon�gurable Model the
designer is able to concentrate on the structural changes of one model. In this
scope she is able to choose a recon�guration technique that suits her preferences.
In this Section the notion of a Recon�gurable Model is de�ned and discussed.

A Recon�gurable Model is a model that can be recon�gured. In addition to
the models structure it contains means for changing this structure. A scheme for a



Fig. 2. Scheme of a Recon�gurable Model

Recon�gurable Model can be seen in Figure 2. A Recon�gurable Model consists
of a Structure and a set of Recon�guration Operations. The Recon�guration
Operations can be executed, resulting in a change of the structure. A more
formal de�nition of a Recon�gurable Model can be seen in De�nition 1.

De�nition 1 (Recon�gurable Model). A Recon�gurable Model r=(S,OPs)
consists of a model S, determining the Structure of the Recon�gurable Model,
and a set of Recon�guration Operations OPs, that can be applied to change this
Structure.

The Structure S of a Recon�gurable Model is not restricted. An arbitrary
model conforming to an arbitrary meta model may constitute this structure.
Recon�guration Operations OPs represent ways to change S in a way that it
still conforms to its meta model. A more formal de�nition of a Recon�guration
Operation is given in De�nition 2.

De�nition 2 (Recon�guration Operation). A Recon�guration Operation
for a meta model MM is a function OP : M → M mapping one model, that
conforms to MM to another one. M is the set of all models that conform to MM.

A Recon�guration Operation is a function that can be applied to the current
Structure S to generate a new Structure. This operation strictly acts within the
set of models conforming to the meta modelMM of S. Thus, the Recon�guration
Operations cannot violate the conformity to the meta model. A Recon�guration
Operation can be executed from outside of the Recon�gurable Model without
any knowledge of S. For each Recon�guration Operation OP, a Recon�guration
Endpoint OP' is available which automatically applies OP to S.

While modeling a Recon�gurable Model the designer has to provide the cur-
rent Structure S as well as the set of Recon�guration Operations OPs. In prin-
cipal, any model can be used for de�ning S, regardless of its modeling language.
Based on this model and its modeling language, the designer then chooses the
most suitable recon�guration techniques to model OPs.

This process represents the standard case of producing a Recon�gurable
Model. Other variations are also imaginable. For example the Recon�guration



Operations could be generated automatically from another description of vari-
ability, like an enumeration of all possible structures.

At runtime, S is used as the initial structure of the Recon�gurable Model. The
Recon�guration Operations can be executed in order to change this structure.
These operations and their Recon�guration Endpoints enable external models,
like the Recon�guration Model, to trigger changes in S.

Fig. 3. Running Example: Recon�gurable User Interface and Task Model

In our Running example there are two models that need to be made recon-
�gurable. These are the Task and User Interface Model, introduced in Figure 1.
In Figure 3 their recon�gurable versions are depicted. In both cases the struc-
ture S consists of the models introduced in Figure 1. Each model contains one
Recon�guration Operation. In the Recon�gurable Task Model the two parallel
tasks �Input Username� and �Input Password� can be made consecutive. The
Recon�guration Operation of the Recon�gurable User Interface Model splits the
login window and distributes the input elements for username and password.

In the Figure it is not mentioned how these Recon�gurations are imple-
mented. The techniques, used in both models are independent from each other
and can be chosen by the designer. Due to the graphical representation of a
user interface she might decide to use a form of Graph Transformation in the
Recon�gurable User Interface Model. For changing one temporal operator in the
Recon�gurable Task Model she might choose an action as provided by the Ker-
Meta environment. These two Recon�guration Operations describe the changes,
required for our Running Example. However, on the level of Recon�gurable Mod-



els it is not possible to interrelate these two model changes. This is the purpose
of the Recon�guration Model, introduced in the next Section.

4 Recon�guration Model

In the previous section Recon�gurable Models as an encapsulation of the local
aspects of Model Recon�guration, are described. This section introduces the
notion of a Recon�guration Model. This model builds upon the de�nition of
Recon�gurable Models and re�ects the global aspects of Model Recon�guration.

