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Vorwort

Der Workshop Algorithmen und Werkzeuge für Petrinetze bietet seit 1994 ein gemeinsames Forum für En-
twickler und Anwender petrinetz-basierter Technologien. Er bietet insbesondere für Nachwuchswissenschaftler
die Möglichkeit, Erfahrungen bei einer wissenschaftlichen Veranstaltung zu sammeln. Das wird unterstützt
durch den traditionell geringen finanziellen Aufwands für die Teilnahme und die deutschsprachige Ausrich-
tung, wobei auch englischsprachige Beiträge willkommen sind.

Im Jahr 2010 fand der Workshop in seiner ten Ausgabe erstmals an der Brandenburgischen Technis-
chen Universität in Cottbus statt. Veranstalter war wie immer die Fachgruppe Petrinetze und verwandte
Systemmodelle der Gesellschaft für Informatik.

Es gab 19 eingereichte Beiträge, die alle nach einer kurzen Prüfung auf sachliche Angemessenheit durch
die Organisatoren in das Programm aufgenommen wurden. Ein ausführlicher Begutachtungsprozess fand
dagegen, wie auch in den vergangenen Jahren, nicht statt.

Oktober 2010 Martin Schwarick
Monika Heiner
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Embedding the free-choice semantics of AND/XOR-EPCs into the Boolean semantics . . . . . . . . . . . . . 22
Christoph Schneider and Joachim Wehler

Modular and Hierarchical Modelling Concept for Large Biological Petri Nets Applied to Nociception 42
Mary Ann Blätke and Wolfgang Marvan

Computation of enabled transition instances for colored Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Fei Liu and Monika Heiner

Hybrid Petri Nets for Modelling of Hybrid Biochemical Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Mostafa Herajy and Monika Heiner

IDD-MC - a model checker for bounded Stochastic Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Martin Schwarick

Simulative CSL model checking of Stochastic Petri nets in IDD-MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Christian Rohr

Re-Thinking Process Mining with Agents in Mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Nils Erik Flick, Lawrence Cabac, Nicolas Denz, and Daniel Moldt

Helper Agents as a Means of Structuring Multi-Agent Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Kolja Markwardt and Daniel Moldt

PyTri, a Visual Agent Programming Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Jochen Simon and Daniel Moldt

Optimised Calculation of Symmetries for State Space Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Harro Wimmel

Reachability Analysis via Net Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Harro Wimmel and Karsten Wolf

Decidability Issues for Decentralized Controllability of Open Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Karsten Wolf

On the notion of deadlocks in open nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Richard Müller

A graphical user interface for service adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Christian Gierds and Niels Lohmann

Managing test suites for services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Kathrin Kaschner

The Petri Net API A collection of Petri net-related functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Niels Lohmann, Stephan Mennicke, and Christian Sura



Partner datenverarbeitender Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Christoph Wagner

Autorenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

VI



Universal Inhibitor Petri Net 

Dmitry Zaitsev 
 

International Humanitarian University 

Department of Information Technology 

Fontanskaya Doroga st., 33, Odessa 65009, Ukraine 

http://member.acm.org/~daze 

Abstract. The universal inhibitor Petri net was constructed that executes an 

arbitrary given inhibitor Petri net. The inhibitor Petri net graph, its marking and 

the transitions firing sequence were encoded as 10 scalar nonnegative integer 

numbers and represented by corresponding places of universal net. The 

algorithm of inhibitor net executing that uses scalar variables only was 

constructed on its state equation and encoded by universal inhibitor Petri net. 

Subnets which implement arithmetic, comparison and copying operations were 

employed.  

Keywords: universal inhibitor Petri net, universal Turing machine, encoding, 

algorithm 

1   Introduction 

It is known, that inhibitor, synchronous, priority and other extended Petri net classes 

constitute a universal algorithmic system [1,2]. For such universal algorithmic 

systems as Turing machines, there are known examples of universal Turing machine 

construction [3]. In this connection it is of a definite interest the construction of a 

universal Petri net which executes an arbitrary given Petri net that is the goal of the 

present paper. 

2   The Concept of a Universal Petri Net 

The universal net is constructed in the class of inhibitor Petri nets [1,2], the 

corresponding universal inhibitor Petri net is denoted as UIPN. Considering 

nondeterministic character of Petri net dynamics the most close analog is 

nondeterministic Turing machine [3]. 

As it is of interest the constructing of the universal Petri net with a fixed structure, 

the only way of input and output information representation is the marking of a fixed 

number of definite UIPN places. Therefore, it is necessary to give rules of a biunique 

encoding of Petri net graph and its marking by a fixed quantity of nonnegative integer 

numbers. Let there are given the corresponding encoding rules and sXIPN is the code 

of Petri net XIPN graph and sQXIPN is the code of the marking QXIPN. 
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The concept of reachable marking in Petri net implies the existence of the 

corresponding enabled sequence of transitions firing [1,2]. But the usage of only 

marking QXIPN in the definition of UIPN does not guarantee the obtaining of all the 

enabled sequences of transitions firing of the net XIPN. Let definite rules of the 

transitions firing sequences encoding are given and sZQXIPN is a code of the enabled 

transitions firing sequence ZQXIPN which moves Petri net XIPN from marking 

Q0XIPN to marking QXIPN. Then the functioning of UIPN can be represented as the 

scheme shown in fig. 1. 

 

Fig. 1. The scheme of universal inhibitor Petri net UIPN functioning. 

Definition 1. Petri net UIPN is a universal inhibitor Petri net if and only if for an 

arbitrary given inhibitor Petri net XIPN and its initial marking Q0XIPN the net UIPN 

stops in the marking (sQXIPN,sZQXIPN), where marking QXIPN is reachable in 

XIPN with the transitions firing sequence ZQXIPN and any marking 

(sQXIPN,sZQXIPN) which UIPN stops in is a code of a marking QXIPN reachable in 

XIPN from initial marking Q0XIPN with the transition firing sequence ZQXIPN. 

The requirement of the UIPN stopping possibility even in case of a nondead 

marking QXIPN of the net XIPN is connected with the provisioning the checkpoint 

(observance) of any reachable marking (and transitions firing sequence) and 

abstracting from the implementation of UIPN; otherwise it is necessary to add some 

extra restrictions for the exclusion out of the observance the intermediate markings of 

UIPN.   

3   Formal Representation of Inhibitor Petri Net 

Graph of inhibitor Petri net [1,2] is a four-tuple  where 

 is a finite number of nodes named places,  is a finite 

number of nodes named transitions and the mappings  and 

 define the input and output arcs of transitions correspondingly together 

with their multiplicity,  is the set of nonnegative integer numbers; zero value of 

mappings  denote the absence of the arc, nonzero – the arc multiplicity, the 

special value  denotes the inhibitor arc. The mappings can be represented by the 

corresponding matrices:  и . 

The state of net is named a marking and represented by the mapping , 

that gives the number of dynamic elements – tokens within places of net. Inhibitor 

Petri net [1,2] is a couple  where  is the net graph and  – its initial 

marking. The marking can be represented by the corresponding vector: 

XIPN 

Q0XIPN 

UIPN 

QXIPN 

ZXIPN 



3

. Thus, the inhibitor Petri net is given by the pair of numbers, pair of 

matrices and a vector:  N=( . 

The dynamics of inhibitor net constitutes a step-by-step process of its marking 

transformation as a result of transitions firing [1,2] and can be formally represented 

by the following system: 

 

 

 (1) 

 

The first line of the system (1) describes the marking transformation at the transition 

 firing; the function  in the second line defines the transition  enabling 

condition at the current step , the third line defines nondeterministic choice of the 

firing transition  out of the set of enabled transitions, the fourth line gives the order 

of steps sequence; auxiliary mappings   and  serve for defining the marking 

decrement and inhibitor arc recognition respectively.  

4   Encoding of Inhibitor Petri Net 

In the present section a representation of encoding of inhibitor Petri net, its current 

marking and corresponding transitions firing sequence is obtained in the form of the 

marking of 10 special places of universal net UIPN (fig. 2). The examples of nets 

encoding are shown in Appendix A. 

4.1   Encoding of a Vector 

Let  is a vector (line), containing  nonnegative integer elements; suppose that 

elements indexing is started from zero. Let also the following value is calculated 

 

The vector encoding function is defined as 

 

Statement 1. The vector encoding function is injective.  

The corresponding decoding function is represented as 
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Inherently, the defined encoding is the form of numbers representation in the radix 

notation with the  radix . 

The encoding can be implemented recursively 

  (2) 

where the code of the vector  equals to . 

The decoding can be implemented recursively also  

  

. 
(3) 

4.2   Encoding of a Matrix 

Let  is a  matrix with nonnegative integer values of elements; suppose that 

elements indexing is started from zero. Let also the following value is calculated  

 

While encoding, let us represent the matrix as a vector with the expansion on lines. 

Then the matrix  is encoded as 

 

Statement 1. The matrix encoding function is injective. 

The corresponding decoding function is represented as 

 

The encoding can be implemented recursively 

  

 
(4) 

where the code of the matrix equals to . 

The decoding can be implemented recursively also 

 

 

. 

(5) 
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4.3   Encoding of Inhibitor Petri Net Graph 

The graph is represented by the pair of matrices  and . Usually the zero value of 

the matrix element indicates the absence of the corresponding arc, nonzero – its 

multiplicity. The representation of inhibitor arcs of matrix  require supplementary 

agreements to avoid negative values. Let  is the multiplicity of arc, then for its 

representation the value  is used; the value of 1 is reserved for the inhibitor arc 

representation.  

It is reasonable the separate encoding according to (4) and storing in separate 

places the codes of matrices  and , as well as the corresponding values of . For 

the storing of the encoded Petri net graph, 6 corresponding places with names  , , 

, , ,   are used shown in fig. 2 which marking contains the values  , , 

, , ,   respectively. 

4.4   Encoding of Marking 

The marking of a Petri net containing  places is given by the vector  of size  

with the nonnegative integer components . For the storing of the marking 

encoded according to (2), 3 places with the names , ,  are used shown in fig. 2 

which marking contains values , ,  respectively.  

4.5   Encoding of the Transitions Firing Sequence 

The transitions firing sequence  of length  is represented by the vector  of size  

with nonnegative integer components , where  is the number of transition   

firing on the step . For the storing of the encoded according to (2) sequence, 3 places 

with the names , ,  are used shown in fig. 2 which marking contains values , 

,  respectively.  

 

 
Fig. 2. The representation of the Petri net and transitions firing sequence encoding. 

 

Note that places ,  are used as the parameters for the encoding (decoding) the Petri 

net graph, marking and transitions firing sequence.  

4.6   Encoding of the Enabled Transitions Set 

The enabled transitions set of Petri net is auxiliary information for the 

nondeterministic choice of the firing transition    on the current step. For 

the representation of the enabled transitions set, the vector  of size  is used which 

components are the enabling indicators  of the corresponding transitions 

n 

n 

rB 

rB 

sD 

sD 

rD 

rD 

m 

m 

sB 

sB 

sQ 

sQ 

rQ 

rQ 

sZ 

sZ 

 k 

 k 
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, calculated according to (1). Then for the encoding of , the rules of the 

vector encoding (2) are applied at  . 

5   Algorithm of Inhibitor Petri Net Executing 

On the system (1) according to the chosen way of the encoding of Petri net graph, 

marking and transitions firing sequence let us construct the algorithm AUIPN of 

inhibitor Petri net executing using C-like pseudo language:  

void AUIPN() 

{ 

 uint u, l; 

 

 inputXIPN(); 

 k=1; sZ=0; 

 while(NonDeterministic()) 

 { 

  CheckFire(&u); 

  if(u==0) goto out; 

  PickFire(u, &l); 

  Fire(l); 

  mul_add(&sZ,n,l-1); 

k++; 

 } 

out: outputXIPN(); 

} 

The following variables are used: u – the code of enabled transitions indicator, l – the 

number of the firing transition, k – the number of the current step; procedures: 

CheckFire – checking the transitions enabling conditions, PickFire – the firing 

transition choice, Fire – the firing of the transition; NonDeterministic – 

nondeterministic choice of a number belonging to the set . The algorithms of the 

auxiliary procedures mod_div, mul_add are the following: 

void mod_div(&m,&x,y) 

{ 

 (*m) = (*x) mod y; 

 (*x) = (*x) div y; 

} 

 

void mul_add(&x,y,z) 

{ 

 (*x) = (*x) * y + z; 

} 

The algorithm of the procedure CheckFire is the following: 

void CheckFire(uint *u) 

{ 

 uint i, j, qj, bij, ui, uij; 

 uint sB1, sQ1; 

 

 sB1=sB; &u=0; 

 for(i=n; i>0; i--) 

 { 
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  sQ1=sQ; 

  ui=1; 

  for(j=m; j>0; j--) 

  { 

   mod_div(&qj,&sQ1,rQ); 

   mod_div(&bij,&sB1,rB); 

   uij=1; 

   if(bij==0) continue; 

   bij--; 

   if(bij==0) uij=(qj==0); 

   else uij=(qj>=bij); 

   ui=ui && uij; 

  } 

  mul_add(&u,2,ui); 

 } 

} 

Lemma 1. Algorithm CheckFire creates the set of transitions enabled in the current 

marking. 

Proof. The algorithm constitutes the sequential computation of the vector  

components according to the second line of the system (1) and their simultaneous 

encoding (2) into the variable u after the calculation of the current component in the 

variable ui. The loop on the variable i defines the exhaustion of all the transitions, the 

nested loop on the variable j defines the exhaustion of all the places for the chosen 

transition. The order of the sequential decoding of matrix  and vector  elements 

corresponds to the order of the loops indices modification according to (3) and (5).  

The algorithm of the procedure PickFire is the following: 

void PickFire(uint u, uint *l) 

{ 

 uint ui, i; 

 

 i=0; 

 while(u>0) 

 { 

  mod_div(&ui,&u,2); 

  i++; 

  if(ui==0) continue; 

  if(NonDeterministic()) goto out; 

 } 

out: *l=i; 

} 

Lemma 2. Algorithm PickFire executes the choice of an arbitrary firing transition 

from the set of enabled transitions. 

Proof. The condition of the firing transition choice corresponds to the third line of the 

system (1) as well as to the order of the vector  decoding according to (3). For the 

nondeterministic choice of the firing transition the function NonDeterministic is used 

for the exit out of the loop. The condition  provides the loop completion after 

the last enabled transition processing which is chosen as the firing at least.  

The algorithm of the procedure Fire is the following: 

void Fire(uint l) 
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{ 

 uint rQ1, maxQ1, shift, qj, bij, dij, j; 

 uint sB1, sD1, sQ1; 

 

 sB1=sB; sD1=sD; sQ1=0; rQ1=rQ+rD-1; maxQ1=0; 

  

shift=(n-l)*m; 

 while(shift--) 

 { 

  mod_div(&b,&sB1,rB); 

  mod_div(&d,&sD1,rB); 

 } 

  

 for(j=m; j>0; j--) 

 { 

  mod_div(&qj,&sQ, rQ); 

  mod_div(&bij,&sB1, rB); 

  if(bij>0) bij--; 

  dij=mod_div(&sD1, rD); 

  qj=qj-bij+dij; 

  maxQ1=max(qj,maxQ1); 

  mul_add(&sQ1,rQ1,qj); 

 } 

 sQ=0; rQ=maxQ1+1; 

 

 for(j=m; j>0; j--) 

 { 

  mod_div(&qj,&sQ1,rQ1); 

  mul_add(&sQ,rQ,qj); 

 } 

} 

Lemma 3. Algorithm Fire implements the marking transformation as a result of the 

specified transition firing. 

Proof. The algorithm implements the recalculating of the marking according to the 

first line of the system (1) and the described way of the matrices  and the vector 

 decoding according to (5) and (3). The value of the variable shift corresponds to the 

number of the passing through elements for the positioning to the beginning of the 

firing transition line with the number l. Then into the first loop on the variable j the 

preliminary recalculating of the marking code (2) is executed into the variable sQ1; at 

that the value of rQ1 is used which provides the storing of the maximal possible value 

of the new marking element rQ+rD-2. For the avoiding the rQ growth, into the second 

loop on the variable j the final recalculating of the marking code (2) is executed into 

the variable sQ according to the actual value of the maximal element maxQ1.  

Theorem 1. Algorithm AUIPN implements the dynamics of an arbitrary given 

inhibitor Petri net.  

Proof. Let us show that the algorithm AUIPN recalculates the marking of inhibitor 

Petri net according to the system (1) and stores the employed transitions firing 

sequence. The algorithm of the step executing is represented by the loop while of 

AUIPN and completely corresponds to the system (1). At the beginning, the 

procedure CheckFire determines the enabled transitions set and forms the code (2) of 

the corresponding enabled transitions indicator u (Lemma 1). At the absence of the 



9

enabled transitions , the algorithm stops that corresponds to a dead marking. 

The procedure PickFire implements nondeterministic choice of the firing transition 

from the set of the enabled transitions; the variable l returns the firing transition 

number (Lemma 2). The procedure Fire implements the current marking 

transformation as a result of the transition with the number l firing and its 

simultaneous encoding (2) (Lemma 3). Then into the code (2) of the transitions firing 

sequence sZ is added the number l and the value of the current step k is incremented 

by unit. Nondeterministic exit out of the loop corresponds to the Definition 1.  

 

Algorithm AUIPN was also encoded in C language using the library MPI for the 

representation of lengthy integers and tested on a series of Petri nets.  

Theorem 2. Algorithm AUIPN can be represented by an inhibitor Petri net.  

The Theorem 2 proof is the immediate consequence of the facts that inhibitor Petri 

net is a universal algorithmic system [1] and the algorithm AUIPN uses nonnegative 

integer scalar variables only which values can be represented by the marking of the 

corresponding Petri net places.  

For the constructive proof of Theorem 2, the corresponding net is constructed on 

the algorithm AUIPN in the following sections of the work.  

6   Principles of Algorithms Encoding by Inhibitor Petri Net 

There are known various approaches to the algorithm encoding by a Petri net based 

on the principles of combining data flows and control flows [2,4,5]. Let us employ the 

direct encoding of the basic C language operators for the representing of single 

control flow. Each of variables is represented by the corresponding place of Petri net; 

all the variables are static global (fig. 3). The control flow is modeled by the trace of a 

single token passage from initial place start to the final place finish. 

 

Fig. 3. Overall organization of the net UIPN. 

For the unified organization of work with variables let us represent the operators of 

the programming language in the form shown in fig. 4. 

 

start 

Variables 

Control flow 
finish 
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Fig. 4. Representation of the programming language operator. 

To provide the reentering the control flow through the operators (procedures) let us 

adopt the following agreements: all the internal places have zero marking; before the 

beginning of the work the input variables are copied into the input places of the 

operator; the work of the operator is launched by a token put into the place start (s); 

the operator finishes its work at the hitting the place finish (f) by the token; at the 

completion of work all the places of the operator are empty excepting the output 

places which contain the result. Dashed arcs denote the following extra rules of the 

forming the values of the operator input and output variables: at the launch the 

content of the variable is copied into local input place of the operator; after the 

completion the variable is cleaned and the value from the local output place of the 

operator is moved into it (fig. 5). 

 

Fig. 5. The forming of input and output variables. 

In case of a few variables the chains of copy are created for the sequential copying 

of input variables and the chains of clean, move for the moving of the output variables 

values. The sequence of clean, move is denoted as assign. The represented scheme 

provides the correct work with variables in general case. In some cases the work with 

variables can be optimized, when they are temporary or input and output at the same 

time. For the expressions calculating the approach of data flows [2] can be 

implemented: the executing of operations is ordered according to their priorities; input 

places of operations are fused with output places of the next operation.  

Let us consider the basic control constructions of the programming language: 

sequence, conditional (unconditional) branch, loop. Let us abstract from the used 

variables.  

 

Operator 

Input variables 

s 

Output variables 

 

copy 

x 

clean f 

 

move f 

f/

s 

y 

s 

f s 

Output variables 

. . . 

Input variables 

. . . 

Operator (procedure) 
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Lemma 4. Algorithmic control constructions of the programming language can be 

encoded by inhibitor Petri net in the following way (fig. 6):  

Name Form Net 

Sequence  operator1; 

operator2; 

a) 

Branch if(condition()) then operator1; else 

operator2; 

b) 

Loop while while(condition()) operator; c) 

Loop for for(i=n;i>0;i--) operator; d) 

 

 

 
a) sequence c) loop “while” 

 
 

b) branch d) loop “for” 

Fig. 6. Encoding of the programming language control constructions.  

For each control construction the correctness of its representation can be proven by 

the way of classifying all the enabled transitions firing sequences and their 

comparison with the order of operators execution into the constructions of the 

programming language [2]. Note that according to fig. 6a) the operators superposition 

at the program encoding is implemented by the merging (fusion) of the output place f 

of the first operator with the input place s of the second operator. 

There are known the representations of basic algebraic and logic operations by 

Petri nets [2,6]. In some cases it is convenient the direct representation of the most 

used actions such as, for example, mod_div and mul_add for the decoding and 

encoding of Petri nets. In Appendix B the nets implementing the operations used in 

the algorithm AUIPN are listed. For the graphical representation of inhibitor arc the 

hollow circle at the end of arc is used. Arc with the filled circle at its end denotes the 

couple of arcs with the opposite direction and equal multiplicity; they are used for the 

checking of a place marking. 

Lemma 5. Nets listed in Appendix B implement the specified operations.  

For each of the represented nets it is possible to bring the proof of the correct 

implementation of the specified operation on the base of all the enabled transitions 

firing sequences classification [2,6]. 
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a) UIPN 

 
b) PickFire 

 
c) CheckFire 

 
d) Fire 

Fig. 7. Universal inhibitor Petri net UIPN. 
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7   Composing Universal Inhibitor Petri Net UIPN 

Let us encode the algorithm AUIPN of universal inhibitor Petri net work by inhibitor 

Petri net according to the rules described in Section 6. Note that Lemma 4 and 

Lemma 5 lists all the control constructions and all the operations employed in the 

algorithm AUIPN. The net UIPN represented in fig. 7 is obtained. For the 

representing of the algorithm variables, fused places are used: all the places with the 

same name are logically the same place; fused places simplifies the graphical 

representation of the net. Let us suppose that before the net UIPN launch, the code of 

target (executing) net XIPN is loaded into places shown in fig. 2 and after the 

stopping of the net UIPN, the code of the marking and the transitions firing sequence 

of the net XIPN is read from the corresponding places. 

Dashed arcs denotes considered in Section 6 agreements on the input and output 

variables copying. Bidirectional arcs are used for the work with variables which are 

the both input and output; in this case the copying can be optimized applying twice 

move without cleaning. In some cases for the copying of an input variable together 

with its cleaning it is reasonable the usage of move instead of copy; as the 

corresponding notation the dotted arc is used. The substitution of a transition implies 

the copying of the corresponding subnet with the merging (fusion) of contact places. 

In general case the transition substitution requires the indication of input and output 

places mapping; in the listed nets the places mapping is defined implicitly by the 

context of the used operations and is not indicated.  

Theorem 3. Net UIPN is the universal inhibitor Petri net.  

The Theorem 3 proof directly follows from Theorem 1 and the correctness of used 

rules of sequential algorithm encoding by inhibitor Petri net (Lemma 4) and the 

correctness of nets implementing the used operations (Lemma 5). 

Note that net UIPN is represented in a component-wise way according to the used 

procedures, operations and the rules of work with variables. There is of a definite 

interest the binding of UIPN in the form of united inhibitor Petri net and its execution 

in the environment of a simulating system that simulates the firing of transitions.  

8   Conclusions 

In the present work the universal inhibitor Petri net was constructed that executes an 

arbitrary given inhibitor Petri net. 

It is possible the constructing of universal nets in other classes of Petri nets which 

are the universal algorithmic system [2]: priority, synchronous, timed. Moreover, it is 

possible the combined constructing, for example, of inhibitor net that executes an 

arbitrary synchronous net. 