Fig. 4. Scheme of a Recon�guration Model

A scheme for a Recon�guration Model can be seen in Figure 4. A Recon�g-
uration Model contains High Level Recon�guration Operations. Each of them
is connected to a trigger, which is responsible for determining when to execute
this Operation. The Recon�guration Model can adapt a set of Recon�gurable
Models. This is done by executing the Recon�guration Endpoints of their Re-
con�guration Operations.

The triggers serve as Guards for executing the High Level Recon�guration
Operations. Whenever a trigger �res the High Level Recon�guration Operation
is executed and calls the Recon�guration Operations it requires.

The designer models the High Level Recon�guration Operations to describe
complex joint recon�gurations of several models. The structural changes in each
model are accomplished by calling the Recon�guration Operations, provided by
their Recon�gurable Model. This represents the global aspects of Model Recon-
�guration. Inside this global description of recon�guration logics she is able to
abstract from the properties mentioned in Section 2:



� Model Kinds: The Recon�guration Model can work with any Recon�gurable
Model regardless of its inner implementation or purpose. Therefore, it is
independent of the actual set of models used at runtime.

� Modeling Language: The structure that is recon�gured is hidden within the
Structure S of a Recon�gurable Model. The Recon�guration Model only
triggers the Recon�guration Operations for changing this structure and does
not touch the structure directly. Thus, the Recon�guration Model can work
independent of the Modeling Language.

� Recon�guration Technique: The Recon�guration Model only needs a refer-
ence to the Recon�guration Operations in order to execute them. It does
not have to know how they are implemented. Thus, it can work indepen-
dent of the recon�guration technique used to describe the Recon�guration
Operations.

Fig. 5. Running Example: The Recon�guration Model

A Recon�guration Model for our running example is depicted in Figure 5.
This Recon�guration Model uses the Recon�gurable Task Model and Recon-
�gurable User Interface Model depicted in Figure 3. It contains one High Level
Recon�guration Operation, which consists of two steps. In the �rst step the Task
Model is recon�gured, using Recon�guration Operation A. In the second step
Recon�guration Operation B of the Recon�gurable User Interface Model is trig-
gered. This High Level Recon�guration Operation executes all changes discussed
in our running example.

The purpose of this publication is to propose the di�erentiation between local
and global aspects of Model Recon�guration and their separate handling by in-
troducing two levels of abstraction. The complete de�nition of both components
is still work in progress. Although a High Level Recon�guration Operation is de-
picted as a series of consecutive steps in the running example, we do not believe



this to be the �nal or best solution. Some hints on possible implementations are
given in the remainder of this section.

There are several possible ways to implement a High Level Recon�gura-
tion Operation. For example, a visual language could be used for describing the
work�ow of application of the Recon�guration Operations. Languages like UML
- Statecharts, Flowcharts or Petri Nets could be utilized for this task. Several
lessons can also be learned from the �eld of Graph Transformation, where several
means for high level transformation logic are proposed. Imperative programming
languages, like Java or C++, could also be utilized.

Before deciding on one of these alternatives a detailed analysis of the prop-
erties and control structures, required for a comfortable modeling of high level
recon�gurations has to be carried out. In the next section, related work in the
�eld of Model Recon�guration is discussed. This work is then related to the local
and global aspects of model recon�guration and the concepts introduced in this
paper.

5 Related Work

Several approaches towards Model Recon�guration have been implemented. This
section serves to introduce some of these approaches and interrelate them to the
local and global aspects identi�ed in this paper and our notion of Recon�gurable
Model and Recon�guration Model.