There are known examples of universal Turing machines constructing with the 

minimal number of used symbols/states [7,8]. In this connection there is of a definite 

interest the constructing of universal Petri net with the minimal number of places 

(transitions), the minimal value of the marking. 
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Appendix A: Examples of Nets Encoding 

1) Petri net graph 

Net m n sB rB sD rD 

add 6 4 21180169496 3 282946 2 

max 8 8 254813592433189871074065241

412 

3 293862152152879368 2 

mul 10 9 646549072061101455668889034

663481743952654 

3 1935225908529245455

5975681 

2 

2) Marking 

Net Marking  sQ rQ 

add addQ0 (2,3,1,0,0,0) 2880 4 

add addQ (0,0,0,5,1,0) 186 6 

max maxQ0 (2,3,1,0,0,0,0,0) 46080 4 

max maxQ (0,0,0,3,1,0,0,0) 832 4 

mul mulQ0 (2,3,1,0,0,0,0,0,0,0) 737280 4 

mul mulQ (0,0,0,6,1,0,0,0,0,0) 722701 7 

3) Transitions firing sequence 

Net Q0 Q Z sZ k 

add addQ0 addQ t1,t3,t2,t2,t3,t3,t4 2411 7 

max maxQ0 maxQ t1,t2,t2,t6,t7,t8 4983 6 

mul mulQ0 mulQ t1,t2,t4,t4,t5,t6,t6,t7,t2, 

t4,t4,t5,t6,t6,t7,t2,t4,t4, 

t5,t6,t6,t7,t3,t9,t9,t8 

109815712212339723705298 26 
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Appendix B: Implementation of Used Operations 

 
 

CLEAN (  MUL (  

 

 
COPY  GTE ( ) 

 

 
MOVE (  MAX ( ) 

 

 
ADD  (  MUL_ADD (Add to the code) 

 
 

SUB (  MOD_DIV (Extract from the code) 
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Abstract. For applying the sweep-line method, a state space reduction technique,
it is necessary to provide an automatic calculation of a progress measure. In [1],
such a calculation has been proposed for Petri nets. The approach presented there
may lead to suboptimal results, therefore the author suggested possible optimiza-
tions. In this paper, we check whether the proposed optimization goals indeed
lead to an improved performance of the sweep-line method.

1 Introduction

The sweep-line method is a state space reduction technique that can be used to verify
safety properties (e.g. the existence of deadlocks or reachability of a given state) of the
modelled system. The main idea of this technique is that during state space exploration,
there is some kind of “progress”: States that have been processed and will never be
visited again are no longer needed for further exploration. To quantify this progress,
a progress measure is needed that assigns a progress value to every state. To use the
sweep-line method fully automatically, the progress measure must be calculated auto-
matically, too. Such an automatic calculation of the progress measure for applying the
sweep-line method to state spaces of Petri nets has been proposed in [1]. This approach
leaves degrees of freedom and, in some cases, calculates a progress measure that does
not lead to an optimal state space reduction. In [1], the author suggests two optimization
goals to improve the performance of the sweep-line method: minimizing the number of
so-called regress transitions and avoiding chains of such regress transitions. In this pub-
lication, we develop methods to achieve the proposed optimization goals and apply our
modified calculation of the progress measure in an experiment to check whether it leads
to an improved state space reduction.

2 Definitions

We write N = [P,T,F,W,s0] for a place/transition Petri net with arc weights, where P,T
and F denote places, transitions and arcs. W : ((P×T )∪ (T ×P))→N denotes the arc
weights, where W (x,y) = 0 iff (x,y) /∈ F . s0 is the initial marking of the net. For every
t ∈ T , we define the vector ∆ t by ∆ t(p) =W (t, p)−W (p, t) for all p∈ P. For X = P∪T
and every x ∈ X , we define •x = {y ∈ X | (y,x) ∈ F} and x• = {y ∈ X | (x,y) ∈ F}. A
place p ∈ P is a shared place iff |p•| ≥ 2. We write s t→ s′ for an edge of the state space
of N, where firing t in state s leads to the target state s′, which is the successor of s.

A directed graph is written as G = [V,E], where V is the set of vertices and E ⊆
(V ×V ) is the set of directed edges.
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3 The Sweep-Line Method

There exist two forms of the sweep-line method: the basic form [2], which is only
suitable for cycle-free state spaces, and the generalized form [3], which can be applied
to all types of state spaces. We first describe the basic method and afterwards extend it
to the generalized method.

As we stated above, the progress measure assigns a progress value p(s) to every
state s of the state space. For the basic sweep-line method, the progress measure is
monotonous, i.e., for all states s,s′ and transitions t, s t→ s′ implies p(s) ≤ p(s′). The
state space is explored such that states with low progress values are visited first. There-
fore, we can divide the set of states into three classes: (1) states that have been explored
including all their successors, (2) states that have been explored, but which’s successors
have not been completely explored (we also call this class front) and (3) states that have
not been explored yet. As the progress measure is monotonous, all states of class (1)
can be deleted; only the states of the front must be stored.

For the generalized sweep-line method, the progress measure does not have to be
monotonous, i.e., for an edge s t→ s′ of the state space it may hold p(s) > p(s′). Such
edges are called regress edges. Applying the basic method would now lead to the fol-
lowing problem: Let s t→ s′ be a regress edge with s in class (2) or (3) and s′ in class (1).
Because all states of class (1) have been deleted, we have no information that we have
explored s′ yet. The exploration would be continued from this state and s′ will even-
tually be explored again as an unknown state – the method would not terminate. That
is why in the generalized sweep-line method target states of regress edges are marked
as persistent and stored permanently in memory. In the current iteration (sweep) of the
sweep-line method, successors of persistent states are not explored, and newly marked
persistent states are initial states of the next sweep. Therefore, it is guaranteed that the
method terminates and explores all states at least once.

It is obvious that a large number of persistent states increases memory consumption
and can lead to a large number of sweeps.

The sweep-line method can be combined with stubborn sets, another state space re-
duction method; the computation method for stubborn sets described in [4] can be used
for this purpose.

4 Calculation of Progress Values for Petri nets

The progress measure required for the sweep-line method needs to be generated for each
system which’s state space should be explored. The automatic calculation of a progress
measure for Petri nets described in [1] is divided in two phases. Before state space
exploration is started, an offset function o that maps every transition of a given Petri Net
into an offset value o(t) ∈Q is calculated. During state space exploration, offset values
are combined to progress values: For the initial state s0, set p(s0) = 0. Then, for every
edge s t→ s′ of the state space, set p(s′) = p(s)+o(t). For each transition t with o(t) < 0,
every edge s t→ s′ of the state space is a regress edge. Therefore, such transitions are
called regress transitions (RTs).
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Using this approach for calculating a consistent progress measure, offset values must
preserve the linear dependencies of all vectors ∆ t.

Definition 1 (Linear Dependency Preserving Offset Function). Let N be a Petri net
with transitions T . An offset function o is linear dependency preserving if for all t ∈ T ,
{t0, . . . , tn} ⊆ T \ {t}, λ0, . . . ,λn ∈ Q with ∆ t = λ0∆ t0 + · · ·+ λn∆ tn it holds o(t) =
λ0o(t0)+ · · ·+λno(tn).

The method for computing offset values suggested in [1] leaves degrees of freedom and,
in some cases, calculates negative offset values for more transitions than necessary.
In other words, the calculation of offset values can be optimized. For the purpose of
optimization, we propose a computation method for offset values that differs from the
one described in [1]. Let N = [P,T,F,W,s0] be a Petri net and let a ∈ Q|P| be chosen
arbitrarily but fixed. Then the offset value of any transition t ∈ T can be computed by
o(t) = a ·∆ t. As offset values computed this way are linear dependency preserving (see
Def. 1), a consistent progress measure will be generated when they are used.

5 Optimized Calculation of Offset Values

The computation method for offset values described in Sect. 4 is suitable for the purpose
of optimization, as for attaining any optimization goal, only one vector a ∈ Q|P| must
be chosen properly to calculate the offset value o(t) = a ·∆ t for any transition t of a
Petri net. As we already mentioned, we want to attain two optimization goals: First, the
number of RTs should be minimized (as one could expect that this reduces the number
of persistent states and thus the number of sweeps) and second, chains of RTs should
be avoided (as such chains could lead to an unneccessary re-exploration of huge parts
of the state space). In our approach described in the following, at first we will compute
several sets of RTs which are as small as possible, and afterwards choose a set R which
promises to avoid chains of RTs the most. Afterwards, we can calculate a vector a such
that o(t) < 0 iff t ∈ R.

5.1 Minimizing the Number of Regress Transitions

For this subsection, let N = [P,T,F,W,s0] be a Petri net. Minimizing the number of
RTs means that we want to compute as few negative offset values as possible for all
transitions t ∈ T . Furthermore, we decide that we do not want to assign the offset value
o(t) = 0 to any transition t ∈ T . Therefore, with regard to the computation method
described in Sect. 4, for every transition t ∈ T we set up the inequality a ·∆ t > 0. Thus,
we obtain a system of linear inequalities which we call L .

Obviously, if L is feasible, we can calculate positive offset values for all transitions
t ∈ T . We may choose any vector a∈Q|P| from the set of feasible solutions described by
L (which can be done by a Linear Programming solver) to obtain offset values without
RTs. Of course, in this case we do not have to avoid chains of RTs as there are none.

If L is not feasible, things become more difficult. To minimize the number of RTs,
we are looking for a feasible subsystem of L containing as many inequalities as pos-
sible. This almost equates to solving an instance of the Maximum Feasible Subsystem
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Problem (MAXFS) [5]; we only have to transform every inequality from a ·∆ t > 0 to
a ·∆ t ≥ ε with a preferably small ε ∈ Q and ε > 0. As MAXFS is NP-hard [6], we
decided to use a heuristic based on Linear Programming, namely Algorithm 1 from [7],
to solve our MAXFS instances. As this heuristic only provides a single solution (like all
MAXFS heuristics known to us), we modified it to obtain multiple solutions (see [8] for
details). Now, for any feasible subsystem L ′ we obtained, we can choose an arbitrary
vector a ∈ Q|P| from the set of feasible solutions described by L ′ to compute offset
values with a minimal number of RTs.

5.2 Avoiding Chains of Regress Transitions

As we are now able to generate multiple sets of RTs, in this section we want to develop
a heuristic that should select the set which avoids chains of RTs the most. In contrast
to the minimization of RTs which can be performed prior to state space exploration,
chains of RTs are initially detected during state space exploration. As offset values are
calculated prior to state space exploration, we have to think about how to optimize offset
value calculation to avoid chains of RTs anyway. To attain this optimization goal, we
introduce the enabling graph.

Definition 2 (Enabling Graph). Let N = [P,T,F,W,s0] be a Petri net. G = [V,E] is the
enabling graph of N, where V = T , and (t, t ′) ∈ E iff ∃p ∈ P : t ∈ •p∧ t ′ ∈ p•.

If there is an edge from t to t ′ in the enabling graph, then firing t creates at least
one token on a place p ∈ •t ′. Therefore, firing t supports enabling t ′. In our heuristic
for avoiding chains of RTs, we use shortest paths within the enabling graph to decide
whether a set of RTs is likely to avoid chains or not. Although this approach has some
weaknesses (for example, it does not take account of concurrency of transitions and of
the actual marking of the net), we consider it to be appropriate for avoiding chains of
RTs prior to state space exploration. For a given Petri Net N = [P,T,F,W,s0] and its
enabling graph G = [V,E], our heuristic for avoiding chains of RTs chooses a set R of
RTs that satisfies the criteria described in the following.

1. Shortest paths from each t to each t ′ with t, t ′ ∈ R should be as long as possible.
2. Shortest paths from each transition t enabled in s0 to each t ′ ∈ R should be as long

as possible.
3. For each t ∈ R and each p ∈ •t, it should hold p /∈ •t ′ for as many t ′ ∈ R \ {t} and

p ∈ •t ′′ for as many t ′′ ∈ T \R with ∆ t ′′(p) < 0 as possible.

Criterion 1 aims at maximizing the number of explored states between any two
regress transitions. Especially, t ′ should not fire immediately after t has fired. Further-
more, in our implementation used for the case study in Sect. 6, we demand that the
shortest path among all shortest paths between RTs should be preferably long. It is
obvious that this criterion helps us to avoid chains of RTs.

Criterion 2 states that during the first sweep, as many transitions as possible should
fire before a regress edge is explored. This does not avoid chains of RTs immediately,
but it has the effect that a large part of the state space should be already explored in the
first sweep.
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Table 1. Experimental results. The entries show for how many nets LoLA H provides better
results (+x) and worse results (-x) compared to LoLA O. complete refers to successful exploration
of the complete state space, #RT to the number of RTs, peak to the peak number of states during
state space exploration, persistent to the number of persistent states and sweeps to the number of
sweeps.

complete #RT peak persistent sweeps
-stub +2 -0 +24 -0 +11 -10 +11 -7 +7 -8
+stub +0 -0 +24 -0 +16 -7 +17 -7 +12 -9

Criterion 3 takes account of shared places. We want to avoid that a RT t shares a
place p with another RT, because if the marking of p is sufficiently big, then these two
transitions could fire one after another, which would exactly yield a chain of RTs. On the
other hand, if t shares a place with a transition t ′ that is not a RT and t ′ consumes more
tokens from p than it produces on this place, the firing of t ′ may disable t. Therefore,
such transitions should preferably be chosen as RTs.

In our heuristic, we weight these criteria and combine them to a function f that
assigns a value to every set of RTs (see [8] for details). The set to which f assigns the
largest value is chosen as the set that should avoid chains of RTs the most.

6 Case Study

In our case study, we checked whether the computation of progress values given in [1]
really leads to a worse performance of the sweep-line method compared to the compu-
tation method and heuristics described in this paper. For this purpose, we tried to com-
pute the state space of 32 Petri nets from a GALS project [9]. We used two versions of
the model checking tool LoLA [10]: the original version (LoLA O) which implements
the calculation described in [1] as well as a modified version (LoLA H) where we im-
plemented our offset calculation method and heuristics. We executed the state space
computation once with stubborn sets (+stub) and once without stubborn sets (-stub).

Table 1 shows a summary of our test results. The state space was too large to be
computed completely by LoLA O for 6 nets with stubborn sets and for 10 nets without
stubborn sets. In the table, these nets are not considered except for the columns complete
and #RT.

From the results, we conclude that our optimization goals do not lead to an improved
performance of the sweep-line method in general. Moreover, as stated in [8], none of the
assumed correlations mentioned above (#RT and persistent, #RT and sweeps) is verified
by the results. Using -stub, for 14 nets where the full state space could be computed, #RT
was reduced, but persistent was only decreased for 8 of them and sweeps for 5 of them.
For +stub and -stub, for some nets #RT was reduced significantly, but peak, persistent
and sweeps even got larger, what means that the values for memory consumption and
the number of iterations got worse. Changing the weights of the criteria for avoiding
chains mentioned in Sect. 5.2 does not change the results in general.

As the computation of the offset values does not depend on stubborn sets, we obtain
the same number of regress transitons for state space exploration with and without
stubborn sets.
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Although the results for the combination of the sweep-line method and stubborn sets
look more promising than those obtained without stubborn sets, note that our optimiza-
tion goals did not include special improvements for stubborn sets. Especially, compu-
tation of stubborn sets combined with the sweep-line method in LoLA depends on the
offset values of all transitions; thus, one should not reason about these results without
taking a closer look at LoLA.

7 Conclusion and Further Work

The case study in Sect. 6 revealed that the optimization goals examined in Sect. 5 do not
improve the performance of the sweep-line method in general. Different optimization
goals must be found to achieve this aim.

For estimating the number of persistent states, it turns out that it would be impor-
tant to know how often RTs are enabled during state space exploration and how many
distinct target states they lead to. Furthermore, even offset values of transitions which
are no RTs influence the peak value. It would be appropriate to provide an offset value
calculation that exploits this fact. Finally, as mentioned above, when using LoLA, the
implementation of stubborn sets should be taken into consideration when trying to op-
timize the sweep-line method.
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Abstract. Each Event-driven Process Chain (EPC) translates into a free-choice 

system if its control flow branches and joins only at AND- or XOR-connectors. This 

free-choice system defines the free-choice semantics of the AND/XOR-EPC. But 

free-choice systems are not capable to deal with OR-connectors. Therefore a general 

EPC with OR-connectors obtains a semantics not until it has been translated into a 

certain coloured Petri net, named a Boolean system. This Boolean system defines the 

Boolean semantics of the EPC. We show that for well-behaved AND/XOR-EPCs the 

Boolean semantics reduces to the free choice semantics in as far as the Boolean 

system contains the free-choice system. To prove this result we introduce the concept 

of non-blocking components in live and safe free-choice systems. For each non-

blocking component of the free-choice system we then construct a well-behaved 

bipolar system (bp-system), which is a particular Boolean system. We link the bp-

systems of all non-blocking components of a covering to a coloured Petri which is 

named a linked bp-system. Its semantics is the Boolean semantics of the AND/XOR-

EPC. 

Keywords: Bipolar system, EPC, free-choice system, linked bp-system, non-blocking 

component. 

1. Introduction 

Free-choice systems form an important class of ordinary Petri nets. They are best 

analyzed and understood, and the theory of free-choice systems is both deep and 

elegant [DE1995]. Also for commercial applications of information management free-

choice systems play an important role. In the context of Business Process 

Management (BPM) they serve to formalize process languages which have been 

introduced in a more informal way and lacked a well-defined semantics before. 

The process modelling language most widespread in German commercial projects is 

the language of Event-driven Process Chains (EPC). It has been introduced by Keller, 

Nüttgens and Scheer in 1992 [KNS1992, Sch1994]. EPCs represent the control flow 

of a process as the interplay of three components: Events, functions and logical rules. 

The rules use connectors of logical type AND, XOR and OR. More specific, 

concurrency is represented by AND-splits and AND-joins. Strong or exclusive 

alternatives are modelled by XOR-splits and XOR-joins, while OR-splits and OR-

joins model weak alternatives. All EPCs in this paper will be considered with a non-

empty set of distinguished events, the initial events of the process. 

The present paper deals mainly with AND/XOR-EPCs, i.e. with the restricted class of 

EPCs using only connectors of logical type AND or XOR. Each AND/XOR-EPC 

translates at once into a free-choice system FS : Functions and AND-connectors of 
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the EPC translate into transitions while events and XOR-connectors translate into 

places of FS . Each initial event of the EPC is marked by a token on the 

corresponding place of FS . The free-choice semantics of the AND/XOR-EPC is 

defined as the semantics of FS  [Aal1999]. 

But the language of free-choice system is not capable to formalize EPCs with OR-

connectors. Therefore we have introduced in a previous paper Boolean systems, a 

class of simple coloured Petri nets [LSW1998]. Boolean systems have two types of 

tokens, high tokens and low tokens. The low tokens serve to skip actions and to 

complete the marking of all pre-sets of a logical transition before a decision about its 

actual firing mode is possible. With the help of formulas from propositional logic the 

transitions of Boolean systems control the flow of the high tokens (true) and the low 

tokens (false). 

A general EPC translates at once into a Boolean system BS : Functions and logical 

connectors of the EPC translate into transitions and events translate into places of 

BS . Each initial event of the EPC is marked by a high token at the corresponding 

place of BS  and if necessary a suitable set of low tokens is added. 

Those Boolean systems, which are needed for the restricted class of AND/XOR-

EPCs, have been invented already in 1984 by Genrich and Thiagarajan [GT1984]. 

They named them Bipolar Synchronization Schemes, today abbreviated as bipolar 

systems (bp-system). 

 

How do these two types of Petri nets, bipolar systems and free-choice systems, relate? 

 

It turns out that each bp-system BS  has a free-choice companion FS  and a canonical 

morphism FSBShigh →:  which maps the flow of high tokens of the coloured 

Petri net BS  onto the flow of tokens of the free-choice system FS . Both systems are 

equivalent in as far as FS  is well-behaved if and only if BS  is well-behaved. In that 

case the morphism has the lifting property, i.e., it lifts occurrence sequences of FS  to 

occurrence sequences of BS  [Weh2010]. 

Yet, this equivalence holds only under the restriction that the behaviour of the free-

choice system is fair. Here fairness is conceived as the absence of frozen tokens. That 

type of fairness is even a structural property, named non-blocking. 

Therefore the present paper investigates a generalization of the above mentioned 

relation between the two classes of Petri nets. Relinquishing the non-blocking 

condition we prove: 

 

For each well-behaved free-choice system FS  a well-behaved linked bp-

system LBS  and a morphism 

FSLBShigh →:  

exist, which maps the flow of high tokens of the coloured Petri net LBS  onto the 

token flow of the free-choice system FS  and satisfies the lifting property (Theor. 17 

and Prop. 19). 

As a consequence: For an AND/XOR-EPC, which translates into a well-behaved free-

choice system FS , a well-behaved linked bp-system LBS  exists 
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with ( ) FSLBShigh = . We define the Boolean semantics of the EPC as the semantics 

of the coloured Petri net LBS . As a consequence, the free-choice semantics and the 

Boolean semantics of well-behaved AND/XOR-EPCs are equivalent. And this results 

allows us to consider the Boolean semantics of general EPCs a proper generalization 

of the free-choice semantics of AND/XOR-EPCs. 

During our way in this paper we introduce two new concepts for Petri nets: Firstly 

non-blocking components of well-behaved free-choice systems and secondly the 

linking of bp-systems with respect to a family of morphisms. 

2. Free-choice systems 

For the convenience of the reader and to fix the notations we recall some fundamental 

concepts from the theory of ordinary Petri nets and define the subclass of free-choice 

systems. 

A finite ordinary Petri net is a pair ( )µ,N : The net ( )FTPN ,,=  comprises a finite 

set P  of places, a disjoint finite set T  of transitions and a set ( ) ( )PTTPF ×∪×⊆  

of directed arcs. The function N→P:µ  is named the initial marking of the net. 

The support of the marking µ  is the set 

( ) ( ){ }0:: >∈= pPpsupp µµ  

of all places marked at µ . All Petri nets in this paper will be assumed finite. 

A path from a node TPXxini ∪=∈ :  to a node Xx fin ∈  is a sequence ( )nxxx ,...,, 10  

with nodes Xxi ∈ , finnini xxxx == ,0  and ( ) Fxx ii ∈+1, . It is named elementary 

path, if ji xx ≠  for all pairs ji ≠ . The net N  is strongly connected if for every two 

nodes Xxx ∈21,  a path from 1x  to 2x  and a path from 2x  to 1x  exists. 

A transition with a single pre-place and two or more post-places is an opening 

transition, a transition with a single post-place and two or more pre-places is called a 

closing transition. Opening transitions with exactly two post-places and closing 

transitions with exactly two pre-places are called binary transitions. A net N  is called 

binary if all its transitions are binary. 

For a net N  the firing rule defines the firing of a transition: A transition Tt ∈  is 

enabled at a marking µ  of N  iff each place from its pre-set ( )tpre  is marked at µ  

with at least one token. Being enabled, t  may occur or fire. Firing t  yields a new 

marking 'µ , which results from µ  by consuming one token from each pre-place of t  

and by producing one additional token on each post-place of t ; this is denoted 

by 'µµ →t
. 

A finite occurrence sequence from µ  is a sequence ktt ...1=σ , N∈k , such that 

k
t

k
t k µµµµ →→ −11 ...,,1 . 
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We denote by kµµ σ→  the fact, that firing σ  yields the marking kµ . A reachable 

marking of a Petri net ( )µ,N  is a marking, which results from firing a finite 

occurrence sequence from µ . If not stated the contrary, occurrence sequences in this 

paper will be considered finite occurrence sequences. The concatenation of two 

occurrence sequences 1σ  and 2σ  is denoted by 21 σσ ⋅ . 

A Petri net ( )0, µN  is live iff for each reachable marking µ  and for each 

transition Tt ∈  the Petri net ( )µ,N  has a reachable marking which enables t . A 

Petri net is k -bounded iff a number N∈k  exists bounding from above the token 

content of every place at every reachable marking. If the bound can be chosen 

as 1=k  then the Petri net is named safe. A live and safe Petri net is named well-

behaved. A net N  is well-formed iff there exists a marking 0µ  of N  such that the 

Petri net ( )0, µN  is live and bounded. 

We will often dispense with an explicit notation for the set of places and transitions of 

a net and  use the shorthand Nx ∈  to denote a node of the net. 

1. Definition (P-system, T-system, free-choice system) 

i) A net N  is a P-net if all transitions have exactly one pre-place and exactly one 

post-place, i.e. 

( )[ ] ( )[ ]tpostcardtprecard == 1  for all transitions Nt ∈ . 