One of the most recognized techniques for recon�guring models is Graph
Transformation. A Graph Transformation rule searches and substitutes one oc-
currence of a pattern within a graph with another one. The concrete syntax of
several modeling languages can be described as a graph. For this reason a vari-
ation of a Graph Transformation technique is an obvious choice for structural
adaptations in these languages. A variety of applications for Graph Transfor-
mations to dynamic systems can be found in [6]. Although neither of these ap-
plications is specially applied to the recon�guration of models at runtime, they
all contain an initial structure that is recon�gured using graph transformation
rules. This is very similar to our notion of a Recon�gurable Model.

Several speci�c Graph Transformation languages do exist. These languages
are dedicated to a certain modeling language and can only be applied to models
within this language. For example, in [5] a Graph Transformation approach for
rewriting P/T nets is introduced. This technique preserves the �ring behavior of
P/T nets. This shows the capability of speci�c Graph Transformation languages
to preserve properties of the transformed models and their structure. A spe-
ci�c Graph Transformation Language can be a good choice of a recon�guration
technique to describe Recon�guration Operations.

In [7] this speci�c Graph Transformation language for P/T nets is applied to
model a �exible emergency scenario. In this publication, the initial scenario is
modeled using a P/T net and the possible changes to this scenario are modeled
as a set of Graph Transformation rules, speci�c for P/T nets. This setup is very
similar to our notion of a Recon�gurable Model. The P/T net can serve as the



current Structure S and the set of Graph Transformation rules are similar to
our Recon�guration Operations OPs.

In [8], Schürr studies approaches towards building programmed graph re-
placement systems from Graph Transformation rules. He also proposes his own
approach towards unifying these approaches. The purpose of programmed graph
replacement systems is to provide means for de�ning complex schemes of recon-
�guration out of Graph Transformation rules and thus enable the designer to
take a global view on Graph Transformation. However, an abstraction from the
concrete recon�guration technique or modeling language was out of scope for
Schürr. For this reason programmed graph replacement systems do not make
these abstractions. Nevertheless, we consider this publication to be a valuable
source of inspiration for the design and implementation of High Level Recon�g-
uration Operations.

USIXML [9] uses Graph Transformation techniques in a more general scope.
In this framework all models are described in XML. This format is used as the
basis for Graph Transformation. This enables a transformation between di�er-
ent models, used for backward and forward engineering. The approach towards
Graph Transformation taken in USIXML is also an interesting one for Model
Recon�guration as it enables the designer to describe several models as one
joint XML �le and then recon�gure them jointly. This approach captures cer-
tain global aspects. However, it can only be applied to models that are described
within an XML structure. Thus, it is not general enough to satisfy our require-
ments from Section 2.

Graph Transformation is not the only concept that has been tested within
the scope of Model Recon�guration. In [10] Morin et Al. describe their approach
towards modeling adaptive systems using models and aspects. The system is
speci�ed as a set of aspect models. They are weaved into one runtime model,
which represents the whole running application. The system is adapted by recon-
�guring the aspect models and weaving a new runtime model. This newly woven
runtime model is then compared to the old one and a script for transforming
the old into the new one is generated. In this publication model recon�guration
also clearly has local and global aspects. Recon�gurations are speci�ed for each
aspect model but are then woven into one runtime model. Global consistency
can be checked by specifying a set of consistency constraints. However, this can
only serve to check consistency after the recon�guration. In our opinion a way
for specifying how two aspects are recon�gured jointly in order to preserve their
consistency is still required.

The meta modeling language KerMeta [11] can also proof as a useful tool for
Model Recon�guration. The purpose of this language is to provide a language
that is able to model the structure and behavior of a modeling language. The
behavior is modeled by an action language. This way the designer of a modeling
language can model the structure and behavior of this language jointly. This ap-
proach can also proof interesting for model recon�guration as structural changes
of such models can also be described by this action language. The KerMeta



action language can be used as a technique for implementing Recon�guration
Operations.

In this section we introduced a selection of approaches towards runtime re-
con�guration of models. None of these approaches were explicitly able to model
all local and global aspects of Model Recon�guration. However, several similar-
ities between these approaches and the components and separation introduced
in this paper have been found. This leads us to expect that the separation and
components we introduced, even given their current level of abstraction, capture
many of the aspects, also addressed by these publications and are a good starting
point for further research towards a universal Recon�guration Model.

6 Conclusion and Future Work

This paper proposes a separation between a Recon�gurable Model, which is a
model that o�ers certain Recon�guration Operations that can be executed at
runtime, and a Recon�guration Model, which is responsible for triggering and
steering the recon�gurations in all models used at runtime. The aim of this sep-
aration is to provide an approach to Model Recon�guration that captures local
and global aspects. Local aspects are strongly interwoven with the used mod-
els and modeling languages. Global aspects concern the interrelation of several
models and their joint recon�gurations.

The Recon�gurable Model re�ects local aspects of Model Recon�gurations
and enables the designer to model Recon�guration Operations that are close
to the used modeling languages. In the Recon�guration Model the designer can
take a global view on Model Recon�guration and interrelate the recon�gurations
of di�erent models.

Several existing approaches have been analyzed regarding their capability to
capture the global and local aspects of Modeling Recon�guration. Although none
of the analyzed approaches had the �exibility to deal with all our requirements,
they had several similarities to our approach.

In the near future the notions of Recon�gurable Model and Recon�guration
Model have to be further detailed. For example, the current de�nition provides no
means for expressing additional application conditions for Recon�guration Op-
erations. For this step several sources of inspiration have been identi�ed within
the related work.

In Future Work we also plan to de�ne a speci�c language for describing Re-
con�guration Models. In Section 4 some ideas on how the components within
this Recon�guration Model can be implemented are given. These sources of in-
spiration have to be analyzed for their actual usability before a decision towards
the �nal implementation can be made. In addition to a language for express-
ing such high level recon�guration operations, a set of control structures, like
conditional or repeated application of rules has to be de�ned and formalized.

Additionally, we plan on de�ning and executing a case study with the de�ned
recon�guration language as a proof of concept.



References

1. Coutaz, J.: User interface plasticity: Model driven engineering to the limit! In:
ACM, Engineering Interactive Computing Systems (EICS 2010) International Con-
ference. Keynote paper., ACM publ. (2010) 1�8 Keynote paper.

2. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10) (2009)
22�27

3. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)
4. Calvary, G., Coutaz, J., Thevenin, D.: A unifying reference framework for the

development of plastic user interfaces, Springer-Verlag (2001) 173�192
5. Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and concur-

rency in high-level replacement systems. Math. Struct. in Comp. Science 1 (1991)
361�404

6. Blostein, D., Schürr, A.: Computing with graphs and graph rewriting. Technical
report, FACHGRUPPE INFORMATIK, RWTH (1997)

7. Ho�mann, K., Ehrig, H., Padberg, J.: Flexible modeling of emergency scenarios
using recon�gurable systems. In: Proc. of the 10th World Conference on Integrated
Design & Process Technology. (2007) 15 CDROM.

8. lim: Programmed graph replacement systems. In: In Rozenberg, G. (Ed.), Hand-
book on Graph Grammars: Foundations, World Scienti�c (1997) 479�546

9. Limbourg, Q.: Multi-Path Development of User Interfaces. PhD thesis, Université
Catholique de Louvain, Institut d'Administration et de Gestion (IAG), Louvain-
la-Neuve, Belgium (2004)

10. Morin, B., Barais, O., Nain, G., Jezequel, J.M.: Taming dynamically adaptive sys-
tems using models and aspects. In: ICSE '09: Proceedings of the 31st International
Conference on Software Engineering, Washington, DC, USA, IEEE Computer So-
ciety (2009) 122�132

11. alain Muller, P., Fleurey, F., marc Jézéquel, J.: Weaving executability into object-
oriented meta-languages. In: in: International Conference on Model Driven En-
gineering Languages and Systems (MoDELS), LNCS 3713 (2005, Springer (2005)
264�278