A P-system is a Petri net ( )µ,N  with N  a P-net. 

ii) A net N  is a T-net if all places have exactly one pre-transition and exactly one 

post-transition, i.e. 

( )[ ] ( )[ ]ppostcardpprecard == 1  for all places Np ∈ . 

A T-system is a Petri net ( )µ,N  with N  a T-net. 

iii) A net N  is a free-choice net if for every two transitions Ntt ∈21,  

either ( ) ( ) ∅=21 tpretpre I  or ( ) ( )21 tpretpre = . 

A restricted free-choice net is a net which satisfies the stronger condition: For every 

two transitions Ttt ∈21,  

either ( ) ( ) ∅=21 tpretpre I  or ( ) ( ) { }ptpretpre == 21  

with a single place Pp ∈ . A marked (restricted) free-choice net ( )µ,N  is named 

(restricted) free-choice system. 

 

Well-behaved free-choice systems are one of the two classes of Petri nets studied in 

the present paper. By a theorem of Genrich each well-formed free-choice net FN  has 

a marking µ , such that ( )µ,FN  is even well-behaved ([De1995] Theor. 5.10). 
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An important means for the examination of free-choice systems is the study of their 

P-components and T-components. 

2. Definition (Components and their intersection) 

Consider a net ( )FTPN ,,= . 

i) A subnet NNP ⊆  which is generated by a nonempty subset TPX ∪⊆  of nodes, 

is a P-component of N  if PN  is a strongly connected P-net with 

( ) ( ) Xppostppre ⊆∪  for all places Xp ∈ . 

Consider a marking µ  of N . If a P-component NNP ⊆  is marked at µ  with a 

single token then ( ) PPPP NN |:,, µµµ = , is named a basic component of ( )µ,N . 

ii) A subnet TN  of N  which is generated by a nonempty subset TPX ∪⊆  of 

nodes, is a T-component of N  if TN  is a strongly connected T-net with 

( ) ( ) Xtposttpre ⊆∪  for all transitions Xt ∈ . 

iii) The net N  is structurally non-blocking iff every P-component PN  of N  

intersects every T-component TN  of N  in a non-empty set ∅≠∩ TP NN . 

Otherwise the net is named structurally blocking. A Petri net ( )µ,N  is non-blocking 

if its underlying net N  is structurally non-blocking. Otherwise the Petri net is named 

blocking. 

3. Example (Well-behaved, but blocking free-choice system) 
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Figure 1: Well-behaved free-choice system FS  
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Figure 1 shows a well-behaved restricted free-choice system FS . It is blocking: E.g., 

the P-component PN  generated by the set { }8877 ,,, tete  and the T-component TN  

generated by the set { }4433 ,,, tete  are disjoint. 

 

To prepare the introduction of the new concept of non-blocking components we recall 

some properties of well-behaved free-choice systems. 

Each well-behaved free-choice system can be covered by basic components. Each 

occurrence sequence which fires only transitions from one of these basic components 

lifts to an occurrence sequence of the whole free-choice system. This has been 

observed by Thiagarajan and Voss first. After introducing the concept of a morphism 

of Petri nets we will formulate their result as the lifting property of a certain 

morphism. 

Figure 1 shows a well-behaved restricted free-choice system FS . It is blocking: E.g., 

the P-component PN  generated by the set { }8877 ,,, tete  and the T-component TN  

generated by the set { }4433 ,,, tete  are disjoint. 

 

To prepare the introduction of the new concept of non-blocking components we recall 

some properties of well-behaved free-choice systems. 

Each well-behaved free-choice system can be covered by basic components. Each 

occurrence sequence which fires only transitions from one of these basic components 

lifts to an occurrence sequence of the whole free-choice system. This has been 

observed by Thiagarajan and Voss first. After introducing the concept of a morphism 

of Petri nets we will formulate their result as the lifting property of a certain 

morphism. 

4. Remark (Morphisms of Petri nets) 

Within the category of coloured Petri nets the concept of a morphism 

21: PNPNf →  

between two coloured Petri nets is well-defined, cf. [Weh2006]. Our concept of a 

morphism presupposes coloured nets for the domain and range of the morphism, 

because a morphism maps respectively, certain T-flows and P-flows of 1PN  to 

binding elements and token elements of 2PN . 

The reader, who is not interested in the general definition of a morphism, may use his 

own descriptive concept of a morphism 21 PNPN
f→  to follow the examples of 

this paper. In most cases the domain of definition 1PN  will be an ordinary Petri net 

and the coloured Petri net 2PN  will be equivalent to an ordinary Petri net, too. In 

addition, all morphisms under consideration will be discrete, i.e. for any 

node 2PNy ∈  the fibre ( ) 1
1 PNyf ⊂−  has only isolated nodes. 
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Any discrete Petri net morphism 21 PNPN
f→  maps occurrence sequences of 1PN  

to occurrence sequences of 2PN . The question about the surjectivity of this map is 

named the lifting problem. 

5. Definition (Lifting property of a morphism) 

A Petri net morphism 

21 PNPN
f→  

has the lifting property iff for any enabled occurrence sequence 2σ  of 2PN  an 

enabled occurrence sequence 1σ  of 1PN  exists with ( ) 21 σσ =f . The occurrence 

sequence 1σ  is named a lift of 2σ  against f . 

 

Any enabled occurrence sequence of a basic component of a well-behaved free-choice 

system lifts to an enabled occurrence sequence of the whole system. 

6. Proposition (Lifting property for basic components) 

Consider a well-behaved free-choice system ( )µ,NFS =  and a basic component BN  

of FS . Then the projection 

( )BBB NNFS |,: µπ →  

has the lifting property. 

Proof. [TV1984], Theor. 2.1 proves the claim under the additional assumption that 

the free-choice system FN  is restricted. But any cluster from a free-choice net can be 

substituted by two clusters of a restricted free-choice net. Therefore it suffices to 

prove the claim for restricted free-choice systems, q. e. d. 

7. Corollary (Union of basic components) 

Consider a well-behaved free-choice system ( )µ,NFS =  and a subnet NN ⊂1  

which is the union of basic components of FS . Then the projection 

11 : FSFS →π  

onto the restriction ( )111 |,: NNFS µ=  has the lifting property and 1FS  is well-

behaved. 

Proof. Any union of P-components of a free-choice net is free-choice itself. P-

components are transition bounded. Therefore also the subnet NN ⊂1  is transition 

bounded, which implies that the projection 11 : FSFS →π  is a morphism of Petri 

nets. In order to verify its lifting property it suffices to consider an occurrence 

sequence 1σ  of 1FS  with a single transition 1Nt ∈ . By assumption the transition t  



29

belongs to one of the distinguished basic components BFS . We consider the 

composition of projections 

BFSFSFS B→→ ππ
1

1  

According to Proposition 6 the occurrence sequence ( )1σπ B  lifts against the 

composition BB FSFS →:1ππ o  to an occurrence sequence σ  of FS . 

Therefore σ  is also a lift of 1σ  against 1π . The lifting property of 11 : FSFS →π  

and the liveness of FS  imply that 1FS  is live too. Safeness of 1FS  follows from the 

fact that 1FS  is a union of basic components of FS  and that each of them is also a 

basic component of 1FS , q. e. d. 

 

The first new concept of this paper is the concept of a non-blocking component. It is a 

maximal well-behaved and non-blocking subsystem of a well-behaved free-choice 

system. 

8. Definition (Non-blocking component) 

Consider a well-behaved free-choice system ( )µ,NFS = . 

i) For a connected subnet NNB ⊆  the restriction 

( ) NBNBNS BB |:,,: µµµ == , 

is named a non-blocking component of FS , iff NS  is 

• a union of basic components of FS  and 

• non-blocking and 

• maximal with respect to these two properties, i.e. no subsystem of FS  exists 

with these properties and containing NS  as a proper subsystem. 

ii) A family ( )
IiiNS ∈  of non-blocking components iNS  of FS , Ii ∈ , with 

U
Ii

iNSFS

∈

=  

is named a non-blocking covering of FS . 

 

Apparently any well-behaved free-choice system has a non-blocking covering 

because each basic component is non-blocking. In addition, each non-blocking 

component of FS  is well-behaved itself due to Corollary 7. This will be a crucial 

means for the construction in Definition 14. 

 

A covering of a free-choice system is named unshortenable if no proper subfamily is 

a covering too. Each covering contains an unshortenable covering as a subfamily: 

After successively cancelling covering elements contained in the union of other 

elements we eventually obtain an unshortenable covering. 
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9. Example (Non-blocking covering) 

The well-behaved blocking free-choice system FS  from Figure 1 has an 

unshortenable non-blocking covering with two non-blocking components, cf. Figure 

2. One non-blocking component is the union of three different basic components 

while the other non-blocking component is a single basic component. 
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Figure 2: Two non-blocking components of the free-choice system from Figure 1 

3. Linked bp-systems 

Bp-systems are a simple class of coloured Petri nets. As mentioned in the 

Introduction they can be used to define the Boolean semantics of AND/XOR-EPCs. 

For the present paper we do not need the concept of coloured Petri nets in full 

generality, the interested reader is referred to [Jen1992]. 

10. Definition (bp-system) 

i) A bipolar synchronization graph (bp-graph) BG  is a coloured net. It extends a 

T-net ( )FTPN ,,=  by attaching to each place Pp ∈  the fixed set 

( ) { }lowhighBoolepC ,:==  

with two token colours and provides each transition Tt ∈  with one from two types of 

logic: 

• An AND-transition ANDtt =  has a set of firing modes ( ) { }lowhightB ,=  with 

two elements: The high mode (respectively low mode) is enabled iff all pre-

places of ANDt are marked with at least one high token (respectively low token). 
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Its firing consumes one high token (respectively low token) from each pre-place 

and creates one high token (respectively low token) on every post-place. 

• An XOR-transition XORtt =  with n  pre-places and m  post-places has a set of 

firing modes ( ) ( ){ }jibtB ,=  with mn ⋅  high modes and one low mode: The high 

mode with index ( ) mjniji ≤≤≤≤ 1,1,, , is enabled iff the i -th pre-place is 

marked with at least one high token and all other pre-places with at least one low 

token. Firing the high mode consumes a high token from the i -th pre-place and a 

low token from every other pre-place and creates a high token at the j -th post-

place and a low token at every other post-place. The low mode is enabled iff all 

pre-places are marked with at least one low token. Firing the low mode consumes 

a low token from each pre-place and creates a low token at every post-place. 

Adhering to the common notation of coloured nets we call a pair 

( ) ( )pCcPpcp ∈∈ ,with, , a token element and a pair ( ) ( )tBbTtbt ∈∈ ,with, , a 

binding element. A binding element is named low binding element, if its firing 

consumes and creates only low tokens. Otherwise it is named high binding element. 

ii) A bipolar synchronization system (bp-system) is a coloured Petri net ( )µ,BGBS =  

with a bp-graph BG  and an initial marking µ  with at least one high token. 

 

Bp-systems are a special case of Boolean systems which have been introduced in 

[LSW1998]. 

11. Definition (Well-behavedness of a bp-system) 

i) A bp-system BS  is safe iff each reachable marking marks every place with at most 

one token. 

ii) A binding element of a bp-system BS  is live iff for every reachable marking 1µ  

of BS  the bp-system ( )1, µBG  has a reachable marking which enables the given 

binding element. BS  is live with respect to all its high bindings iff every high binding 

element of BS  is live. 

iii) A bp-system BS  is well-behaved iff it is safe and live with respect to all its high 

bindings. 

 

In a previous paper [Weh2010], Chap. 2, we have attached several ordinary Petri nets 

to a given bp-system ( )µ,BGBS = . Notably, a bp-system BS  has a restricted free 

choice system 

( )highhighhigh BGBS µ,= , 

the high-system of BS , together with a morphism highBSBShigh →:  as well as a 

T-system 

( )skelskelskel BGBS µ,= , 

the skeleton of  BS , together with a morphism skelBSBSskel →: . 
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Conversely, each restricted free-choice system FS  extends to a bp-system BS  

with FSBS high = . Hereby one introduces an AND-transition of BS  for a branched 

transition of FS , an XOR-transition of BS  for a branched place of FS  and a high 

token of BS  for each token of FS . 

12. Example (Well-behaved bp-systems) 
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Figure 3: Bp-systems of the non-blocking components from Figure 2 

 

Figure 3 shows two bp-systems 2,1, =iBSi . Both are well-behaved. Their high-

systems 
high

iBS  are the two non-blocking components from the well-behaved free-

choice system from Figure 2. Note the low token marking the post-place of transition 

4t . 

 

The following Proposition 13 shows the relation between well-behaved bp-systems 

and well-behaved restricted free-choice systems. The proposition has been proven in 

[Weh2010]. 
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13. Proposition (Bipolar systems and non-blocking free-choice systems) 

i) A bp-system is well-behaved iff its skeleton and its high system are well-behaved 

and its high-system is non-blocking. 

ii) The high-morphism highBSBShigh →:  of a well-behaved bp-system BS  has 

the lifting property. 

iii) Any well-behaved, non-blocking restricted free-choice system FS  is the high-

system of a well-behaved bp-system BS . 

 

To obtain a marking such that the bp-scheme BS  in Proposition 13, iii) is well-

behaved, possibly some low tokens have to be added in addition to the high tokens 

prescribed by the marking of FS . 

 

On the other hand, if a restricted free-choice system FS  is well-behaved but 

blocking, no well-behaved bp-system BS  exists with FSBS high = . 

 

It is our particular concern in this paper to remedy this situation. Therefore we will 

apply Proposition 13, iii) separately for each element from a non-blocking 

covering ( )
IiiFS ∈  of FS : For each non-blocking component iFS  we obtain a well-

behaved bp-system iBFS  with i
high

i FSBFS = . For each pair of bp-systems 

( )ji BFSBFS ,  we fuse those subsystems of iBFS  and jBFS  which project along the 

high morphisms onto the same subsystem of FS . In the Petri net iBS , which results 

from iBFS , we consider the low tokens from iBFS  to belong to iBS  exclusively. 

For each pair ( )ji FSFS ,  of non-blocking components of FS  we substitute each 

branched transition ( ) FSFSFSt ji
high ⊂∩∂∈  from the boundary by a transition 

which fuses the corresponding bp-systems ( )ji BSBS , . The fusing transition has to 

satisfy the following requirements: 

• When firing it consumes and creates high tokens from iBS  and jBS  in the same 

manner as hight  processes tokens from iFS  and jFS . 

• It consumes and creates low tokens from iBS  without synchronizing them with 

high tokens or with low tokens from jBS . Analogously it consumes and creates 

low tokens from jBS . 

 

The resulting coloured Petri net is named a linked bipolar system (bp-system). It is the 

second new concept introduced in this paper. 

14. Definition (Linked bp-system) 

Consider a well-behaved free-choice system FS  and a covering ( )
IiiFS ∈  of FS  by 

non-blocking components. According to Corollary 7 each non-blocking 



34

component iFS , Ii ∈  is a well-behaved free-choice system. It is the high-system of a 

well-behaved bp-system iBFS , and the high-morphism iii FSBFShigh →:  has 

the lifting property according to Proposition 13. We define a coloured Petri net 

( )
Iii

Ii

i

high

BFS

LBS

∈

•

∈=
U

:  

by forming the quotient of the disjoint union of the bp-systems iBFS , Ii ∈ , modulo 

the identification with respect to the family of high 

morphisms iii FSBFShigh →: . The coloured Petri net LBS  is named a linked 

bipolar-system (bp-system) attached to FS  with respect to the covering iFS , Ii ∈ . 

The high morphisms induce a well-defined morphism of Petri nets 

FSLBShigh →: . 

 

Note that for each index Ii ∈  a projection LBSBFSii →:π  onto the quotient 

exists. The image is a transition bounded subsystem 

( ) LBSBFSBS iii ⊂= π: . 

Using the notations 

( )µ,LBNLBS = , ( )iii BFNBFS µ,= , ( )iii BNBS µ,= , 

( )ν,FNFS = , ( )iii FNFS ν,=  

Definition 14 of a linked bp-system LBS  can be made explicit as follows: 

• Nodes LBX : Two nodes ii BFXx ∈  and jj BFXx ∈  fuse to a node LBXx ∈  

iff ( ) ( ) ( ) FXFXFXxhighxhigh jijjii ⊂∩∈= . A well-defined 

map FXLBXhigh →:  results. We define 

( ) { }ii BFXxtiverepresentaahasxIixI ∈∈= :: . 

• Token colours of LBN : A place LBXp ∈  gets the set of token colours 

( ) { } ( ){ }pIilowhighpC i ∈∪= :: . 

• Bindings and firing rules of LBN : For a transition LBXt ∈  the binding 

set ( )tB  has as low bindings the low bindings of all 

representatives ( )tIiBFNt ii ∈∈ , , of t , each taken with its firing rule. 

On the other hand, the high bindings in ( )tB  correspond bijectively to the high 

bindings of one arbitrary it . Each high binding gets an unchanged flow of high 
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tokens. If all representatives it  have logical type AND, then the firing rule of a 

high binding of t  does not consider any low tokens. When all representatives it  

have logical type XOR, then the firing rule of a high binding may change the 

flow of low tokens: When a high binding of 
0i

t  consumes a single low token of 

type 
0i

low  at a pre-place of 
0i

t  or creates a single low token of type 
0i

low  at a 

post-place, then the corresponding high binding from ( )tB  respectively 

consumes and creates all low tokens of type ( )tIilowi ∈, , at the corresponding 

place of LBN . 

• Initial marking of LBS : At a place LBNp ∈  the initial marking µ  is defined as 

( ) ( )( ) ( )
( )

( )
N

pCpphighvp
pIi

i
low
i ∈+= ∑ ∈

µµ : . 

• High morphism: For each index Ii ∈  the morphism iii FSBFShigh →:  

induces a morphism iii FSBShigh →:  from the quotient ( )iii BFSBS π=: . 

These local morphisms fuse to a global morphism FSLBShigh →: , such that 

i

i

i

FSFS

highhigh

LBSLBS

→

↓↓

→

 

commutes for all Ii ∈ , the horizontal maps being the restrictions onto closed 

subsystems. 

 

Figure 4 displays the most simple case of linking two binary bp-

systems iBFS , 2,1=i , at a transition )( 21 BNBNt ∩∂∈ . The token colours of its 

pre- and post-places are  

{ } 2,1,, == ilowhighBoole ii , and { }2112 ,, lowlowhighBoole = . 

BN_2BN_1BN_12

BN_2BN_1

SEPUNITE

Boole_2Boole_1

Boole_12

Boole_12

Boole_2Boole_1

BN_12

 

Figure 4: Transitions of type UNITE  and SEP  
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Figure 4 shows on the left the neighbourhood of a fused closing transition of logical 

type UNITE and on the right of an opening transition of logical type SEP (separate). 
 

Table 1 shows the corresponding firing rules of all transitions from 

2112 : BNBNBN ∩= . Note in particular the different types of low tokens and their 

flow. 

 

Transition Bindings consumes produces 

)( 21 BNBNt ∩∂∈  of type SEP high  high  ( )highhigh,  

 
1low  1low  ( )−,1low  

 
2low  2low  ( )2, low−  

UNITE: reverse SEP    

o)( 21 BNBNt ∩∈ from opening 

XOR 

lefthigh  high  ( )21, lowlowhigh +

 

 
righthigh  high  ( )highlowlow ,21 +

  

 
1low  1low  ( )11, lowlow  

 
2low  2low  ( )22 , lowlow  

closing XOR: reverse opening XOR    

o)( 21 BNBNt ∩∈ from opening 

AND 

high  high  ( )highhigh,  

 
1low  1low  ( )11, lowlow  

 
2low  2low  ( )22 , lowlow  

closing AND: reverse opening AND    

Table 1: Binding elements of 12BN  

15. Example (Linked bp-system) 

Figure 5 shows the linked bp-system attached to the well-behaved free-choice system 

from Example 3 and its non-blocking covering from Example 9. 
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Figure 5: Linked bp-system attached to the free-choice system from Figure 1 

16. Remark (Non-uniqueness of a linked bp-system) 

According to the construction from Definition 14 a well-behaved free-choice 

system ( )ν,FNFS =  has more than one linked bp-system ( )µ,LBNLBS =  in 

general. 

A first reason for non-uniqueness is the choice of a non-blocking 

covering ( )
IiiNS ∈=N  of FS . In general FS  has more than one non-blocking 

covering which is non-shortenable. Therefore the underlying net ( )N,FSLBNLBN =  

depends not only on FS  but also on N . 

This kind of dependency is similar to other situations from mathematics. E.g., 

compare the definition of a differentiable manifold, which is considered a pair ( )A,X  

formed by a topological space X  and a maximal differentiable atlas A  on X . But 

different from the situation of differentiable manifolds two non-blocking 

coverings 1N  and 2N  of a well-behaved free-choice system FS  are compatible with 
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each other: Their union 21 NN ∪  is a non-blocking covering of FS  again. 

Employing the definition of morphisms between coloured Petri nets from [Weh2006] 

one can show that the net of the corresponding linked bp-system is the fibre product 

),(),(),( 2121 NNNN FSLBNFSLBNFSLBN FS×=∪  

with respect to the high-morphisms 

2,1,),(: =→ iFNFSLBNhigh ii N . 

As a consequence the covering maxN  formed by all non-blocking components of FS  

is the unique maximal non-blocking covering of FS  and one can 

define ( )max,NFSLBN  as the underlying net of any linked bp-system of FS . 

A second reason for non-uniqueness is the choice of the low tokens when considering 

a fixed non-blocking component iFS  of FS . In general more than one marking iµ  

exists with ( )iii BFNBFS µ,=  well-behaved and i
high

i FSBFS = . Two different 

markings differ by the distribution of low tokens. As a consequence, there may exist 

more than one marking µ  on ( )max,NFSLBNLBN =  with ( )µ,LBNLBS =  a linked 

bp-system of FS . 

 

The following Theorem 17 and its corollary Proposition 19 are the main results of the 

present paper. They prove that any linked bp-system of a well-behaved free-choice 

system is well-behaved too. 

17. Theorem (High morphism of a linked bp-system) 

Consider a well-behaved free-choice system FS  and a non-blocking 

covering ( )
IiiFS ∈  of FS . The high morphism 

FSLBShigh →:  

from a linked bp-system LBS  attached to FS  with respect to ( )
IiiFS ∈  has the lifting 

property. 

Proof. We use the following notations from Definition 14 

( )µ,LBNLBS = , ( )iii BFNBFS µ,= , ( )highFNFS µ,= , ( )high
iii FNFS µ,=  

and denote by 

ii FNFNpr →:  

the canonical projection. 

In order to prove the lifting property of FSLBShigh →:  we start considering an 

occurrence sequence 
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highhigh
high

νµ σ  →  

of FS . Without loss of generality we may assume that highσ  comprises only a single 

transition FNr ∈ . For each index Ii ∈  we define the transition ( ) iii FNrprr ∈=: . 

The condition ( ) rbthigh =,  determines a unique transition LBNt ∈  and a unique 

high binding ( )tBb ∈  of t . Analogously, for each index Ii ∈  the 

condition ( ) iiii rbthigh =,  determines a unique transition ii BFNt ∈  and a unique high 

binding ( )ii tBb ∈  of it . In addition, according to Proposition 13 an occurrence 

sequence 

ii

low
i µµ σ ~ →  

exists in the low-system low
iBFS  such that the marking iµ~  of iBFS  activates the 

binding element ( )ii bt , . By catenation we obtain an occurrence sequence 

ii
i νµ σ→  

of iBFS  with ( )ii
low
ii bt ,: ⋅= σσ . Because LBSBS low

i ⊂  is a place bounded 

subsystem the occurrence sequence ( )low
ii σπ  of low

iBS  can be considered an enabled 

occurrence sequence of BS . Firing ( )low
jj σπ  for an arbitrary index ij ≠  does not 

remove the firing concession from ( )low
ii σπ . By catenation we obtain an occurrence 

sequence of LBS  

µµ σ ~ →
low

 with ( ) ( )low
nn

lowlow σπσπσ ⋅⋅= ...: 11  

Due to Definition 14 the occurrence sequences 

( )
i

bt
i

ii νµ  → ,~ , Ii ∈ , 

of all bp-systems iBFS  link to an occurrence sequence 

( ) νµ  → bt,~  

of LBS . By catenating ( )btlow ,: ⋅= σσ  we obtain the occurrence sequence of LBS  

sought-after 

νµ σ→  

satisfying ( ) highhigh σσ = , q.e. d. 

 

For a linked bp-system the definition of liveness with respect to all its high bindings is 

literally the same as in Definition 11, part ii) for a bp-system. 
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18. Definition (Well-behavedness of linked bp-systems) 

Consider a linked bp-system LBS  attached to a well-behaved free-choice system FS  

and a non-blocking covering of FS  with 1≥k  elements. 

i) LBS  is high-safe iff every reachable marking of LBS  marks each place either with 

a single high token but no low token or with at most k  low tokens but no high token. 

ii) LBS  is well-behaved iff it is high-safe and live with respect to all its high 

bindings. 

19. Proposition (Well-behavedness of a linked bp-system) 

Any linked bp-system LBS  attached to a well-behaved free-choice system FS  with 

respect to a non-blocking covering ( )
IiiFS ∈  is well-behaved. 

Proof. With the notations of Definition 14 we set 

( )0, µLBNLBS = , ( )( ) highLBShighFNFS == 0, µ  and ( )
IiiBFS ∈ . 

i) High-safeness of LBS  follows from the existence of the 

morphism FSLBShigh →:  and the safeness of  each IiBFSi ∈, . 

ii) For the proof that LBS  is live with respect to all high bindings we employ the 

lifting property of FSLBShigh →: . We consider an occurrence sequence 

10
1 µµ σ→  and a transition LBNt ∈  with a high binding ( )tBb ∈ . By definition 

the binding element ( )bt,  of LBN  is a transition of FN . Liveness of FS  implies the 

existence of an occurrence sequence 

( ) high
high

high 21
2 µµ σ  →  

such that the marking 
high

2µ  activates ( )bt, . According to Theorem 17 the 

occurrence sequence 
high

2σ  lifts to an occurrence sequence 21
2 µµ σ→  such that 

the following diagram commutes 

( ) ( ) ( ) ( ) ( )2210

210

221

21

µµµµ

µµµ

σσσ

σσ

highhighhigh

highhighhigh

highhighhigh
high

= → →

↓↓↓

→→

=

 

Therefore LBS  is live with respect to all high bindings, q. e. d. 

20. Remark (Semantics of AND/XOR-EPCs) 

Let EPC  be an AND/XOR-EPC. As described in the Introduction a free-choice 

system FS  exists, which defines the free-choice semantics of EPC . Also a 

translation of EPC  into a bp-system BS  exists. We have FSBS high = . 
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i) If FS  is non-blocking, then BS  is well-behaved iff FS  is well-behaved, cf. 

Proposition 13. 

ii) If FS  is well-behaved, then the Boolean semantics of EPC  is defined by a well-

behaved linked bp-system LBS  with FSLBS high = , cf. Proposition 19. 

iii) If FS  is non-blocking and well-behaved then BSLBS = , cf. Definition 14. 

4. Outlook 

We have shown that any AND/XOR-EPC, which is well-behaved with respect to its 

free-choice semantics, can be provided with a Boolean semantics which is well-

behaved too. In order to obtain this result, we had to generalize bp-systems to linked 

bp-systems, a class of coloured Petri nets which is slightly more general. 

This step is necessary to tackle EPC with connectors of arbitrary logical type. 

Apparently one can translate every EPC literally into a Boolean system. But 

Example 15 indicates that the literal translation possibly has to be altered afterwards 

to avoid the blocking of low tokens. 

Future investigations have to consider the literal translation of an EPC into a Boolean 

system only as a starting point. For the next step we need an algorithm which 

identifies well-behaved components of the Boolean system. Then it should link these 

components to a linked Boolean system, which avoids the blocking of low tokens 

from different components. These well-behaved components generalize the bp-

systems of non-blocking components while linked Boolean systems generalize the 

concept of linked bp-systems introduced in the present paper. 
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Abstract Here, we introduce a modular and hierarchical modeling concept
for large biological Petri nets. This modeling concept suggests represen-
ting every functional system component of a molecular network by an
autonomous and self-contained Petri net, so-called module. Due to the
specific architecture of the modules, they need to fulfill certain proper-
ties important for biological Petri nets to be valid. The entire network
is build-up by connecting the modules via common places corresponding
to shared molecular components. The individual modules are coupled in
a way that the structural properties that are common to all modules ap-
ply to the composed network as well. We applied this modeling concept
on nociceptive signaling in DRG-neurons to compose a model describing
pain on a molecular level for the first time. We verified the applicability
of our modeling concept for very complex components and confirmed
preservation of the properties after module coupling.

1 Introduction

A major issue in systems biology is the construction and validation of large bio-
logical networks, especially if the involved mechanisms should be considered in
depth. This is the case for the nociceptive network in the peripheral endings of
DRG-neurons (nociceptors) that are responsible for pain signaling (see Figure
1). Pain is a very complex phenomenon with behavioral, peripheral and central
nervous system components, wherein nociception comprises the underlying mo-
lecular mechanisms [2]. (Chronic) pain is certainly one of the most serious public
health issues (see [3,6] and references therein).Hitherto, there exists no coherent
computational model for pain due to the complexity and lack of knowledge on
the underlying molecular mechanisms. A complete and validated pain model
would be an important progress to develop a mechanism-based pain therapy to
successfully treat pain suffering.

In general, modular approaches have always been useful to manage large
networks. So far, in systems biology just single pathways have been regarded
as modules [1]. Our modular and hierarchical modeling concept is beyond this
scope. It is a promising approach to handle large biological systems by treating
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Figure 1. Illustration of a nociceptor. Primary subunits (modules) of the nociceptive
network are enzymes (green), receptors (orange) and channels (blue). The secondary
subunits like cAMP, Ca2+, DAG etc. are colored in black.

functional molecular components as single independent entities. In this respect,
Petri nets are an appropriate tool. They are designed for concurrent systems.
Thus, Petri nets are ideally suited to describe biological systems [5], like the
nociceptive system. Also, they allow for a hierarchical arrangement of large and
complex networks in the form of a neat graphical representation. Single functio-
nal proteins (receptors, channels, enzymes etc.) are represented by hierarchical,
autonomous and self-contained Petri nets, called modules, which have to fulfill
certain properties important for biological Petri nets [5]. Those firstly qualitative
modules are validated by a comprehensive analysis and are subsequently sub-
jected to stochastic simulation studies. The modular and hierarchical modeling
concept implies a special coupling procedure of the modules to an entire network
of communicating components. Advantageously, the properties of the entire net-
work can be predicted due to the adhered properties of the single modules and
the special module coupling.
The constructed pain model is a first approach to integrate the currently publi-
shed neurobiological and clinical knowledge about nociception in one coherent
and validated model describing all the interactions between the involved compo-
nents. Hitherto, it contains 31 modules that have been constructed and connected
by the modular and hierarchical modeling concept (see also section ”‘Nociceptive
Network”’). For the construction and validation of the modules and the entire
network we used the Petri net editor Snoopy [9] and the place/transition analysis
tool Charlie [7].
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Figure 2. Example of a small toy network composed of three different enzymes to ex-
plain the method: enzyme 1 (Kinase, stimulated by the activator), enzyme 2 (Synthase
for the inhibitor, regulated by phosphorylation), enzyme 3 (Phosphatase, regulated
by the inhibitor and phosphorylation). (A) Top-level of the entire network containing
three modules wrapped in coarse transition. (B) Flat representation of the network
graphs of the modules showing enzyme 1 (red), enzyme 2 (blue) and enzyme 3 (green)
and places are framed with the corresponding color. Circles indicate places belonging
to the primary entities and oval places indicate secondary entities (activator, inhibitor
and precursor). The modules consist of regulative subnets (red dashed rectangles’) and
subnets of effector function (green dashed rectangles). Logical places (yellow) connect
the modules at deeper levels of the hierarchy tree. The grey places, transitions and arcs
have been deleted after coupling.
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2 Method

First, the identified components in the regarded system have to be categorized
in primary and secondary entities. Primary entities are proteins or protein com-
plexes (enzymes, receptors, ion channels, adaptor proteins etc.), whose function
and activity can be regulated due to modification by other components. Secon-
dary entities cannot undergo modifications of their activity and function. This
group contains ligands, second messengers, precursor molecules, ions and energy
equivalents. Secondary entities are regulators or substrates of primary entities or
they are transported by those. Primary entities can be further differentiated by
their function, whether they regulate other primary entities or process secondary
entities. Every primary entity constitutes a module that contains a hierarchical
arranged, autonomous and self-contained Petri net. Detailed information about
the introduced modeling concept can be found in reference [4].
Architecture of a Module. Places of a module correspond to different states
of functional domains of primary entities (phosphorylation sites, binding do-
mains, inhibitory sequences etc.) or different states of secondary entities (free or
bound, precursor or proceeded molecule etc.). In this context, transitions of a mo-
dule describe inter-/intramolecular actions that occur within the corresponding
primary entity (like binding/dissociation, (de-)phosphorylation, conformational
changes or processing of substrates etc) and change the states of the involved
entities. Every module contains two classes of subnets indicating the regulation
or the effector function of a primary entity. The effector function subnets of those
primary entities that might regulate a variety of other primary entities are gene-
ralized. The possible targets are fused to one abstract target. Such subnets can
be reused for the construction of the regulatory subnets of discrete targets. An
illustrative example of a regulative network consisting of three different enzymes
is shown in Figure 2.
Validation of a Module. The constructed modules have to fulfill certain pro-
perties important for biological networks [5] to be valid which are considered by
a comprehensive analysis. Table 1 gives an overview about the properties that
every module must fulfill (see also Figure 3A). Having successfully validated the
qualitative modules, they are subjected to a stochastic simulation, even if ex-
perimental parameters are not available so far. Simulation studies are carried
out to analyze whether the dynamic behavior of the modules can in principle
reflect the assigned effector function as indicated by the time-dependent token-
flow. A stochastic mass action function is assigned to every transition that can
be modulated by a parameter according to biological needs. The parameters are
determined by ’in silico’ experiments.
Assembling of the Modules to an Entire Network. The single modules
can easily be connected to a larger network. The prerequisites for the direct and
indirect coupling of the modules have been established separately. The subnets
of the modules already consider all possible interactions. Thus, the modules are
’naturally’ connected by places that are equivalent to complexes between the
different entities (indicated as logical places) and actions on which the different
entities participate. At the top-level of the entire network the modules are just
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visible as coarse transitions. Thus, the connection of the modules is not imme-
diately obvious and the network seems to be very compact. Due to logical places
the complex branching of the modules is only visible on lower levels. The effector
function subnets of primary entities showing the regulation of a variety of other
primary entities are not needed anymore. Therefore, all places corresponding
to abstract targets and transitions connected with abstract targets have to be
be abolished. The entire network already contains all specified targets of those
primary entities. Figure 2 shows also the coupling of the enzymes to an entire
network.
Deducing Properties for the Entire Network from the Modules. Due
to the way of coupling, it is possible to transfer the structural properties of the
modules on the entire network (see Table 1A). We show that they do not change
after the coupling procedure. The entire network still contains no boundary tran-
sitions but boundary places of secondary entities. Therefore, it cannot be covered
with T-invariants. We observe that all T-invariants of the coupled modules are
conserved in the entire network. Furthermore, the coverage of the entire network
with P-invariants is achieved. Due to the special module coupling just certain
actions can occur to the P-invariants. The P-invariants of each module can be
retained or deleted without changing the coverage with P-invariants of the entire
network. The retention of P-invariants can be divided in five cases: (1) Retention
of unique P-invariants, (2) Melting of identical P-invariants, (3) Combination
of overlapping P-invariants, (4) Deletion of states of abstract targets in a P-
invariant and replacement by all possible specified targets, (5) Integration of
P-invariants in retained P-invariants. A P-invariant that contains only states
of an abstract target is deleted in the entire network, because the equivalent
places have been deleted before. Due to the coverage of the entire network with
P-invariants it is bounded. By virtue of boundness and the non-coverage with
T-invariants the entire network cannot be live and reversible (see also Table 1B).
After validating the entire network by its properties, the dynamic behavior must
be investigated by simulation studies (see Figure 2B).

Table 1: Properties of the modules and the entire network

Properties Fulfilled Explanation

A - Structural Properties
Pure No Every module contains actions that process just under cer-

tain intra-/intermolecular circumstances like a special state
of a domain. The corresponding places of such domains are
connected with the transition of an action by an double arc.

Ordinary Yes The arc weigth is ”1” because just elementary actions are
considered. Meaning just one element of every secondary en-
tity and one state of every domain can attend on the educte
side as well as on the product side.

Homogenous Yes Due to Ordinary.

Input transition No There are no boundary transitions (sinks or sources) that
add or withdraw any tokens.Output transition No
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Input place Yes1 The modules are bordered by places corresponding to
domains of other primary entities or secondary entities.Output place Yes1

Non-blocking
multiplicity

No1 Due to boundary places this property cannot be fulfilled.

Conservative No Modules contain certain domains of primary substances that
can build complexes with domains of the same or another
primary substance as well as with secondary substances.

Static conflict
free

No Modules contain certain domains of primary entities and se-
condary entities that can attend on more than one action on
the reactant side.

Connected Yes Every module must be connected, as well as the entire net-
work.

Strongly Connec-
ted

No1 The boundery nodes preclude strong connectedness.

Covered with P-
invariants

Yes Every Module has to be covered with P-Invariants, because:

– Every domain of a primary entity and every secondary
entity must exist in one of the possible state.

– There can just exist one of the possible states of a do-
main of a primary entity or a secondary entity at the
same time.

– There can just exist certain combinations of those states
at the same time.

Every P-Invariant has an important biological interpretation
that contributes to the function of the module.

Covered with T-
invariants

No1 Due to boundary places this property cannot be fulfilled. The
same is valid for the entire network. But every T-Invariant
has also an important biological interpretation that describes
reversible processes like binding/dissociation, phosphoryla-
tion/dephosphorylation, activation/inactivation etc.)

Deadlock trap
property

No1 Due to boundary places this property cannot be fulfilled.
The same is valid for the entire network.

B - Behavioral Properties
Structurally/
k-bounded

Yes Due to the coverage with P-invariants the modules are boun-
ded.

Strongly covered
with T-invariants

No Due to boundary places this property cannot be fulfilled.
Also exist transitions describing two reverse actions.

Dead Transitions No The initial marking must assure that every action can pro-
ceed.

Dynamically
conflict free

Yes1 Modules can contain actions that inhibit the feasibility of
other actions.

Dead States No1 Modules can contain actions that can act independent of the
limitations by secondary entities.

Liveness No1 Cannot be fulfilled because boundness and non-coverage
with T-invariants.

Reversibility No1 Due to boundary places this property cannot be fulfilled.
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Figure 3. Validation of the modules and the entire network shown in Figure 1. (A)
Identical properties of the modules and the entire network (exception: the module of
enzyme 2 contains two dead states) determined with Charlie (red = no, green = yes).
(B) Stochastic simulation study with the entire network showing the dependence of
the inhibitor synthesis on the activator. The simulation result is conforming to the
expected behavior, the inhibitor is mainly produced if the activator for enzyme 1 is
available. The high amount of the inhibitor inactivates the antithetic enzyme 3.

3 Nociceptive Network

Currently, we have constructed 31 modules (see also figure 1) with the help of
modular and hierarchical modeling concept on the basis of 320 scientific articles.
All modules have been connected to an entire nociceptive network with a total
size of 709 places, 800 transitions and 4391 arcs that are spread over 291 pages
with a nesting depth of up to 4. The modules of nociceptive signaling components
as well as the resulting nociceptive network have been validated. They adhere the
given properties of the modular and hierarchical modeling concept. All modules
and the entire nociceptive network as well as detailed results of the analysis and
simulations studies can be found in reference [4].

4 Conclusion

With the help of the modular and hierarchical modeling concept we were able to
construct and validate a number of modules of important nociceptive signaling
components and assemble them to an entire nociceptive network [4]. Hitherto,
the nociceptive network is not complete. Twice as many modules will be needed
to describe all known interactions.
Nevertheless, we verified the applicability of our modeling concept even for very
complex components and the preservation of the properties after module cou-
pling.

1 Exception for single modules are possible due to their functionality.
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All constructed modules are well documented and organized in a library for
reuse in other systems. The modules can be connected according to the specific
demands of any ’wet lab’ or ’in silico’ experiments.
To investigate the whole nociceptive system with ’in silico’ experiments, we first
need to modularize the missing nociceptive components and parameterize the
modules. We plan to establish a possible parameter set by trial and error. This
parameter set can then be challenged by error analysis and model checking. With
an initially parameterized nociceptive network we will presumably be able to:
(1) investigate changes in network behavior on perturbations of the network, (2)
predict experiments, (3) suggest possible targets for new intervention strategies
in pain therapy based on sensitivity analysis. To investigate multiple copies of
signaling components as well as diverse DRG-neuron population we also intend
to color our low level net [8]. Further we want to extend reconstructed networks
[10] out of experimental data by module mapping. We are still searching for new
methods to screen the modules and the nociceptive network for non-obvious pro-
perties that are defined by their structure.
In summary, our modular and hierarchical modeling concept seems to be a pro-
mising way to handle and investigate large biological system, to develop new
analysis approaches and Petri net applications.
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Abstract. Computation of enabled transition instances is a key but dif-
ficult problem of animation of colored Petri nets. To address it in our
colored Petri net tool, we give an algorithm for computing enabled tran-
sition instances. This algorithm is based on pattern matching. So it first
tries to bind tokens to variables covered by patterns. If some variables
are not covered by any pattern, the algorithm will bind all the colors
in the corresponding color sets to the variables. This algorithm uses the
new principle of partial binding - partial test and adopts some optimiza-
tion techniques for preprocessing to improve efficiency. The principle of
partial binding - partial test allows us to test the expressions during the
partial binding process so as to prone invalid bindings as early as pos-
sible. The preprocessing with optimization techniques not only prunes a
lot of invalid potential bindings before the binding begins, but also finds
disabled transitions at an early phase.

1 Introduction

Animation is an important technique for getting an intuitive understanding of
a Petri net model as it demonstrates the dynamic behavior of the model in a
visual way. Nearly all the visual tools for modeling Petri nets provide the ani-
mation functionality [Pet10]. For low-level Petri nets, the core of the animation
is the scheduling algorithm of the transitions. However, for colored Petri nets,
we have to consider another key problem, the computation of enabled transi-
tion instances. When checking whether a transition is firable or not at a given
marking, we have to assign values to the variables (which are called bindings. A
binding of a transition corresponds to a transition instance.) that occur in the
arc expressions and the guard of the transition, and then evaluate if it respects
the firing rule.

The introduction of colors to Petri nets makes it difficult to compute their
firing rules [JKW07]. The efficiency of the animation for large-scale colored Petri
nets is mainly determined by the efficiency of the computation of the enabled
transition instances, which, however, is a NP-hard search problem because of
the expressiveness of colored Petri nets. One possible way is to make an exhaus-
tive search to check all the bindings and then prune the invalid ones, which is
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inefficient at all especially if the transitions have many variables, but only a few
bindings can fire the transitions.

In this paper, we focus on the problem of the compuatation of enabled tran-
sition instances for colored Petri nets. We adopt the same idea given in [KC04],
that is, extracting patterns from input arc expressions and guards, then binding
the tokens residing on the input places to these patterns, and thus obtaining an
enabled binding set. The main contribution of this paper is that we give a more
efficient algorithm for our colored Petri net tool [RMH10], [LH10], in which we
use a new principle of partial binding - partial test and several heuristics tech-
niques to compute enabled transition instances.

This paper is organized as follows. Section 1 describes the patterns that are
used in the computation of enabled transition instances, and discusses how to
classify and find patterns. Section 2 discusses the computation process and recalls
some concepts. Section 3 gives the computation algorithm. Section 4 discusses
some heuristics to optimize the computation process. Section 5 summarizes and
compares the related work. Section 6 gives the conclusion.

2 Patterns

We use the same pattern match mechanism as CPN tools [KC04]. A pattern
is defined as an expression with variables which can be matched with other
expressions to assign the values of variables [KC04]. The difference is that CPN
tools are based on the SML, but we do not. We do not employ all the patterns
defined in SML [Ull98], but a subset, as we use less data types than CPN tools.
The patterns that we use have the following syntactical structure:

Pattern ::= ”V ariable”

|”Constant”

|TuplePattern

TuplePattern ::= (Pattern(, Pattern)∗)

Consider the example illustrated in Figure 1. According to the syntax of
the patterns, we can see that (x, y) is a tuple pattern. If we bind the token
(1, a) residing on the place P2 to the pattern (x, y), after matching, we get an
assignment x = 1 and y = a. This process is called the pattern match.

Pattern matching provides an easy and efficient way to compute enabled
transition instances; therefore, to improve the efficiency of the computation, we
have to find the patterns and use them to bind the tokens on the places as
much as possible. To do so, we have to search all the input arc expressions of a
transition to find available patterns, which we call a pattern set concerning arc
expressions, denoted by AS(t) for a transition t. Besides, we also can search the
guard of the transition t to find the patterns in the guard, denoted by GS(t).
These two sets constitute the overall pattern set, PS(t) = AS(t)∪GS(t), which
are used to bind tokens to variables. In the following, we in detail discuss how
to find the patterns.
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P1
6

2‘1++

2‘3++

1‘4++

1‘5

A

P2
3

1‘(1,a)++

1‘(2,b)++

1‘(3,a)

AB

P3
5

4‘1++

1‘4A

P4C

t[x<3&y=a]

x++

(x+2)

(x,y)
2‘1++

2‘x

z

Declarations:                  

Colorset A = int with 1−5;

Colorset B = enum with a,b,c;

Colorset C = enum with c1,c2;

Colorset AB = product with A,B;     

Variable x: A;

Variable y: B;

Variable z: C;

Figure 1. An example to demonstrate the patterns

2.1 Patterns in arcs

The patterns in arcs are the basic patterns that are used for the computation
of enabled transition instances. To get them, we have to search though all the
input arc expressions in the following two ways.

(1) If an input arc expression is exactly a pattern illustrated above, then we
put it in the PS(t). For example, in Figure 1, we can get such kind of pattern:
(x, y).

(2) If an input arc expression is a multiset expression, having the form
c1‘expr1 + +... + +cn‘exprn, where ci is the multiplicity, and expri has the
type of its corresponding input place. If expri is a pattern, then we add expri

to the PS(t). For example, for the expression 2‘1++2‘x in Figure 1, we get two
such kinds of patterns: the constant pattern, ’1’ and the variable pattern, x, but
for the expression x + +(x + 2), we only get one variable pattern, x, as x + 2 is
not a pattern. At the same time, we record the multiplicity of the corresponding
pattern so as to use them to test bindings once the pattern is used. For example,
for the variable pattern x, once we bind a token to it, for instance ’4’ on the
place P3, we immediately test if there are enough tokens with color ’4’ on the
place P3. To do so, the invalid bindings can be discarded earlier.

2.2 Patterns in guards

As the guard of a transition imposes often a rather strong constraint on efficient
bindings, it is better to consider it early when computing the bindings. For this,
we adopt the similar appoach to that in [KC04], but we extend the forms of the
guard that are used for binding, moreover we use some forms of guards for test
during the binding process.

Like [KC04], we consider the guard in the conjunctive form, G(t) ≡ ∧n
i=1

gi(t).
For one of these conjuncts gi(t), we consider the following forms: gil(t) = gir(t),
where gil(t) and gir(t) are expressions with constant or variable patterns, but one
of them must be a constant. We put these special expressions into the pattern set
GS(t). The advantage of using the patterns in the guards for binding is obvious.
For example, consider the pattern, y = a, it directly makes the bindings relating
to tokens without the color, ”a”, invalid.
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2.3 Binding color sets to variables

If there are variables that are not covered by PS(t), we have to let them bind to
their corresponding color sets, otherwise they can not be bound. For example,
for the variables that only appear in the output arcs, we have to bind them to
their color sets. In Figure 1, we can see that the variable z is of this case, which
has to be bound to the corresponding color set C.

2.4 Optimized pattern set

We herein give a formal representation of each pattern in PS(t), which is a
five-tuple S = 〈P,E,X,M,m〉 ∈ PS(t), where

– P , the type of the pattern: variable, constant, tuple, or guard,
– E, the expression that the pattern belongs to,
– X, the set of the variables in the pattern,
– M , the initial/current marking of the place that connects the arc whose

expression the pattern belongs to, and
– m, the multiplicity of the pattern.

For the pattern of AS(t) ⊆ PS(t), all the components above would be used,
but for the pattern of GS(t) ⊆ PS(t), only the first three components P , E, and
X would be used. For a constant pattern, X will be always {φ}.

For example, the patterns PS(t) in Figure 1 can be formally written as
follows:

S1 = 〈V ariable, x, {x}, {2‘1, 2‘3, 1‘4, 1‘5}, 1〉

S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

S3 = 〈Constant, 1, {φ}, {4‘1, 1‘4}, 2〉

S4 = 〈V ariable, x, {x}, {4‘1, 1‘4}, 2〉

S5 = 〈Guard, y = a, {y}〉

In order to improve the efficiency of computation, we define an optimized
pattern set. Let t be a transition, PS(t) = AS(t) ∪GS(t) is the pattern set. An
optimized pattern set OPS = {Si|1 ≤ i ≤ N} for transition t is a set satisfying
the following conditions:

1. V (OPS(t)) = V (PS(t)), where V (PS(t)) represents the set of all the vari-
ables in PS(t),

2. OPS(t) ⊆ PS(t),
3. ∀Si ∈ GS(t), Si ∈ OPS(t).

The first item ensures that the optimized pattern should cover all the vari-
ables that are covered by PS(t). Please note that there may be some variables
of transition t that are not covered by PS(t), and these variables will be bound
by their color sets. The second item ensures that all the elements in the OPS(t)
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come from PS(t). The third item states that all the guard patterns must be in-
cluded in the OPS(t). In the preprocessing section below, we will give the steps
to obtain an optimized pattern set, OPS(t) for a transition t from its pattern set,
PS(t), where we will see more conditions that an optimized pattern set should
satisfy.

Besides, we collect other expressions that are not in the optimized pattern set
to a set NS(t), whose elements are non-multiset expressions. If an expression is a
multiset expression, then we divide it first into a set of non-multiset expressions.
Each expression in NS(t) is denoted by a tuple S = 〈E,X,M〉, where

– E, the expression,
– X, the set of the variables in the expression,
– M , the initial marking of the place that connects the arc the expression

belongs to.

For these expressions in NS(t), we do not leave them until finishing all bind-
ings and then test them. We will use the partial binding - partial test principle
to test an expression that is not a pattern once we find that all the variables of
it have been bound during the partial binding process. This could prone invalid
bindings as early as possible.

For example, in Figure 1, if the variable x in P1 is bound by the value
1, 3, 4, 5, we can immediately evaluate and test the expression x+2. As a result,
at this moment we can exclude the partial bindings x = 3,x = 4, and x = 5, as
the place P1 has no enough tokens for these bindings.

3 Binding process

In this section, we recall the binding process and some definitions, which are
adapted from [KC04].

In order to evaluate the arc expressions and the guard of a transition t, the
variables relating to the transition (denoted by V (t)) must be bound by values
(tokens). A binding of a transition is written in the form: 〈v1 = c1, ...vn = cn〉,
where vi ∈ V (t), ci is the color value belonging to a corresponding color set,
i = 1, 2, ..., n.

Matching a token of an input place to a pattern would usually only bind to
a subset of the variables of the transition t. For example, consider the transition
t in Fig. 2, matching the token (1,a) to the pattern (x, y) will bind the variable
x to 1, and y to a, but it will not bind any value to the variable z. So the
concept of the partial binding is present, which means that a partial binding of
a transition is a binding in which not all variables of the transition are bound by
values. In the following, we use the PartialBinding(p, c) to denote the partial
binding by matching a pattern p with a token value c. If they are not matched,
PartialBinding(p, c) = ⊥.

In order to get a complete binding, we have to gradually merge the partial
bindings. For example, matching the pattern x and the tokens of P1 yields the
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following four partial bindings:

〈x = 1, y = ⊥, z = ⊥〉

〈x = 3, y = ⊥, z = ⊥〉

〈x = 4, y = ⊥, z = ⊥〉

〈x = 5, y = ⊥, z = ⊥〉

Matching the pattern (x, y) and the tokens of P2 yields the following three
partial bindings:

〈x = 1, y = a, z = ⊥〉

〈x = 2, y = b, z = ⊥〉

〈x = 3, y = a, z = ⊥〉

If we merge them, we obtain the following two partial bindings:

〈x = 1, y = a, z = ⊥〉

〈x = 3, y = a, z = ⊥〉

The merging of two partial bindings relates to the concept of the compatible
bindings. Two binding b1 and b2 are compatible (written as Compatible(b1, b2)),
if and only if

∀v ∈ V (t) : b1(v) 6= ⊥ ∧ b2(v) 6= ⊥ ⇒ b1(v) = b2(v)

For two compatible partial bindings b1 and b2, the combined partial binding
(written as Combine(b1, b2)) satisfies:

b(v) =







b1(v) if b1(v) 6= ⊥
b2(v) if b2(v) 6= ⊥
⊥ otherwise

Based on those defintions above, the merging of two partial binding sets B1

and B2 (written as Merge(B1, B2)) is defined as:

Merge(B1, B2) = {Combine(b1, b2)|∃(b1, b2) ∈ B1 × B2 : Compatible(b1, b2)}

4 An algorithm for computing enabled transition

instances

In this secition,we first give a top-level algorithm for computing enabled tran-
sition instances, which is illustrated in Algorithm 1. The algorithm inputs the
pattern set PS(t), and the non-pattern expression set of the transition, NS(t),
and outputs a complete binding set C.

The algorithm works as follows. First the algorithm performs a preprocess-
ing (line 1) on PS(t), and obtains an optimized pattern set, OPS(t) by con-
sidering some optimization techniques. Afterwards, the algorithm executes the
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BindbyPatterns process (line 2) to bind tokens residing on the places to the
patterns. After that, the algorithm executes the BindbyColorSets process (line
3) to bind color sets to the variables that are not contained in the pattern set,
V (NS(t))\V (OPS(t)). During this process, the algorithm checks whether the
guard is satisfied and whether the input places have sufficient tokens. So, finally
we get all valid complete bindings. In the next sections, we will continue to
discuss the three processes of the algorithm in more details.

Algorithm 1: An algorithm for computing enabled transition instances.

Input: PS(t), NS(t)
Output: C

OPS(t) = Preprocess(PS(t));1

C = BindbyPatterns(OPS(t), NS(t));2

C = BindbyColorSets(C, NS(t), V (NS(t)) \ V (OPS(t)));3

4.1 Preprocessing of the pattern set

The preprocessing of the pattern set is very important as it may prune a lot
of invalid partial bindings in advance and find if the transition can be enabled
as early as possible, thus improving the efficiency of computation of enabled
transition instances. In this section, we give the steps to preprocess the pattern
set and as a result obtain an optimized ordered pattern set.

(1)Testing multiplicity.
We begin the preprocessing of the pattern set with multiplicity testing. Dur-

ing this step, we can discard the tokens in the current marking that do not
contribute to the valid bindings. This is performed by checking whether the
number of tokens with the same color is greater than or equal to the muliplicity
of the pattern. For a constant pattern, if this is evaluated to false, we immedi-
ately stop the preprocessing process, and directly disable this transition. If true,
we can now remove the constant patterns from the binding pattern set, as we
will not use it any longer for succedent processes. For a variable or tuple pattern,
if this is evaluated to false, we will remove these tokens from the current mark-
ing set. If the current marking set becomes empty, we stop the preprocessing
process, and directly disable this transition.

The algorithm is illustrated in Algorithm 2, which works as follows. The
algorithm executes a loop for each pattern in the pattern set PS(t). If a pattern
is a constant pattern, the multiplicity of the constant pattern is checked with the
tokens of the constant color. Here Si.Mi〈c〉 represents the number of the tokens
with the color ”c”. If this is evaluated to false, the transition is determined not
to be enabled (lines 2-6). If a pattern is a variable or tuple pattern, for each color
in the initial marking, the multiplicity is tested. The tokens will be removed if
the testing is false. If the current marking set of the pattern becomes empty, the
transition is determined not to be enabled (lines 8-17).
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After the multiplicity testing for the example in Figure 1, we get the following
pattern set, where pattern S3 is removed.

S1 = 〈V ariable, x, {x}, {2‘1, 2‘3, 1‘4, 1‘5}, 1〉

S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

S4 = 〈V ariable, x, {x}, {4‘1}, 2〉

S5 = 〈Guard, y = a, {y}〉

Algorithm 2: Multiplicity testing.

Input: PS(t)
Output: OPS(t)
for each pattern Si ∈ PS(t) do1

if Si is a constant pattern then2

c← Si.Ei;3

if Si.Mi〈c〉 < Si.mi then4

transition t is not enabled;5

endif6

endif7

if Si is an variable or tuple pattern then8

for each color c ∈ Si.Mi do9

if Si.Mi〈c〉 < Si.mi then10

Si.Mi ← Si.Mi\{Si.Mi〈c〉};11

endif12

endfor13

if Si.Mi is empty then14

transition t is not enabled;15

endif16

endif17

endfor18

(2)Merging identical patterns.
Usually, there exist several identical patterns (identical expressions) for a

transition. Merging them can remove invalid partial bindings as much as possible
before the binding begins. The algorithm is illustrated in Algorithm 3. To merge
two identical patterns, for example, Si and Sj , i 6= j, we need to get their colors
that have tokens, denoted by Ci and Cj (lines 1-2), respectively. We calculate
the merged colors by Ck = Ci ∩ Cj (line 3). If Ck is not empty, we build a new
pattern Sk, where Mk stores the merged color with the multiplicity being 1 and
mk is set to 1 (lines 4-10). At the same time, we remove the old patterns Si and
Sj and add a new pattern Sk to the pattern set. If the set Ck is empty, we can
directly set the transition disabled.

For example, Figure 1 has two identical patterns: S1 and S4. The colors with
current tokens are {1, 3, 4, 5} and {1}, respectively, and the merged color is {1}.
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Algorithm 3: Merging identical patterns.

Input: Si, Sj

Output: Sk

Ci ← Si.Mi;1

Cj ← Sj .Mj ;2

Ck ← Ci ∩ Cj ;3

if Ck is not empty then4

Sk.Pk ← Si.Pi;5

Sk.Ek ← Si.Ei;6

Sk.Xk ← Si.Xi;7

Sk.Mk ← Ck;8

Sk.mk ← 1;9

endif10

if Ck is empty then11

transition t is not enabled ;12

endif13

So we remove the patterns, S1 and S4 and add a new pattern, S14. Now the
patterns for Figure 1 become:

S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

S14 = 〈V ariable, x, {x}, {1‘1}, 1〉

S5 = 〈Guard, y = a, {y}〉

(3)Sorting patterns in terms of the less different tokens first policy
[Cae96].

After that, we can sort the patterns in terms of the less different tokens
first policy that will be discussed in detail later. For example, after sorting, the
binding patterns in Figure 1 become:

S5 = 〈Guard, y = a, {y}〉

S14 = 〈V ariable, x, {x}, {1‘1}, 1〉

S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

After finishing the preprocessing, we finally get an optimized pattern set
OPS(t), which will be used as the input of the following algorithm.

4.2 Binding by matching tokens and patterns

In this section, we describe a key component of the algorithm for the computation
of enabled transition instances (illustrated in Algorithm 4), binding by matching
tokens residing on the places and patterns in the set, OPS(t), which is based on
the algorithm in [KC04].

The algorithm executes a loop to handle each member of the pattern set
OPS(t). Lines 4-9 consider the case of the guard patterns, in which the right
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hand side of the guard is matched against the left hand side of it. Lines 10-18
consider the case of matching the tokens in the current marking and the arc
expression patterns. Lines 19-31 test if each partial binding is valid using the
non-pattern set NS(t). For an expression of NS(t) whose variables are fully
bound, if it is a guard and is evaluated to be false for a partial binding, then the
partial binding is invalid. If the expression is an arc expression and can not get
enough tokens by evaluating it with a partial binding, then the partial binding
is also invalid.

Compared to the algorithm in [KC04], our algorithm has the following dis-
tinguished features:

– The biggest difference is that our algorithm employs the partial binding -
partial test principle, that is, during a partial binding process, if the variables
in a non-pattern expression have been detected to be fully bound, then we
evaluate and test it immediately. As a result, this would not produce any
invalid complete binding when the binding process ends.

– The overall algorithm considers the case of the variable binding to the color
set, as this case may be encountered in our colored Petri nets, which will be
discussed in the next section.

We still use the example in Figure 1 to demonstrate how the algorithm above
works. For the first loop, the guard pattern y = a is processed, and let ’a’ bind
to y. Then the pattern S14 is processed, and let x be bound by ’1’. After that,
the non-pattern expression x < 3 begins to work as it finds that the variable x

has been bound and keeps the binding ’1’ to x. We continue to bind (1, a) to the
pattern (x, y) and merge them with existing bindings. After these steps, we get
the following partial bindings.

〈x = 1, y = a, z = ⊥〉

4.3 Binding colors of color sets to variables

When the variables are not contained by all the patterns, they have to be bound
to colors of their color sets. The algorithm is illustrated in Algorithm 5. The
algorithm works as follows. The algorithm executes a loop for each variable
v ∈ V (NS(t))\V (OPS(t)), which stores all the variables that have to be bound
by the color sets. Lines 3-9 bind the colors to the variables. Here c(v) represents
the color set of variable v. Lines 10-22 test if the expressions in NS(t) satisfy
the guard or have sufficient tokens in the corresponding places.

We continue to apply this algorithm to the example in Figure 1. Here, we
bind the color set C with colors, c1 and c2, to the variable z. Then we get the
following complete bindings.

〈x = 1, y = a, z = c1〉

〈x = 1, y = a, z = c2〉
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Algorithm 4: An algorithm for matching tokens and patterns.

Input: OPS(t) = {Si|1 ≤ i ≤ N}, V (t)
Output: C

C ← φ;1

for each pattern Si ∈ OPS(t) do2

C
′

← φ;3

// binding

if Si ≡ gil = girthen4

b
′

← PartialBinding(gil, gir);5

if b
′

6= ⊥ then6

C ← C ∪ {b
′

};7

endif8

endif9

if Si ∈ AS(t) then10

for each colored token c ∈ Si.Mi do11

b
′

← PartialBinding(Si.Ei, c);12

if b
′

6= ⊥ then13

C
′

← C
′

∪ {b
′

};14

endif15

endfor16

C ←Merge(C, C
′

);17

endif18

// testing

for each expression Sk ∈ NS(t) do19

if V (Sk) ⊆ V (C) then20

for each binding b ∈ C do21

if Sk.Ek is a guard expression and Sk.Ek〈b〉 is false then22

C = C\{b};23

endif24

if Sk.Ek is an arc expression and Sk.Ek〈b〉 > Sk.Mk〈c〉 then25

C = C\{b};26

endif27

endfor28

NS(t)← NS(t)\{Sk};29

endif30

endfor31

endfor32
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Algorithm 5: An algorithm for binding colors of color sets to variables.

Input: C, TS(t), NS(t), V (NS(t))\V (OPS(t))
Output: C

// binding

for each variable v ∈ V (NS(t))\V (OPS(t)) do1

C
′

← φ;2

for each color c ∈ c(v) do3

b
′

← PartialBinding(v, c);4

if b
′

6= ⊥ then5

C
′

← C
′

∪ {b
′

};6

endif7

endfor8

C ←Merge(C, C
′

);9

// testing

for each expression Sk ∈ NS(t) do10

if V (Sk) ⊆ V (C) then11

for each binding b ∈ C do12

if Sk.Ek is a guard and Sk.Ek〈b〉 is false then13

C = C\{b};14

endif15

if Sk.Ek is an arc expression and Sk.Ek〈b〉 > Sk.Mk〈c〉 then16

C = C\{b};17

endif18

endfor19

NS(t)← NS(t)\{Sk};20

endif21

endfor22

endfor23
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5 Optimization Techniques

In this section, we briefly summarize some of the optimization techniques that we
use to improve the efficiency of the computation of enabled transition instances.

(1)Partial binding - partial test.
As described above, we collect all the arc or guard expressions that are not

covered by the pattern set. We do not leave them until finishing all complete
bindings and then test them. Rather, we will test them once we find that all
the variables of them have been bound during the partial binding process. For
example, in Figure 2, the optimized pattern set is x, y and z. If we do not use
this policy, we would first get 20 × 30 × 40 complete bindings, then test these
bindings by evaluating x+1 and y+1 and then get 480 valid bindings. However,
if we use this policy, x is first bound and 20 partial bindings are gotten. After
that the expression x + 1 is tested, and the valid bindings for x are now 3. Then
y is bound, and the partial bindings for x and y become 90. When the expression
y + 1 is tested, the partial bindings become 12. Finally, the variable z is bound,
and the final complete bindings are gotten, whose number is 480. Obviously,
using this policy usually reduces the amount of computation greatly.

P2 3

1‘1++

1‘5++

1‘10
A P330

1‘all()B

P4 4

1‘1++

1‘4++

1‘5++

1‘16

B

P5
40

1‘all()C
P1 20

1‘all()

A

x+1

y

y+1

x

z

Declarations:

Colorset A = int with 1−20;

Colorset B = enum with 1−30;

Colorset C = enum with 1−40;

Variable x : A;

Variable y : B;

Variable z : C;

Figure 2. An example to demonstrate the policy of partial binding - partial test.

(2) Less different tokens first policy [Cae96].
As can be easily noticed and analyzed, the information of the tokens residing

on different places can affect the efficiency of computation of enabled transition
instances. For example, in Figure 1, for transition t, if we bind first x to the
tokens of P1, we have 4 bindings, but if we bind the tokens in P2 to x first, we
get 2 bindings. That is to say, the binding order of variables is quite different in
efficiency; therfore, we can optimize the binding order of the patterns. We use
the less different tokens first policy, which has been given by [Cae96].

(3) Multiplicity test.
When finding patterns, we also record the multiplicities of the patterns. We

use them to test if the places contain enough tokens for enabling before the
binding begins, which already is reflected in the Algorithm 2.

(4) Merging identical patterns.
Merging the same patterns before binding is more efficient than binding a pat-

tern and then testing another pattern during binding. In the algorithm presented
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above, we consider the merging of identical patterns during the preprocessing
phase. This heuristics is very useful when there are many identical patterns for
a transition and the tokens for each pattern are notably different.

All the heuristics have been used in our algorithm, which can be seen in
different parts in Algorithm 1-5.

6 Related work

In this section, we describe and compare some related work concerning the com-
putation of enabled transition instances.

Mäkelä [Mak01] used a unification technique to calculate enabled transition
instances for the algebraic system nets that are in fact another kind of high-level
Petri nets, which gave a different idea on finding enabled bindings.

Sanders [San00] considered the calculation of enabled binding as a constraint
satisfaction problem. He imposed strong constraints on the form of arc expres-
sions, only considering the form n‘exp, which is impossible for nearly all the
colored Petri nets.

Gaeta [Cae96] studied the enabled test problem of Well-Formed Nets, and
gave some heuristics for determining the binding elements, i.e., less different
tokens first policy, which are very useful for the efficiency of calculation of enabled
transition instances.

Mortensen [Mor01] described data structure and algorithms used in the CPN
tools. He used the locality principle to dicover enabled transitions rather than
calculating all the transition each time. He also discussed how to optimize the
binding sequences.

Kristensen et al. [KC04] gave a pattern reference algorithm for enabled bind-
ing calculation of CPN tools. We also adopt that idea to design our binding
algorithm, but compared their algorithm, our algorithm considers more opti-
mization techniques.

In our work, we take into account the main idea of [KC04] and also some ideas
of [Mak01] and [Cae96], but comapared with all the previous work, we adopt a
new principle, partial binding - partial test, and consider more optimization
techniques to improve the efficiency of computing enabled transition instances
for colored Petri nets.

7 Conclusions

In this paper, we present an algorithm for computation of enabled transition
instances for colored Petri nets. This algorithm uses the principle of partial
binding - partial test and adopts some optimization techniques for preprocessing.
The principle of partial binding - partial test allows us to test the expressions
during the partial binding process so as to prone invalid bindings as early as
possible. The use of optimization techniques prunes invalid potential bindings
before the binding begins, and also finds the disable transitions at an early
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phase. Among them, the less different tokens first policy allows variables to
have less bindings, the multiplicity test excludes insufficient tokens before the
binding begins and the merging of identical patterns avoids repeated bindings
for identical patterns. All these techniques contribute to the improvements of
efficiency.

This algorithm can realize an efficient computation of enabled transition
instances for large-scale colored Petri nets. At the same time, we are adapting
this algorithm to unfold colored Petri nets, which will improve the efficiency of
unfolding of colored Petri nets and thus simulation of colored stochastic Petri
nets. In the future, we will investigate more optimization techniques to further
improve the efficiency.
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Abstract. Recently hybrid modelling and simulation of biochemical
systems have attracted increasing interest. This is motivated by the need
of simulating systems which integrate different sub-cellular models, and
the fact that bio networks themselves are inherently stochastic, however
stochastic simulation is time expensive. Compared to other methods of
biological modelling, Petri nets are characterized by their intuitive vi-
sual representation and executability of biological models. In this paper,
we present a hybrid Petri net class that incorporates both continuous
and stochastic capabilities. The presented class is intended to model and
simulate hybrid biological systems such that they contain some parts
which are simulated deterministically while other parts are simulated
stochastically.

Keywords: Hybrid Petri Net, Hybrid Biochemical Simulation, Systems
Biology.

1 Introduction

Computer simulation is an essential tool for studying biochemical systems. The
deterministic approach (continuous simulation) is the traditional way of sim-
ulating biochemical pathways. In this approach, reactions and their influence
on the concentrations of the involved species are represented by a set of ordi-
nary differential equations (ODEs). The changes in reactants and products are
obtained through solving the resulting ODEs using numerical integration algo-
rithms. While this approach has the advantage of a well established mathematical
basis and strong documentation, it lacks to capture the phenomena which occur
due to the underlying discreteness and random fluctuation in molecular numbers
[Pah09],[LCP+08], especially in situations where the number of molecules is few.

Stochastic simulation [Gil76] provides a very natural way of simulating bio-
chemical pathways, since it can successfully capture the fluctuations of the un-
derlaying model. Furthermore it deals correctly with the problem of extremely
low number of molecules [ACT05]. In stochastic simulation, species are no longer
represented as continuous concentrations which change continuously with time,
instead they are represented as discrete entities such that their dynamics can be

http://www-dssz.informatik.tu-cottbus.de/
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simulated using the machinery of Markov process theory. In [SYS+02] an exam-
ple is given comparing deterministic versus stochastic modeling using a simple
model of the intracellular kinetics of a generic virus.

A major drawback of the stochastic simulation is that it is computationally
expensive, when it comes to simulate larger biological models [Pah09],[LCP+08],
[ACT05], especially when there are a large number of molecules of some chemical
species. The reason behind this problem comes from the fact that we have to
simulate every reaction event when we use stochastic simulation to simulate
biological systems [LCP+08]. This drawback motivates scientists to search for
other methods to enhance the capability of the stochastic approach. Hybrid
simulation is one of these methods.

Hybrid simulation [ACT05],[Kie+04],[Rue+07] of biochemical system using
both deterministic and stochastic approaches has been recently introduced to
take the advantage of capturing the randomness and fluctuation of the discrete
stochastic model and allows at the same time a reasonable computation time.
This goal is achieved by simulating fast reactions deterministically, while simu-
lating slow reaction stochastically. While this method provides a promising ap-
proach for simulating biochemical models, there are some open questions which
need to be solved [Pah09].

Petri nets provide a very useful way of modelling biochemical pathways
[RML93],[BGH+08],[HGD08],[Mat+03] since they provide an intuitive approach
of transforming the biological model into a graphical representation which coin-
cides with the qualitative description of this model. Furthermore, they can be
easily transformed later for quantitative simulation.

Continuous Petri nets are used in biological modelling to introduce an easy
way of modelling complex biological pathways and simultaneously hide the math-
ematical complexities of the underlying ODE. Contrary, in stochastic Petri nets
and their simulation, transitions fire with exponentially distributed random wait-
ing time.

Hybrid Petri nets [AD98] incorporate both continuous and discrete capabil-
ities and can be used to model systems which contain both discrete and contin-
uous elements. Many various of hybrid Petri nets have been introduced during
the last two decades, with different modeling goals. Some examples can be found
in [Mat+03],[TK93] and [PB09]. An overview of continuous, discrete and hybrid
Petri nets can be found in [DA10] .

In this paper, we introduce the definition of a hybrid continuous-stochastic
Petri net, HPN, and integrate it into Snoopy [HRR+08],[RMH10], a tool to
design and animate or simulate hierarchical graphs, among them the qualita-
tive, stochastic and continuous Petri nets, which incorporate the modeling ca-
pabilities of the previously introduced stochastic and continuous classes [GH06],
[GHL07],[HLG+09], The new net class HPN, is intended to model biological
pathways that require hybrid simulation, such that the resulting Petri net can
be simulated deterministically and stochastically based on the model specifica-
tion.
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This paper is organized as follow: Firstly we briefly review the motivations
of using continuous and stochastic Petri nets to model biochemical reactions.
Then we introduce our hybrid stochastic-continuous Petri net class, by firstly
presenting a formal definition as well as the connectivity rules between its ele-
ments. The illustration of the modeling capabilities of HPN to model biological
systems is then demonstrated using two examples. At the end we conclude by a
summary and autlook of future work.

2 Petri Net and Biological Systems

The tight analogy between Petri net and biochemical reactions makes it a natural
choice to model these reactions [RML93],[HGD08]. Being bipartite, concurrency,
and stochasticity are common properties shared by Petri nets and biochemical
interactions. Qualitative Petri net [HGD08] can be used to analyze the biochem-
ical systems qualitatively, while stochastic and continuous Petri nets are used to
simulate them quantitatively. Before we discuss the various aspects of the hybrid
stochastic-continuous Petri net, we provide a short overview of continuous and
stochastic Petri nets as well as how they can be used to model biological systems.
Detailed discussion can be found in [BGH+08] and [HGD08], and for a general
introduction to Petri net see [DA10] and [Mur89].

Continuous Petri nets provide a way for modeling systems in which states
change continuously with time. In this class of Petri nets, places contain nonneg-
ative real values and transitions fire continuously with time. In systems biology,
continuous Petri nets provide a very useful way of representing ODEs. Preplaces
of the transitions represent reactants species and the marking of these places rep-
resents species’ concentrations. Each transition is associated with a rate function
which defines the kinetic rate. The corresponding ODE which represents the re-
action which is modeled by this transition can be generated using (1) [GH06].

dp

dt
=

∑
t∈•p

f(t, p)v(t)−
∑
t∈p•

f(p, t)v(t) (1)

where v(t): is the rate function and f(t, p): is the weight connecting transition t
with place p and •p, p• are the pre- and post-transitions of place p, respectively.
Note that place names are read as real variables.

The resulting system of ordinary differential equations of all places describes
the changes with respects to time in all biochemical species. Our HPN supports
the same functionality as the aforementioned continuous Petri net.

In contrast to continuous Petri nets, stochastic Petri nets preserve the dis-
crete state description. The biochemical models are simulated stochastically by
associating a probability-distributed firing rate (waiting time) with each tran-
sition. This means that there is a time which has to elapse before an enabled
transition t ∈ T fires [HLG+09], where T is the set of all stochastic transi-
tions. The probability density function of the exponentially distributed random
variable, xt, which represents the waiting time, is given by (2)
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fxt
(τ) = λt(m).e−λt(m)τ , t ≥ 0 (2)

where λt(m) is a marking dependent kinetic rate which is associated with each
stochastic transition. λt(m) is equivalent to the propensity of the reaction t,
a(xi), of the stochastic simulation algorithms which are presented in [Gil76].

Because of the deterministic nature of continuous Petri nets, the concentra-
tion of particular species will have the same values at each time point for repeated
experiments, which is the main difference between simulation of stochastic and
continuous biological models, and hence for Petri nets as well. In a typical exe-
cution of stochastic Petri nets, each transition gets its own local timer. When a
particular transition becomes enabled, the local timer is set to an initial value
which is computed by means of the corresponding probability distribution. The
local timer is then decremented at a constant speed and the transition will fire
when the time reaches zero. A race will take place in the case of conflict between
more than one enabled transition.

To extend the modeling capabilities of stochastic Petri nets (SPN) in biolog-
ical system, two extensions, general stochastic petri nets (GSPNbio) and deter-
ministic stochastic petri nets (DSPNbio), of SPN are introduced in [HLG+09].
These extensions add inhibitor and read arcs and deterministically time-delayed
transitions to stochastic Petri nets.

In the following section, we present the merging of stochastic Petri nets (us-
ing the extended version) and continuous one, to produce a hybrid continuous-
stochastic Petri nets which are capable of modeling and simulating hybrid bio-
chemical reactions.

3 Hybrid Continuous-Stochastic Petri Nets

In this section we describe the hybrid continuous stochastic Petri nets capable
of modeling systems which consist of discrete and continuous parts. The discrete
parts may be considered as a set of reactions which involves species with low
number of molecules such that it is adequate to simulate them in a discrete
way. On the other hand, continuous elements of this class can represent a set
of reactions which involves species with large number of molecules, which are
computationally too expensive to be simulated stochastically. Continuous and
stochastic Petri nets complement each other. We get modelling power of fluc-
tuation and discreteness, when using the stochastic simulation and at the same
time we can simulate the computationally expensive parts deterministically us-
ing ODEs solvers.

Generally speaking, biochemical systems can involve reactions from more
than one type of biological networks, for example regulatory, metabolic or trans-
duction pathways. Incorporation of reactions which belong to distinct (biologi-
cal) networks, tend to result in stiff systems. This follows from the fact that regu-
latory network’s species may contain a few number of molecules, while metabolic
networks’ species may contain a large number of molecules [Kie+04]. In our hy-
brid Petri nets, reactions which involves species with a small number of molecules



70

A Hybrid Petri Net for Modelling Hybrid Biochemical Interactions 5

are represented by discrete entities, so that they can be simulated stochastically,
while reactions which include a large number of molecules are represented by
continuous entities, so that they can be simulated deterministically. The connec-
tion between the discrete and continuous parts takes place using either special
arcs (read, inhibitor, or equal arcs) or in some cases using the standard arcs
based on the defined connection rules.

In the rest of this section, we will discuss in more detail the newly introduced
hybrid continuous-stochastic Petri nets in terms of the graphical representation
of its elements as well as the firing rules and connectivity between the continuous
and stochastic parts.

3.1 Graphical Representation

As expected, HCSPN contains two types of places: discrete and continuous.
Discrete places (single line circle) contain integer numbers which represent for
example the number of molecules in a given species. On the other hand, contin-
uous places - which are represented by shaded line circle - contain real numbers
which represent the concentration of a given species. This means that we can
combine the power of the previously discussed continuous and stochastic Petri
nets together in one class. HCSPN contains a variety of transition types: contin-
uous, stochastic, deterministic, immediate, and scheduled transitions [HLG+09].
Continuous transitions - shaded line square - fire continuously in the same way
like in continuous Petri nets. Their semantics are governed by ordinary differ-
ential equations. Their ODEs define the changes in the transitions’ pre- and
post-places.

Stochastic transitions which are drawn in Snoopy as a square, fire randomly
with an exponential random distribution delay. The user can specify a set of firing
rate functions, which determine the random firing delay. Deterministic (time
delay) transitions - black square - fire after a specified time delay, immediate
transitions - black bar - fire with zero delay, and they have higher priority in
the case of a conflicts with other transitions. They may carry weights which
specify the relative firing frequency in the case of conflicts between more than
one immediate transition. Scheduled transitions - grey square - fire at a user-
specified time point or time interval.

The connection between those two types of nodes (places and transitions),
takes place using a set of different arcs. HCSPN contains five types of edges:
standard, inhibitor, read, equal and reset arcs. Standard edges connect transi-
tions with places or vice versa . They can be continuous, i.e carry real value
weights (or in the biochemical context stoichiometry), or discrete i.e carry non-
negative integer value weights. Special arcs like inhibitor, read, equal and reset
arcs provide only connection from places to transitions, but not vice versa. The
connection rules and their underlying semantics are given below. Fig. 1 provides
a graphical illustration of those elements. While this graphical notation is the
default one, they can be easily customized using our Petri nets editing tool,
Snoopy.
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Places

Transitions

Edges

Discrete Continuous

ContinuousStochastic Immediate

Discrete or Continuous Inhibitory Read Equal

Deterministic

<?>

Scheduled

_SimStart,?,_SimEnd

Reset

Fig. 1. Graphical representation of the HCSPN’s elements

3.2 Formal Definition

HCSPN is a 5-Tuple,HCSPN = {P, T,A, V,m0} where: P, T are finite, nonempty
and disjoint sets. P is the set of places and T is the set of transitions with:

– P = {Pcont ∪ Pdisc} whereby Pcont is the set of continuous places to which
nonnegative real values can be assigned and Pdisc is the set of discrete places
to which nonnegative integer values can be assigned.

– T = Tcont ∪ Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled with:

1. Tcont, the set of continuous transitions, which fire continuously over time.
2. Tstoch, the set of stochastic transitions, which fire stochastically with

exponentially distributed waiting time.
3. Ttimed, the set of deterministic transitions, which fire with a deterministic

time delay.
4. Tscheduled, the set of scheduled transitions, which fire at predefined firing

time points.
5. Tim, the set of immediate transitions, which fire with waiting time zero

and it has higher priority compared to other transitions.

– A = {Acont∪Adisc∪Ainhibit∪Aread∪Aequal,∪Areset}, is the set of directed
edges, whereby:
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1. Acont : ((Pcont× T )∪ (T ×Pcont))→ IR0 : defines the set of continuous,
directed arcs, weighted by nonnegative real values.

2. Adisc : ((P × T ) ∪ (T × P ))→ IN0 : defines the set of discrete, directed
arcs, weighted by nonnegative integer values.

3. Aread : (P×T )→ IR+ifP ∈ Pcont or Aread : (P×T )→ IN+ifP ∈ Pdisc,
defines the set of read arcs.

4. Aequal : (P × T ) → IR+
0 ifP ∈ Pcont or Aequal : (P × T ) → IN+

0 ifP ∈
Pdisc, defines the set of equal arcs.

5. Ainhibit : (P × T ) → IR+ ∪ {0+}ifP ∈ Pcont or Ainhibit : (P × T ) →
IN+ifP ∈ Pdisc, defines the set of inhibits arcs, where 0+ means very
small positive real number but not zero.

6. Areset : (P × Tdiscrete) defines the set of reset arcs, where Tdiscrete =
Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled is the set of discrete transitions.

– V is a set of functions {f,g,d,w} where :

1. f : Tcont → Hc is a function which assigns a rate function hc to each

continuous transition t ∈ Tcont, such that : {hct |hct : IR|
•t|
0 → IR+, t ∈

Tcont} is the set of all rates functions and f(t) = hct ,∀t ∈ Tcont.
2. g : Tstoch → Hs is a function which assigns a stochastic hazard function

hst to each transition t ∈ Tstoch, whereby {hst |hst : IN|
•t|
0 → IR+, t ∈

Tstoch} is the set of all stochastic hazard functions and g(t) = hst∀t ∈
Tstoch .

3. d : Ttimed → IR+, is a function which assigns a constant time to each
deterministic transitions representing the waiting time.

4. w : Tim → Hw is a function which assigns a weight function hw to each

immediate transition t ∈ Tim, such that : {hwt |hwt : IN|
•t|
0 → IR+, t ∈

Tim} is the set of all weight functions and w(t) = hwt ,∀t ∈ Tim
– m0 = {mcont ∪mdisc} : is the set of initial marking for both the continuous

(Pcont) and discrete places (Pdisc), whereby mcont ∈ IR+|Pcont|
0 , mdisc ∈

IN+|Pdisc|
0 .

A critical question arises when considering the mixing between discrete and
continuous elements: how are these two different parts connected with each
other? Fig. 2, provides a graphical illustration of how the connection between
different elements of the introduced HCSPN takes place. Note that other discrete
transitions (immediate, deterministic and scheduled transitions) follow the same
connection rules as stochastic transitions.

Firstly, we will consider the connection between continuous transitions and
the other elements of the HCSPN. Continuous transitions can be connected
with continuous places in both directions using continuous arcs (i.e arc with real
value weight). This means that continuous places can be pre- and post-places of
continuous transitions. These connections represent deterministic, biological in-
teraction. According to the previous formal definition, each continuous transition
takes a rate function. This rate function represents the kinetics of the determin-
istic reaction. Like in continuous Petri net, the firing of this transition can be
represented as an ODE. The continuous transition can be connected also with
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a discrete or continuous places, but only by one of the special arcs (inhibitor,
read, equal). Read arcs allow to specify positive side conditions, while inhibitor
arcs allow to specify negative side conditions. It is worth being mention, that
the markings of the transition preplaces connected by these special arcs do not
change when the transition fires. This type of connection allows a connection
between the discrete and continuous parts of the biochemical model.

Discrete places are not allowed to be connected with continuous transitions
using standard arcs, because the firings of continuous transitions are governed
by an ODE which requires real values in the pre- and post-places. Discrete tran-
sitions (stochastic, deterministic, immediate and scheduled) can be connected
with discrete or continuous places in both directions using standard arcs. How-
ever, the arc’s weight should be considered, i.e the connection between discrete
transitions and discrete places takes place using arcs with nonnegative integer
numbers, while the connection between continuous place and discrete transi-
tions is weighted by nonnegative real numbers. The general rule to determine
the weight type of the arcs is the type of the transition’s pre/post places.

The connection between continuous places and discrete transitions will result
in a model like discussed in [TK93], in which the changes in the continuous places
are governed by firing of stochastic transitions. Discrete transitions can also have
discrete or continuous places as the transition pre-places using the special arcs.

3.3 Simulation of HCSPN

Due to the use of both stochastic and continuous parts in HCSPN, we have
now two different clocks: one for the continuous parts and the other for the
stochastic ones. The ODEs solver which represents the semantics of the contin-
uous Petri net evolves deterministically with approximate time steps, while the
stochastic transitions fire stochastically with exact time steps. Because we intend
to use HCSPN to simulate biochemical reactions, we provide a synchronization
mechanism between the stochastic and continuous Petri nets, since some species
(places) may belong simultaneously to both continuous and stochastic Petri nets
due to the partition of the reactions. In this part of the paper we propose a Petri
net interpreted synchronization algorithm based on the algorithm presented in
[ACT+04].

Many synchronization algorithms are used in the literature to synchronize be-
tween the deterministic regime and the stochastic one in hybrid simulation of bio-
chemical reactions; some of them can be found in [Pah09,ACT05,Kie+04,Rue+07].
We opted to use the algorithm in [ACT+04], since it has a rigid mathematical
basis for the synchronization of the two different clocks.

The algorithm which is presented here is based on the direct method [Gil76],
see [ACT05,ACT+04] for other variations based on the first and second reaction
method. The algorithm is based on the function f(τ |t). f(τ |t) will decide when
we can switch from the continuous world to the stochastic one. We firstly draw
an exponentially distributed random variable ξ and initialize f(τ |t) = 0, then we
start to simulate the continuous transitions using the ODE solvers. During the
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0.1
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0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Continuous transition

Stochastic transition

Fig. 2. Possible connections between HCSPN’s elements
Continuous and stochastic transitions’ connectivity with discrete and continuous

places. Note that discrete places contain nonnegative integer values, while continuous
places contain nonnegative real values.

continuous simulation, f(τ |t) will be increased according to the time evolution
of the ODE presented in (3)

d

dt
f(τ |t) =

∑
j∈Tstoch

gj(m(τ), τ) (3)

where gj(m(τ), τ) is the rate function, which is associated with each stochas-
tic transition and was defined in the aforementioned formal definition of the
HCSPN, and m(τ) is the current marking of the transition’s pre-places. We
repeat the continuous simulation until time τ = s such that f(τ |t) = ξ. The
mathematical derivation which is presented in [ACT+04] proves that a stochas-
tic event will occur at time τ = s, which means that we can execute the stochastic
simulation at that time. Then we update the current marking according to the
fired transitions using the arcs’ weights which connect this fired transition with
their pre-places and then we advance the simulation time. The previous steps



75

10 Mostafa Herajy and Monika Heiner

are then repeated until we reach the end of simulation time. In the following we
present the algorithm in a more formal way.

1. Start by the initial marking m0 and the initial time t = t0;
2. Generate an exponentially distributed random variable ξ.
3. Set g(τ |t) = 0 and simulate the continuous transitions using the ODE solver

starting at time τ = t and progress g(τ |t) according to equation (3)
Until time τ = s such that g(τ |t) = ξ.

4. Perform the stochastic simulation using the discrete transitions.
5. Update the current marking m(t) according to the fired transitions.
6. Repeat steps 2-5 until we reach the end of simulation time .

4 Examples

In this section, we demonstrate by examples how the HCSPN is used to model
biological systems. The two examples which are presented here are: the genes
operons model and the modeling of the role of LL-6R in regulation of early
haematopoiesis.

4.1 Two Genes Operons

In this example, we model two genes operons using the HCSPN class. The origi-
nal model can be found in [MDN+00]. The HCSPN in Fig. 3 describes the tran-
scription of an operon containing two genes. The two genes are represented by
two discrete places, Gene1, Gene2, respectively. The transcription of Gene one is
represented by the transition transcriptionG1, which is a stochastic transition.
This transition is associated with a firing rate function, which determines when
this transition fires. After the transcription took place, an amount of concentra-
tion which represents the mRNA of Gene one is added to the continuous place
mRNA1. This concentration value is equal to the rate function of the continuous
transition, transcriptionG1, multiplied by the weight of the arc connecting tran-
sition transcriptionG1 with place mRNA1. The concentration of the mRNA of
Gene1 can be degradated continuously, when transition deg1 fires, if the value
of the place mRNA1 is greater than zero. A process called translation can take
place depending on the concentration of mRNA. However this process does not
change the concentration’s value of the mRNA1 value. So we choose to connect
them using a read arc.

After the translation process took place, the protein of Gene one which is
represented by the continuous place Protein1 can be degraded, when the tran-
sition labeled Degprotein1 fires. A similar story can happens to Gene two after
the polymerase of the RNA of Gene one into Gene two. The firing rate functions
of the stochastic transitions and the rates of the continuous transitions can be
specified by the user by selecting between a set of kinetic rate functions among
them is the mass action kinetics. This example demonstrate by a simple way the
modeling power of the HCSPN in system biology.
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Gene1

RNA
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mRNA1
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mRNA2

0

Protein2
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DegProtein1deg1

TranslationG2

deg2 DegProtein2

Fig. 3. Two Genes operon model

4.2 The Role of LL-6R in Regulation of Early Haematopoiesis

After we presented a simple example to illustrate the different elements of the
HCSPN class, in this section we present a more realistic biological example,
modeling the role of a specific cytokine, interleukin-6, in the regulation of early
hoematopoiesis [TTC+06]. Fig.4 shows the modeling of this pathway using the
HCSPN Petri net. Haematopoiesis is a complex phenomena beadings to the
continuous production of all types of mature blood cells. The use of hybrid Petri
nets to model the regulation of early haematopoiesis is motivated by the need
of discrete elements for modeling the cellular evaluation, as well as continuous
elements to model molecular interactions [TTC+06].

Consequently, the model of the IL-6R regulation of the early haematopoiesis
consists of two submodels: the cellular submodel and the molecular one. In the
former the three different cells types, equiescent, permissive, and committed cells
are modeled by three discrete places, Pq, Pp, and C, respectively. Deterministic
transitions are used to model the biological processes which take place between
these cells types. In the later submodel, continuous places model the molecules
involved in the regulation of the haematopoiesis by IL-6, while biological pro-
cesses are modeled using continuous transition. The bright gray arcs represent
the positive feedback loop involving the sLL-6R. Note that in the cellular sub-
model, arcs weight equal to one are not displayed.

The resulting hybrid Petri net model can be simulated ( continuously and
stochastically). Because there are no stochastic transitions in this model, the
stochastic simulation is simplified to simulate the firing of the discrete Petri net
submodel.

5 Conclusions and Future work

In this paper we have presented our research in progress of defining and im-
plementing a hybrid continuous stochastic Petri net class which includes both
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Fig. 4. HCSPN Model of role of LL-6R in regulation of early haematopoiesis

discrete and continuous modeling capabilities of biochemical interactions. The
presented class is intended to model systems which are stiff, i.e contain some
species with high number of molecules as well as species with low number.

Snoopy supports the export of drawn models to many other tools. For the
hybrid class it can be exported to Modelica’s hybrid Petri net library [PB09] for
further simulation.

Our hybrid model is based on fixed partitioning of the biochemical system,
i.e. the reactions are initially divided into discrete and continuous parts. Further
extension of this work aims to permit the dynamic partitioning of the reactions
during the simulation based on some criterias like the number of molecules in
each species or the reaction propensity.
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Abstract. IDD-MC is a symbolic analysis tool for bounded stochastic
Petri nets with extended arcs. Its engine is based on Interval Decision
Diagrams and facilitate the validation of standard Petri net properties,
model checking the Computation Tree Logic (CTL) and the Stochastic
Continuous Logic (CSL). In this paper we give an informal overview of
the currently implemented analysis techniques and report on the most re-
cent extension: the evaluation of rewards. We present some experimental
results which show the efficiency of our implementation.

1 Introduction

Stochastic Petri Nets (SPN) are an established formalism for the modeling and
analysis of systems, among them biological networks [GHL07,HGD08,HDG09].
Assuming bounded Petri nets, interesting qualitative properties as reversibility
and liveness can be determined by applying graph theoretic methods to the
reachability graph. Although the complexity of these methods is linear in the
size of the reachability graph, its size can grow over exponentially [PW03]. This
calls for dedicated techniques as partial order reduction or symbolic state space
representation. Here we consider techniques based on an efficient state space
encoding using Interval Decision Diagrams (IDD), a generalization of Binary
Decision Diagrams (BDD).

In a biological setting tokens often represent molecules or concentration lev-
els. Thus the state space explosion is caused both by concurrency and by a high
boundedness degree. The use of IDDs addresses especially the latter issue.

The quantitative semantics of a stochastic Petri net is described by a Contin-
uous time Markov Chain (CTMC). Assuming a net without parallel transitions,
the associated CTMC is a graph isomorphic to the reachability graph, but arcs
are labeled by firing rates, given by the possibly state-dependent rate functions
of the Petri net transitions. In general the rates are given by a sparse matrix
indexed by the reachable states. CTMC theory offers a variety of numerical
methods for an exhaustive analysis [Ste94]. But in practice either an infinite or
a hugh state space of the investigated models are often a very strict limitation. In
these cases simulative or approximative methods represent possible alternatives
[HRSS10]. However, certain properties or the demand for a high accuracy of the
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results require an exhaustive exploration, which in turn calls for an efficient rep-
resentation of the CTMC and the adaption of the established algorithms. So did
we by implementing our SPN analysis engine in IDD-MC which we will present
in the next sections.

2 Related Work

There are several tools which offer similar functionality as IDD-MC as for in-
stance the probabilistic model checker PRISM [HKNP06], the SMART tool
[CJMS06], Möbius [GKL+09] or GreatSPN [BBC+09] . The most similarities
exist regarding to PRISM. Its symbolic engine is based on Multi Terminal Bi-
nary Decision Diagrams (MTBDD) which turn out to be not the best solution
when dealing with biological networks [SH09] and thus inspired the implemen-
tation of IDD-MC’s stochastic analysis features.

3 IDD-MC

IDD-MC is a tool for symbolic state space based analysis; first for bounded
Petri nets with extended arcs, recently also for bounded stochastic Petri nets.
The symbolic engine is based on Reduced Ordered Interval Decision Diagrams
(ROIDDs), IDDs for short, which represent a canonical representation for in-
terval logic functions used to encode sets of states (markings) of bounded Petri
nets; see [Tov08] for a detailed discussion. It offers a very efficient implementa-
tion of IDDs and related operations, among them dedicated operations for the
firing of Petri net transitions.

3.1 Overview

Upon this IDD engine the following qualitative analysis features have been re-
alized:

Efficient state space generation. Three state space generation algorithms
have been implemented; common breath-first-search, transition-chaining and
saturation. The latter algorithm is highly efficient concerning runtime and mem-
ory consumption by exploiting the locality of transition firing.

Basic Petri net properties. The tool allows to check for reversibility and
liveness of transitions. Therefor efficient decomposition of the strongly connected
components has been implemented.

CTL model checking. Given a bounded Petri net N and a Computation
Tree Logic (CTL) formula ϕ (see [CGP01] for an introduction), the model check-
ing problem is to decide whether ϕ holds in the initial state of N . The classical
CTL model checking algorithm [CES86] can be adapted to solve the problem
using a symbolic representation of the reachable states of N . It determines for
each subformula ψ of ϕ the set of states fulfilling ψ starting from the innermost
formulas. Then it proceeds such that when processing a formula, the set of ful-
filling states have been determined for all its subformulas. A CTL subformula
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can either be a state formula or a path formula containing a temporal opera-
tor. While a state formula can be evaluated locally in a state, a path formula
requires to evaluate the paths starting in a state. In a symbolic setting this can
be solved by fixpoint computations. The top-formula ϕ is true if the initial state
is contained in its associated set.

In addition to qualitative analysis of bounded Petri nets IDD-MC offers the
following quantitative analysis techniques for bounded stochastic Petri nets:

Transient analysis. Transient analysis is the computation of the probability
distribution at a certain time point τ starting with a certain initial probability
distribution. One of the standard techniques is uniformization. The basic idea is
to embed a special discretization of the CTMC into a Poisson process which has
the same probability distribution at time τ . Its computation reduces to truncate
an infinite sum of matrix-vector multiplications. For a detailed description and
further techniques see [Ste94]. IDD-MC realizes transient analysis by applying an
on-the-fly multiplication algorithm, which does not require an explicit encoding
of the CTMC’s rate matrix.

Steady State analysis. Continuous time Markov Chains often reach finally
a stable probability distribution, which is called the steady state. It can be in-
terpreted as the transient probability distribution for infinite time. Computing
the steady state probabilities means to solve a linear system of equations. Iter-
ative methods as Jacobi and Gauss-Seidel are the favored techniques. IDD-MC
offers Jacobi, Gauss-Seidel and Pseudo-Gauss-Seidel [Par02] solver based on our
on-the-fly multiplication.

CSL model checking. The qualitative analysis techniques, transient and
steady state analysis are the needed ingredients to realize model checking of the
Continuous Stochastic Logic (CSL) introduced in [ASSB00]. Beeing an stochastic
adaption of CTL, the basic model checking procedure is similar. The evaluation
of path formulas with time-bounded temporal operators can be achieved by
applying transient analysis as proposed in [BHHK00] and implemented in our
tool. In [BHHK00], CSL has been extended by a special steady state operator and
temporal operators without time bounds. Untimed operators require to solve a
linear system of equations based on the Embedded Markov Chain of the original
CTMC applying one of the iterative methods.

3.2 Efficiency issues

There are several aspects which are significant for the efficient implementation
of the mentioned analysis techniques.
Variable order. It is well known that the variable order affects the size of the
decision diagram (DD) and thus has a significant impact on the runtime and
memory consumption of the DD implementation. What this means in practice
can be seen in [SH09]. IDD-MC uses heuristics [Noa99] based on the Petri net
structure to compute static variable orders which produce small-sized DDs in
most cases. Furthermore, the tool makes use of so-called Shared IDDs which
means that several IDD-instances reference to the same set of IDD nodes. This
allows, for instance, to check for equality in constant time.
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CTMC representation. One of the most challenging problems with quan-
titative analysis of an SPN is the representation of the rate matrix of its induced
CTMC. There are established symbolic techniques as MTBDDs or Kronecker
products implemented in existing tools [MP04]. But these techniques may fail
under special conditions. For instance, a MTBDD representation suffers from an
high amount of distinct non-zero values in the matrix and from a high number
of BDD variables caused by an high boundedness degree of the model [SH09].

IDD-MC’s numerical engine is based on an on-the-fly approach, which has
also been considered for an explicit state space representation in [DSS97] and
symbolically in [Sch08,SH09]. In our case the CTMC is represented by the Petri
net structure, the reachable states encoded as an IDD, and the rate functions
of the transitions. A multiplication of the matrix and a vector is realized by
traversing the IDD for all transitions of the net. The traversation simulates the
firing of all enabled transitions for all states. Therefor we consider the pre- and
post conditions to compute the index of the source and target state and to col-
lect the arguments for the possibly state-dependent rate functions. To achieve
this, the IDD has been augmented with certain index informations; see [ST10]
for more information. To prevent from unnecessary recomputations, we use the
caching strategy from [Par02] adapted to our special settings. The multiplication
operation multiply(StateSet S, TransitionSet T, Vector argument, Vector result)
is implemented configurable concerning the set of considered states S and tran-
sitions T . This allows, for instance, to parallelize a single multiplication given a
suitable state space partition. In [HRSS10] we present results were we achieved
a speedup close to the number of physical cores of current multi-core work sta-
tions. Recently we extended our tool by reward structures. In the next section
we briefly sketch how to incorporate rewards and their analysis.

4 Rewards

Rewards (also interpretable as costs) define additional measures for probabilistic
models and can be associated to states and transitions. They are specified by
possibly state-dependent reward functions. A reward for a state will be accumu-
lated and weighted with the time the system remains in it. A transition reward
is acquired each time a transition fires.

Conform to the probabilistic model checker PRISM rewards can be added
to a model by specifying a reward structure, a collection of state and transition
reward items.

A state reward item consists of a guard defining a set of states and the reward
function. A transition reward item defines for a certain Petri net transition a
reward function. Additionally a guard may restrict the set of enabling states of
the transition for which the reward should be considered.

Each state reward item defines a vector which assignes to all states satisfy-
ing the associated guard the reward value computed using the reward function.
Each transition reward item defines a matrix where all entries representing a
state transition caused be the associated Petri net transition and starting in
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states satisfying the guard. Each reward structure thus defines a vector repre-
senting the sum of all reward vectors defined by the state reward items and a
transition reward matrix representing the sum of the reward matrices defined
by the transition reward items of the structure. These vectors and matrices are
in the dimension of the reachable states and introduce the same problem as
the representation of the CTMC. In PRISM reward structures are encoded by
MTBDDs.

Since IDD-MC follows a matrix free strategy, we use our on-the-fly multipli-
cation to compute the rewards when needed. A reward item is represented by
a set of states and an additional implicit Petri net transition. When adding a
reward structure to a stochastic Petri net, the tool adds a new transition for
each defined reward item. For a state reward, the rate function of the new im-
plicit transition is the reward function itself. For a transition reward the reward
function multiplied by the rate function of the referenced Petri net transition
becomes the rate function of the new implicit transition. This enables the com-
putation of an entry-wise matrix product which is required by the analysis of
transition rewards [KNP07].

For a state reward, the assigned set of states is the subset of the reachable
states satisfying the specified guard. For a transition reward, the assigned set
of states are the reachable enabling states of the referenced Petri net transition
satisfying the specified guard. Pre- and post conditions of these new transitions
are configured in that way that the transition is enabled in every reachable state
and its firing does not change the system state but allows to compute the reward.

For the analysis of a reward-augmented model we extend (again conform to
PRISM) CSL by the special reward operator R and four new state formulas.
Given a reward structure r, a real valued reward bound b and an operator ./∈
{>,≥, <,≤} we define the following formulas:

1. R{“r”}./b[C≤t] The expected cumulative reward within the first t time units
is ./ than b.

2. R{“r”}./b[I=t] The expected state reward at time t is ./ than b.
3. R{“r”}./b[Fφ] The expected cumulated reward until the first time a state is

reached satisfying the state property φ is ./ than b.
4. R{“r”}./b[S] The expected long-run average reward is ./ than b.

Because of the given space limitations we can not discuss the evaluation of
all these formulas and refer to [KNP07]. However the basic step is to compute
initially a single vector of reward values in the size of the state space. In the case
of the cumulative operator C≤t, for instance, the vector represents the sum of the
state reward vector and a vector containing the row sums of a matrix achieved
by an entry-wise multiplication of the CTMC rate matrix and the matrix repre-
senting the transition rewards. This pre-computation step can be simply realized
using our transition-based reward representation and our multiply operation.

To compute the state reward vector of a reward structure we apply the multi-
plication successively to all implicit transitions representing state reward items.
The argument vector is initialized with 1 in every entry. Since transitions do not
change the state by firing, this means to extract the elements of the diagonal of
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the matrix, belonging to rows defined by a state set satisfying the guard. The
computed rate of these implicit state transitions are the actual state rewards
and are added to the result vector. Actually we are computing the row sums of
a matrix where only one element per row is non-zero and add these sums to our
result vector.

Obviuosly, we will not set the result vector to zero after a multiplication. We
similarely compute the entries of transitions reward matrix just considering the
transitions representing transition reward items.

For the mentioned case of the cumulative operator, we start off with a zero
result vector and apply the multiplication sequentially for all implicit transitions
defined by the reward structure, state rewards as well transition rewards.

4.1 Experimental results

To demonstrate the efficiency of our tool we present some experimental re-
sults. We run IDD-MC and PRISM−3.3.1 on a 8 × 2.26 GHz MAC Pro with
32 GB RAM with eight physical cores (with hyper-threading 16 logical cores).
We consider a stochastic Petri net model of the Mitogen activated protein ki-
nase cascade (MAPK) [HF96]. The Petri net model has been created with our
tool Snoopy [RMH10]. The PRISM model and the reward structure were taken
from the PRISM case study suite. Snoopy implements an export mechanism
to create PRISM models including the computation of the same static vari-
able orders as IDD-MC. Thus we used for our experiments Snoopy also to cre-
ate another model description in the PRISM language. The used CSL formula
R{“time”}=?[F(kpp = N)]1 was taken from [KNP08]. This formula requires
the generation of the Embedded Markov Chain. To solve the linear system of
equations we used the Jacobi method, the default in both tools. In our experi-
ments we varied the number of tokens on certain places using parameter N of
the scalable model, which comprises 22 places and 30 transitions. The number
of reachable states represents the dimension of the rate matrix, the number of
transitions represents the number of non-zero matrix entries. We used IDD-MC
with one and with 16 threads.

The figures in Table 1 show that a good variable order reduces the analysis
time significantly. Using all logical cores of our test system allows a speed up
about factor seven. Except the very small state space for N = 2 and N = 4
IDD-MC outperforms PRISM for the given model and formula also without
multi-threading, and using the same variable order.

5 Conclusion

We have presented IDD-MC, a symbolic tool for qualitative and quantitative
analysis of bounded stochastic Petri nets. We summarized its main features,
especially the analysis of reward structures. Experiments show that the tool

1 To use ’=?’ means to compute the reward for the initial state
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N states transitions IDD-MC1 IDD-MC16 PRISMorg PRISMgo

2 2,172 13,608 1s 2s 0.7s 0.2s
4 99,535 910,872 23s 5s 10min15s 18s
6 1,373,026 15,015,264 4m26s 40s 8h48m49s 33m41s
8 10,276,461 125,012,862 30m18s 4m30s − 6h26m32s

10 52,820,416 690,183,846 164m22s 22m30s † −

− means, that we aborted the experiment after 24h.

† menas, that we skipped the experiment.

Table 1. CTMC sizes for different initial markings of the MAPK cascade and the
model checking times to evauluate the CSL formula R{“time”}=?[F(kpp = N)] with
IDD-MC and PRISM.

outperforms the PRISM model checker for the considered case study. We intend
to support Generalized stochastic Petri nets (GSPN) and to realize out-of-core
techniques. Furthermore there are several aspects for performance optimization
as improving variable ordering and parallelization.
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Abstract. IDD-MC is a symbolic analysis tool for bounded Stochastic
Petri nets. The restriction regarding the boundedness can be circum-
vented by a simulative approach. Besides that, the simulation is going
to be capable of handling extended Stochastic Petri nets. In this paper
we report on the integration of a multi-scaling stochastic simulation en-
gine into IDD-MC. We present some experimental results which show
the efficiency of our implementation.

1 Introduction

Stochastic models are becoming more and more popular in Systems Biology and
their size increases while the understanding of the modelled networks grows.
Often, the analysis of these systems with exact numerical algorithms is not
feasible anymore. Apart from that, stochastic models with an unbounded state
space can not be analyzed with such techniques at all. Both restrictions can be
circumvented by stochastic simulation.

For modelling biological systems we are using stochastic Petri nets (SPN ). So
we can optimize the quantitative analysis using structural information [HGD08].
The semantics of a stochastic Petri net is defined by a Continuous Time Markov
Chain (CTMC).

Generalised stochastic Petri nets (GSPN ) extend SPN by introducing im-
mediate transitions. These transitions have a higher priority then stochastic
transitions. This means, if an immediate and a stochastic transition are enabled
at the same time, the immediate transition has to fire. One can model very
fast reactions or switch like behavior with such transitions. The semantics of
generalised stochastic Petri nets can be reduced to CTMC.

The class of extended stochastic Petri nets (XSPN ) is based on GSPN , but
introduces deterministic and scheduled transitions [HLGM09]. Both transition
types have the same priority, which is higher than the priority of the stochastic
transitions but lower than the priority of immediate transitions. These transi-
tions are used, e.g, to model external influences, taking place at certain time
points. The use of deterministically timed transitions in extended stochastic
Petri nets destroys the Markovian property [Ger01]. The stochastic simulation
can be adapted in a way that it can handle XSPN .
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2 Stochastic Simulation

We implemented the stochastic simulation algorithm (SSA) introduced by Gille-
spie in [Gil77]. The algorithm creates a single finite path through the possibly
infinite CTMC. The computation of such a simulation run (trajectory, path)
needs only to store the current state. The basic idea is as follows.

Given the system is at time point τ in state s. The probability that a tran-
sition tj ∈ T will occur in the infinitesimal time interval [τ, τ + ∆τ) is given
by:

P (τ + ∆τ, tj | s) = hj(s) · e−E(s)·∆τ (1)

For each transition tj , the rate is given by the propensity function hj , where
hj(s) is the conditional probability that transition tj occurs in the infinitesimal
time interval [τ, τ + ∆τ), given state s at time τ . So, the enabled transitions in
the net compete in a race condition. The fastest one determines the next state
and the simulation time elapsed. In the new state, the race condition starts anew.

Algorithm 1 Stochastic simulation algorithm.
Require: SPN with initial state s0, time interval [τ0, τmax]
Ensure: state s at timepoint τmax

1: initRand(seed)
2: time τ := τ0

3: state s := s0

4: while τ < τmax do
5: draw random numbers r1, r2, uniformly distributed on [0, 1)
6: r1 := getURand()
7: r2 := getURand()
8: ∆τ = − ln (r1) /E (s)
9: e := 0

10: for all transitions tj ∈ T enabled at s do
11: e := e + hj(s)
12: if e > r2 · E (s) then
13: s := s + ∆tj

14: break
15: end if
16: end for
17: τ := τ + ∆τ
18: end while

The SSA simulates every transition firing (basically by using Eq. (1)) one at
a time, and keeps track of the current system state. To determine the time incre-
ment ∆τ and to select the next Petri net transition to fire requires to generate
two random numbers (r1, r2) uniformly distributed on (0, 1). Different trajecto-
ries of the CTMC are obtained by different initializations of the random number
generator (line 1). Reliable conclusions about the system behaviour require many
simulations due to the stochastic variance.
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The simulative processing of immediate, deterministic and scheduled transi-
tions is rather straightforward, see [Ger01]. In short, the Algorithm 1 needs to
be extended in two ways.

– After every firing of a Petri net transition (line 13), it needs to be checked
whether immediate transitions got enabled. If so, these have to be processed
until no more immediate transitions are enabled. This possibly leads to a
time deadlock, if there exists a cyclic path of immediate transitions.

– Having calculated the next time step (line 8), it needs to be checked whether
a deterministic or scheduled transition gets enabled in the time interval [τ, τ+
∆τ ]. If yes, the one closest to τ is processed and the simulation time will be
set to the value of this transition.

2.1 Model checking.

We use the Continuous Stochastic Logic (CSL) introduced by [ASSB00]. In prin-
ciple the stochastic simulation algorithm allows to check any unnested, time-
bounded CSL formula without the steady state operator [YS02]. The ratio of
the number of fulfilling and total number of runs leads to an approximation of
the desired probability.

To achieve an appropriate accuracy of the results, one has to determine the
required amount of simulation runs. The method of our choice is the confidence
interval as described in [SM08]. The confidence interval contains the property of
interest with some predefined probability, called confidence level. This confidence
level has usually values of 90%, 95%, or 99%. Assuming 95% and an accuracy of
the results of 10−5 leads to ≈ 38, 000, 000 runs.

2.2 Parallelization.

Such a high amount of independent simulation runs requires parallelization.
Because of the independence of the individual simulations runs, parallelization
is straightforward. It basically requires a master, which distributes the work load
on n identical slaves and collects the results.

This scenario can be realized in two different ways:
Multithreading is the method of choice, if the program is meant to run on

a symmetric multiprocessing (SMP) computer, where all processors have access
to the main memory. The master thread creates n worker threads and sets the
required work load for each of them. In the end each worker sends the results
back to the master thread.

Multitasking plays its strength in a distributed memory environment like
computer clusters, where not all memory is available to all processors. In our im-
plementation we use the Message Passing Interface (MPI). That provides special
communication patterns. In the beginning, n processes are created and the mas-
ter uses the “broadcast” operation to distribute the work load on the processes.
When the simulation is finished, the results are collected from the processes. For
that purpose the “gather” operation is used.
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3 Case Study

We use the abstract circadian clock model of Barkei and Leiber, introduced in
[BL00]. It shows circadian rhythms which are widely used in organisms to keep
a sense of daily time. More background information can be found in [VKBL02].
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Fig. 1. SPN of the abstract circadian clock model

We modeled it as a stochastic Petri net (Fig. 1) containing 9 places and
16 transitions. All transitions use mass-action kinetics and the parameters were
taken from [VKBL02]. The Petri net is unbounded, because once a transition
with prefix “trans” got enabled (there are 6 of them) it could create an endless
amount of token on its post place.

The second case study is a gene-regulation network. The Lactose-Operon
model [Wil06] models the transport and metabolism of lactose in bacteria. This
XSPN (Fig. 2) taken from [HLGM09] contains the scheduled transition “Inter-
vention”, which increases the amount of “Lactose” by 10,000 each 50,000 time
units. The Petri net contains 11 places and 17 transitions and is unbounded too.
All stochastic transitions use mass-action kinetics with parameters from [Wil06].

Both case studies are modeled with the generic graph editor Snoopy
[RMH10]. In order to show the scalability of our implementation we decided
to generate averaged traces until time point τ = 100 for the circadian clock
model and τ = 130, 000 for the lac-operon model.
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Table 1. Comparison of the runtime for n different workers for the multi-threaded
(MT) and the MPI version. The speedup is given in braces behind the time value. We
created 10,000 simulation runs until τ = 100 for the circadian clock model (index 1)
and 1,000 simulation runs until τ = 130, 000 for the lac operon model (index 2).

Circadian clock Lac operon

n MT1 MPI1 MT2 MPI2

1 15m43s (1×) 20m27s (1×) 5m34s (1×) 7m12s (1×)
2 7m52s (2×) 9m55s (2.1×) 2m49s (2×) 3m33s (2×)
4 4m05s (3.8×) 5m08s (4×) 1m32s (3.6×) 1m50s (3.9×)
8 2m50s (5.5×) 2m33s (8×) 59s (5.7×) 56s (7.7×)

12 2m05s (7.5×) 1m42s (12×) 45s (7.4×) 37s (11.7×)
16 1m42s (9.2×) 1m18s (15.7×) 40s (8.4×) 31s (13.9×)

The experiments considering the multi-threaded version of the simulation
engine were done on a 2.26 GHz Apple Mac Pro with 32 GB RAM and eight
physical (with hyper-threading 16 logical) cores. IDD-MC was build on Mac OS
X 10.5.8 as 64-bit application. The experiments with the MPI version were done
on a cluster with 96 cores distributed on 24 nodes. It was build on CentOS 5.5
as 64-bit application.

Table 1 shows the result of our experiments. The runtime decreases well with
an increasing number of workers. The scaling of the multi-threaded version is
correlating with the number of workers up to n = 4, after that it goes down a
bit. This is due to the 2 processors, each with 4 cores and 8 threads. The MPI
version scales linearly over all settings.
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4 Conclusion

We extended the analysis capabilities of IDD-MC [SH09] by implementing a
stochastic simulation engine. We verified the scalability of the parallelized ver-
sions, using multithreading; and multitasking.

For the time being the stochastic simulation only provides transient analysis
and generation of averaged traces. In the future we intend to support unnested
time-bounded CSL formulas without steady state operator. We plan to closer
investigate the possibilities of computing the steady state using stochastic sim-
ulation.

IDD-MC is available for non-commercial use [IDD10]; it includes the MT
version. The MPI version is available on request.
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Abstract. Being able to keep business processes flexible and adapting
to changing demands requires knowledge of the processes. The algorith-
mic generation of explicit models is a step towards making the relevant
processes clearly comprehensible and exposing them for reflection.

We believe that processes which occur in practice, notably in organi-
zational and inter-organizational contexts, possess a structure best de-
scribed by systems of interacting agents.

We intend to carry out a mining of special reference nets which are
structured in a multi-agent-like fashion. Process mining of reference nets
might allow for structuring beyond mere model aggregation. One possible
application of an algorithm providing such interpretations lies in spotting
their weaknesses automatically with the aim to support of streamlining
of organizational processes.

Keywords: agent technology, business process support, process mining,
reference nets, workflow mining

1 Introduction

This paper is a position paper and a research agenda rather than a compendium
of results. It serves to disseminate some ideas about a possible future of process
mining at an early stage.

Process mining starts from the assumption that a log of activities contains
interesting patterns. These patterns are deemed to be generated by a system
whose structure must be recovered. In our opinion, this structure can be regarded
as a multi-agent system.

Process mining should therefore be conducted from an explicitly agent-ori-
ented perspective. In most cases, an agent-oriented view is either neglected or
only implicitly taken in the current literature.

The remainder of the paper is structured as follows: In Section 2, we will
position the present research within the emerging process mining landscape.

We will note the aspects we would like to concentrate on, because we perceive
them as under-represented to date. These aspects include region theory and the
organizational perspective of process mining.
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We will work within the framework of reference nets, as defined in Kum-
mer’s monograph [1]. These higher-level Petri nets not only allow for the concise
expression of concurrent processes (as do other Petri net formalisms) but lend
themselves to formalizing multi-agent systems (MAS). Mining reference nets and
mining agents are two sides of a medal, if the concept of MAS fits the target
system: general reference nets might be too complex to be simply reconstructed
from execution traces; agents must be formalized as nets when the goal is to
offer an integrated net mining mechanism. Several essential implications of this
multi-level, organizational view are examined in Section 3.

2 Relations to Prior Work

First, we note the existence of an algebraic approach for Petri net synthesis,
the theory of regions, and its uses in process mining. Next, some aspects of the
relationship of process mining to multi-agent systems are discussed and relevant
publications noted.

2.1 Process Mining and Region Theory

Region theory has been put forward in its earliest form by Ehrenfeucht and
Rozenberg [2]. Put simply, it allows the synthesis of Petri nets from their reach-
ability graphs. This objective is closely related to what (part of) process mining
strives to accomplish. Unsurprisingly, it has been turned into a promising avenue
for traditional process mining, as judged by the growing number of publications.

The methods of van der Aalst et al. [3], van Dongen et al. [4], Carmona et al.
[5], and Bergenthun et al. [6] all rely on converting an event log into a transition
system in the first step. This automaton is an abstraction of the control flow
represented in the log. In the second step, region theory is applied to turn the
automaton into a more compact and possibly concurrent Petri net.

Region theory has to our knowledge only been applied to process mining in
the control flow perspective. An interesting question is how region theory can
contribute to other mining perspectives and which modifications and extensions
of the original formalism might be necessary.

2.2 Agent Communities and Organizational Process Mining

Remarkably, the process mining community has, so far, treated the sequence and
causality aspect more thoroughly than the semantic content of actions, maybe
because the resulting structures are mostly limited to simple P/T nets.

In reality, agents espousing roles actually accomplish the actions in most
cases. Arguably the agent metaphor applies in all cases, since even an orga-
nization can be modeled as an agent. Logs also commonly identify agents as
originators of tasks.

Existing algorithms and implementations can mine the causal dependency
between activities and also construct a social network. Minseok Song’s work (es-
pecially in [7]) already shows the relevant data organized into a graph, a useful
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decision which points in the direction of greater integration. Beyond that, the
ProM framework [8] provides plugins for several algorithms aiming at organiza-
tional mining and putting the roles back into the processes (Bozkaya, Gabriels
and Werf [9], Song and van der Aalst [10]), including role hierarchy mining.

Despite these possibilities, the results mined from different perspectives are
seldom linked to provide better heuristics for structuring a log. Contributions like
[11] and our own previous work [12] are a first step towards aggregating multiple
perspectives in a common model. Another important property induced by the
agent metaphor is often neglected as well: Current process mining techniques
hardly pay attention to locations where actions take place. One exception is the
work presented in [13] where physical places are considered.

Beyond that, our vision is a holistic approach that integrates these different
perspectives in the system-theoretical viewpoint of multi-agent systems, based
on the formalism of reference nets.

3 Where to Go from Here

Existing process mining methods have one shortcoming which is due to the
concentration on the process-centered view at the exclusion of other relevant
perspectives (see Cabac, Knaak, Moldt and Rölke [12] for one possible classifi-
cation). There are at least three main points, all unified in a systems-theoretical
view of multi-agent systems, where we realize the need for a new approach.

3.1 Agents as Coherent Entities

Certain processes are best expressed in terms of agents, not only because the
agents execute the actions, but more pertinently because the concept of agents
can be important for structuring purposes.

An agent, similar to an object in object-oriented programming, is a system
characterized, among other properties, by a degree of coherence/cohesion and
persistence of information attached to it. This correspondence can be used to
uncover not directly observable dependencies by structuring actions according
to (known or unknown) agents.

3.2 Agents as Situated Entities

Agents exist in an environment that is often defined in terms of distinct log-
ical or physical locations with paths the agents can move on (e.g. [14]). Such
topologies influence the behaviour of agents in several respects. Generally, an
agent’s behaviour might depend on its location. The ability to perceive and act
might be restricted to a local radius (behavioural locality, e.g. [15]). Locations
might serve as side conditions for the synchronization of agent behaviour as in
rendez-vous synchronization (see e.g. [16]). The situatedness of agents is natu-
rally represented in the reference net formalism.
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As discussed above, locations and locality are seldom regarded in current
process mining techniques. In our opinion, the focus on a nets-within-nets for-
malism can bring forward the handling of location-related information in process
mining. On the one hand, locations and their properties might be reconstructed
from a log based on hints of characteristic agent behaviour. On the other hand,
available information about locations might provide heuristics to improve the
reconstruction of process and organizational models.

3.3 Incorporation of Agents into Mining

Since actions are linked to agents, there is much to be gained by incorporating the
agent side directly. If this information is ignored, one misses out on potentially
crucial clues to understand the process. As an illustration, when a set of agents
{Ai}i∈I for some I ⊆ 2A are involved sequentially in a process in certain roles,
there must have been a connection between them.

When we observe that an action must happen in a certain sequence with
other actions, this means that the agents participating are linked by a network of
connections. Thus, the existence of dependencies between actions may establish,
or betray, the fact that information must have been propagated.

3.4 Recovering Agents

The agent is ’defined’ by its surroundings, at least in that it must reflect its
relationships internally. Relationships also shape the ways in which it may in-
teract. Recovering the agents could mean either of several things: (1) Building
an operational model of the agent, (2) finding their relationships without trying
to build such an agent, and (3) recovering a priori missing/hidden information
(which will not be possible without further hints from the logs).

There is clearly a possible path for improving on methods which are blind
to agents and only consider named activities, and on the existing approaches
to role recovery. One could conceivably start from region theory and generalize
regions further, as at present they ignore agents completely.

3.5 Recovering the Organization

Organization means that interdependencies and hierarchy exist. Some would
argue that strongly linked subsystems form organizational units. It is unclear
how well a ’strength of connections’ to hierarchical clustering approach really
helps in structuring the unknown domain of agents.

The intuition of clustering by separating weekly clusters can be misleading.
Distance measures must be chosen with care with respect to the intended def-
inition of ’similarity’. The agent metaphor provides several hints for similarity
including similar behaviour, knowledge, frequency of communication, etc.

One can imagine a number simple examples: two secretaries from different
companies who have a logical platform in common and frequently communicate
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with each other, are closely linked but at the same time belong to separate
organizations. System boundaries thus depend on semantic decisions.

The converse argument that such a näıve analysis can lead to a prejudice-
free analysis of the situation is also valid. In a business setting, such a clustering
result is useful as far as the goal is to examine the processes and the performance
of the existing system on the technological/software side.

Opaque role annotations do not, per se, mean that one understands the
relationships existing between the participants. Rather, mining this would be a
step forward in doing meaningful process understanding (cf. roles as objects).
Detecting the kind of relationship is possible because of the patterns generated.

Usually, the process perspective captures the dynamic behavior of the system,
whereas the mining of more static, structural properties is also of value. There
are prototypical kinds of relationship between such entities (see e.g. Jennings
and Wooldridge [17]), which leave characteristic traces in the execution log.

4 Conclusions and Outlook

It must be stated that process mining is currently only at the beginning and
many aspects have not yet been formally explored.

We have discussed the importance of considering agents as parts of processes
in process mining. We argued in favor of integrating the mining of processes, the
interrelated network of agents generating them, and the environment in which
the agents are located. The agent metaphor naturally leads to the addressing of
different perspectives beyond control flow mining as claimed in [18] and [19].

Reference nets might make the right kind of structuring possible. In our ref-
erence net-based MAS architecture Mulan [20], protocols, agents, and platforms
are all nets, and as such first-order entities that can be reasoned about explicitly
in process mining. They can represent other supplementary information as well,
such as physical places, logical platforms and object flow.

Our prime objective at this point is to ascertain the possibility of recovering
agents and mining static as well as dynamic relationships between them from
sufficiently detailed logs. In case of success, further questions arise. As noted
before in [21], dealing with noise, i.e. incorrectly logged information, may be a
major issue and it is still not clear how to achieve robustness; this must cer-
tainly be addressed in further work. There is certainly a conflict between the
uncompromising exactness of algebraic methods, the desire to detect even un-
common process variants and the quality of log data available to the analyst
(many activities taking place outside of logs).
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Abstract The Paose methodology of software engineering uses Multi Agent Systems

as its main way of structuring applications. However as systems get larger and more

complex, additional layers of abstraction are needed. Therefore we propose the HeRA-

system (short for HElper and Resource Agents) to structure agent systems. In this

paper we introduce the main concepts of HeRA and illustrate via a small example the

usage of its prototypical implementation.

1 Introduction

Petri Nets provide a powerful formalism for modelling and implementing dis-
tributed concurrent systems. The Paose methodology (Petri net based Agent-
and Object-Oriented Software Engineering [1]) uses software agents and Multi
Agent Systems to develop distributed systems with reference nets [6]. Applying
our approach showed problems when developing larger systems. The need for
additional abstraction and structuring was identi�ed in this context. First pro-
posal have been made on this topic in [8,7]. Here we now show the �nal result
as a consolidation of the former attempts.

When developing larger Multi Agent Systems (MAS) the question needs to
be answered what kind of functionality we have to assign to an agent. To ease
this, here we propose to use two types of agents to implement in the system.
Doing so should give some hints how they should interact in order to achieve the
intended goal of the system. We have experienced that having a type of agent
eases the modeling of a system.

One way to distinguish elements of an MAS is between active and passive
entities. Usually agents are considered active components. In [11] artifacts are
introduced as another type of element in MAS, that agents can use and interact
with. As similar approach based on Petri nets but not covering enriched social
concepts has been proposed in [13] with the term of units.

The tools and materials approach (T&M) [14] for object-oriented software
engineering distinguishes tools and materials as di�erent artifact types which
users can interact with in a software system. HeRA tries to adopt and extend
ideas from the former three proposals for the creation of distributed user-centered
agent systems. In the HeRA-system a user can access functionality by using
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helper agents, that can act like tools to work on resource agents, who in turn
can act like materials.

In the following, section 2 will give an overview over the Paose methodology
and the Mulan/Capa MAS that is used in the development of the HeRA-
system. Section 3 will then go on to describe the di�erent concepts used in the
HeRA-system, which types of agents it consists of and how they interact with
each other.

Section 4 explains these concepts by means of a simple example application
built on HeRA. Finally in section 5 we draw a conclusion and give an outlook
on future work.

2 Developing applications with the Paose methodology

The Paose methodology of software engineering uses reference nets [6] for the
modelling and implementation of software. Using interacting nets, the Mulan
MAS [12] has been used for agent-oriented software development for years now.

In Mulan an MAS consists of agent platforms, which are connected with a
communication infrastructure. Agents reside on platforms. A platforms manages
the creation and deletion of agents and the communication between agents on
a platform as well as between platforms. The behaviour of agents is determined
by protocols and decision components within the agents. All these components
are implemented as reference nets, interacting over synchronous channels.

A number of di�erent modelling techniques are used in this approach, de-
scribing the system from a number of di�erent yet linked perspectives [1]. The
main focus in developing MAS applications with this approach is describing the
di�erent agents and agent roles within the system, the internal processes within
the agents as well as the interactions between them, and the ontology used for
representing concepts in the system. Interactions, internal processes and on-
tologies are implemented directly in petri nets (features structure nets for the
ontology, reference nets for everything else).

The HeRA-system now aims at further establishing an application-oriented
perspective. By focussing on domain objects and supporting the users of the
system, we hope to improve the usability and overall quality of software systems.

3 Helper and Resource Agents

In order to use an MAS application, users can interact with other agents within
the MAS. This is often accomplished by means of a user agent, which represents
the user within the system and usually provides the user with some kind of
user interface that translates his input into agent activity. If new functionality
is added to the system, the user agent, too, needs to be augmented, so that the
user can access it.

In dynamic distributed systems, where new functionality is added frequently,
this can be quite challenging. And if a typical user only needs a fraction of
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the functionality, it is advisable to provide some kind of extension or plug-in
mechanism that allows easy integration of new functionality on demand [2,3,4].
In HeRA we use helper agents, that plug into the user agent to provide new
functionality where needed. The basic concepts of the HeRA system have been
introduced in [8,7].

3.1 Overview

Figure 1 shows the di�erent types of agents and platforms in the HeRA-system.
A user connects to the system using his two-part user agent. The GUI is used for
user interaction, while the agent part represents the user within the MAS. The
user agent is connected to a number of helper agents that provide functionality
and resource agents that represent resources and documents the user can work
with using his helper agents.

The con�guration of helper and resource agents a user has on his agent plat-
form represents his personal workplace. He can use helpers to communicate and
exchange resources with other users within his greater work environment. Agents
can also meet and interact with each other on collaboration platforms, which rep-
resent e.g. location, places or groups within the system. Service platforms host
agents that provide services, like the helper factory which is used to create new
helper agents. Other examples could be a work�ow management system or a
security subsystem.

Figure 1. Agents and Platforms in HeRA

3.2 Useragent

The user agent consists of two parts, the GUI and the agent. The agent part
is a Mulan agent that knows all the interactions necessary for handling helper
agents and uses an RMI connection to communicate with the GUI part. The
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GUI can therefore be located on the same or on a di�erent computer than the
agent part.

The GUI displays to the user a list of available helper agent types in the
MAS, which he can choose to request from the helper factory (see below). If a
new helper agent is registered with the user agent, it sends a description of his
own user interface, which can then be integrated into the user interface of the
user agent. That way the generic user interface of the user agent can be enhanced
in any way needed to provide the functionality of the helper agent.

3.3 Helper Agents

In the T&M approach, users use tools to interact with materials and their envi-
ronment. HeRA turns these tools into agents, who can actively support a user
in their work. This is re�ected by the name helper agent, which emphasizes the
more active role of the agent.

Helper agents are responsible for providing any kind of functionality to the
user. They can provide a service all by themselves, encapsulate a legacy ap-
plication, interact with other helper agents or display and manipulate resource
agents.

3.4 Helper Factory

The helper factory is an agent used for creating new helper agents. It holds a list
of helper agent types which it o�ers to user agents to choose from. On request it
gathers all the information needed for creating the new helper agent and orders
the agent management system to create it. The new agent can be customized
for the user, for example only including functionality that the user can access
according to his user permissions.

3.5 Resource Agents

Resource agents represent materials and resources in the work environment of
a user. Instead of adding new concepts to the agent platform, resources are
modelled as active components as well. A resource agent acts pretty much like
an object, which can be handled by a helper agent, but it can also enforce its
own rules. For example a material can decide which helper agents can access it
or decide con�icts in concurrent access.

Helper and resource agents need to understand the same usage patterns, it
is not possible to use a hammer to fasten a screw for example. These usage
aspects represent a m:n mapping between di�erent helper and resource types.
As long as a helper understands the usage protocols of a resource, it can use
that resource. Here the work on service manuals [5] can be used to improve the
mutual dependencies with respect to the behavior.
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4 Example: a Whiteboard Application

To illustrate these concepts, we provide an example in the form of a simple
whiteboard application. A whiteboard is a common medium used by multiple
people to communicate about ideas etc. While multiple people can read the
content of the whiteboard, only one person at a time can write on it.

The whiteboard itself is modelled as a resource agent. It manages the content
of the board and accepts requests for changes to this content. Helper agents can
register with the whiteboard material agent to receive updates on the content
whenever it changes.

The whiteboard helper allows a user to use the whiteboard application. The
user requests a new whiteboard helper from the helper factory, which creates
the agent for him. After registration the user agent loads the GUI extension for
the helper (see �gure 2) and connects it to the helper agent.

Figure 2. Whiteboard application

Using the agent by means of the GUI extension, the user can create new
whiteboards or access a list of whiteboards already existing in the system and
subscribe to them. He can then edit the content of the resource agent, which
results in updates to all connected helpers. In some way this supports an event
driven perspective.

The whiteboard example illustrates one of the possible arrangements for the
collaboration platform in Figure 1. In general resource agents should be placed on
such platforms if they do not belong to a single agent. Implicitly these platforms
become collaboration platforms if several agents use the resource.

5 Conclusion and Outlook

Petri net based Multi Agent Systems can be used to structure net-based applica-
tion development. In this paper we presented further structural elements within
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MAS by introducing the concepts of helper and resource agents. These concepts
provide the possibility to design applications that are more focussed on provid-
ing functionality to individual users collaborating within a distributed system.
Additionally work objects can be modelled explicitly as �rst-order objects within
the system.

In [10] it has been shown how these concepts can be used to leverage agent-
based work�ow management systems [9]. Future work focusses on combining
these aspects further into an application development platform for complex dis-
tributed systems.

What has not been discussed here is the possibility of �feeding� agents with
roles, goals, obligations etc. This allows for declarative style of programming
which is nicely integrated due to the nature of agents. So also the use of social
models that are currently discussed for the organization of agents can be applied
to improve the overall architecture. Again this is inherently covered by MAS in
general and hence can also be used in our helper and user agents.
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Abstract. PyTri is a Python based visual agent programming language
which has been designed top-down to utilize the possibilities of graphical
representation of control flow by amending the concepts of Petri nets. Its
main inspiration, Mulan, which is based on Java nets, originated bottom-
up from a powerful formalism, which allows modeling and programming
multi-agent systems. The here presented PyTri vision uses multiple types
of transitions and places, with a specialized Python-based inscription
language, in order to offer a rich semantics that allows expressive and
compact representation of executable code. GUI widgets can be directly
embedded into the nets and can infuse them with tokens upon user
interaction.
PyTri aims to support coarsening mechanisms, instead of the net within
net paradigm, and includes a special place class that allows representation
of independent control flow streams. It strives to enable modularization of
complex multi-agent applications as one huge flat structure, not requiring
them to be separated into discrete layers. Integral to PyTri is a future
tool for visualization and manipulation which is tailored to the needs of
programmers using the language.

Keywords: PyTri, Renew, graphical visual programming language, agents,
Petri nets, formalism, reactive programming, Python

1 Introduction

Visual Languages offer more modalities[5] for representing and incorporating the
semantics of a program, compared to traditional textual languages. They directly
express the control flow of the processes inside an application, unlike line-based
text files with procedural jumps. In recent functional languages a plethora of
different ways to compose functions emerged, resulting in arrows which are more
general than monads. However, understanding the underlying mechanisms and
being able to utilize them, requires at least basic proficiency in category theory.

Petri nets offer a very intuitive way of representing arbitrary computation
processes by decomposing them into atomic actions and intermediate chunks of
data, incorporated by transitions and places. By embedding external triggers
into a net, reactive programming can be done without the hassle of splitting up
the code into steps.

The human mind in general is very good at memorizing structures visually,
grouping related objects by spatial proximity. There are several types of UML
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diagrams which are a popular method to visualize the interrelations of the classes
and objects of an application. By modeling an application with a Petri net like
net formalism in one single huge structure, the big picture can be shown as a
direct map of the internal processes, possibly even in three dimensions. Of course,
mechanisms of coarsening have to be used, in addition to modularizing the code
into organ-like fragments, or none would be able to cope with the complexity.

In [10] several existing visual languages were looked at, some general crite-
ria were investigated and PyTri, a visual agent programming language based
on Python was devised. Amongst the investigated languages were YAWL[9],
AgentSheets[8], AUML[2], LabVIEW[6] and Quartz Composer[1]. PyTri is heavily
inspired by the Java net formalism of Renew, which is based on reference nets,
whose theoretical foundations were laid down in [7]. Java nets allow modeling
and execution of complex multi-agent based distributed applications[3], through
a sophisticated tool set[4]. Java nets have been designed bottom-up, starting
with the reference net formalism, and are especially suited for modeling.

In Section 2 the mission statement for PyTri, the aims of its semantics, and
the most important properties of its formalism are given. Section 3 introduces
the idea of specialized types of places and transitions, a mixed class of elements,
PyTri’s focus on coarsening and refinement, and tool support. Section 4 discusses
the results of the design of PyTri and future work.

2 Goals of PyTri

PyTri aims to be an expressive and compact language, condensing common
programming tasks to a clean and descriptive representation. PyTri has been
designed from the start with the goal of making the creation of multi-agent
based applications as comfortable as possible. Essential to PyTri is an extensive
graphical editor displaying the net code, designed for developing, debugging and
manipulating. The concepts of PyTri have been designed top-down with a focus
on programming, not modeling. PyTri aims to employ a rather complex semantics,
and is targeted at experienced programmers willing to learn its large vocabulary.
It still tries to be intuitive, without dumbing down, in order to be accessible to
novices, given a set of good tutorials, gradually introducing the concepts.

The Java net formalism has some assembler like aspects to it, because
one has to perform a lot of bookkeeping by hand to perform basic tasks. The
formalism of PyTri attempts to take graphical programming to a higher level
of abstraction, retaining a semantics that is very similar to that of Petri nets,
but differing in several important ways, still including elements that act very
much like traditional places and transitions. Rather than having one kind of place
and transition that is used for everything, the formalism is based on specialized
elements that are the basic primitives of the language and can be compared to
statements in textual languages, like if, while, try, def or return.

In order to allow compact branching of control flow, the PyTri formalism
deviates from the Petri net semantics by allowing transitions to dynamically
decide to suppress the donation of tokens to specific target places. This means
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Fig. 1. Two variants of the switch transition used to decide control flow

that the actual control flow is no longer apparent from the arc connections alone,
but dependent on the inscriptions of the transitions. Such conditional branching
would suffice, and may be the best solution in some cases, but in other cases
having a specialized transition type, with a different inscription semantics, can
be useful syntactic sugar and convey the intention of the code in a better way.
An example is the Switch transition shown in Figure 1, which can be used to
evaluate an expression and donate a token only through the arc whose inscription
matches, or can evaluate a set of arcs inscribed with boolean expressions and
independently donate tokens through all those that are true.

PyTri’s inscription language is based on Python, which was chosen because it
is a very compact and powerful high-level language and offers a great standard
library. It is attempted to allow almost arbitrary Python code in the inscrip-
tions, while amending the inscription language with the required new concepts,
pythonically. It uses pythonic duck typing, where Java nets guarantee that only
certain types of objects can traverse an arc. A lot of the expressiveness of Java
nets comes from unification, which allows fully dynamic connections between
elements. PyTri aims for a simpler and easier to understand semantics, which
introduces other mechanisms to cope with the loss of the prolog-like power.

3 Complex Elements and Tool Support

Place Types. Just like in Petri nets and Java nets, places are passive and do not
initiate actions by themselves, however, they are preconditions to the transitions
that accept tokens from them. Instead of having one general kind of place which
is used universally to store data, PyTri offers several types. Usually, places are
either used to store a single token or to store a collection of tokens, rarely both.

When storing single tokens, places are usually used either for signifying and
determining the control flow, or as a single variable holding intermediate or
persistent data objects, which leads to the place types Flow and Variable.

When storing a collection of tokens, one usually wants it to behave like one
common abstract data type, depending on the context. By incorporating the
required behavior in a place type, Queue or Stack for example, the programmer
can be spared of the otherwise necessary manual bookkeeping. Also, special place
types can exist simply to provide helpful eye candy to the developer, or simplify
debugging of agents by easing the assignment of the states an agent can be in.
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Transition Types. Many abstract mechanisms integral to programming are not
atomic, but are composed of multiple steps. By having basic elements that execute
multiple atomic phases when needed, while storing internal data, the language
becomes more compact in its expressiveness. Those elements of this kind, which
in essence are transition-bordered components, can be considered similar enough
in concept to transitions to justify raising them to their level. Through this
the concept of transitions is extended to a set of basic graphical statements
building the core language. Since the individual phases are still atomic, complex
multi-phase transitions should be decomposable to nets of places and atomic
transitions. This decomposition however can also be virtual, since the behavior
may be implemented through pure Python objects with a certain interface.

Some transition types require special interactions with certain types of places
in order to achieve their purpose. Some transitions work like components built
out of elements connected to other transitions via virtual arcs. PyTri has been
designed from the start with the aim of creating a language tailored to the
creation of multi-agent systems. Amongst the basic transitions are elements that
allow sending messages to other agents, receiving messages, or a combination.

Gadgets. In order to directly embed GUI components into the nets, a new general
type of element was devised. Gadgets are the representation for mixed-border
components, which can perform proactive actions, but also expose their internal
data to connected transitions, like a place. The internal virtual elements of
a gadget are connected to the elements around it, based on the aliases of the
connecting arcs. Gadgets have a consistent semantics that enables them to directly
interact with the surrounding net by donating tokens, acting as a precondition,
and receiving tokens. For GUI components, the behavior can be encapsulated in
pure Python proxy objects that perform all required bookkeeping transparently.
In Figure 2, a dialog is visible and tangible to a local user, as long as a token is
inside the leftmost place. When one of the two buttons is pressed, the dialog hides,
consumes the first token and donates a new token through the matching arc. As
a result, either the user name is copied into the net, or the agent terminates.

Fig. 2. A GUI gadget directly embedded in a net, interacting with a local user
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Coarsening. The main mechanism of modularization in Java nets is the nets
within nets approach, since places can contain net objects. Contained nets can
interact, through their own internal transitions, with outer transitions connected
to their place, using synchronous channels. However, this approach introduces a
sharp partitionment of the code into layers, resulting in a break of continuity.

PyTri favors a flat structure where all elements are on one universal layer, and
other mechanisms for partitioning are used instead. Some control flows need to
be executed in multiple independent instantiations, for example protocols that
control interactions between agents. Instead of instantiating protocol nets as is
done in Mulan, such code can be modeled through a new class of place. Parallel
places transparently manage all bookkeeping necessary to flatten the behavior
into a single structure, where tokens move in independent streams, separating
the structure into virtual instances. Such places can also give an informational
summary of all independent streams to the developer, during execution. This
mechanism can be enhanced to allow piecing together net structures that look
like AUML diagrams.

Coarsening and refinement of nets is a very powerful mechanism to make
big structures controllable. By allowing to collapse and expand collections of
elements forming a component, one can choose the optimal level of detail of
the representation of the code. This can be used to modularize the code and
the resulting segments can be coarsened to look just like normal elements. An
interface for such a segment can be defined by specifying which of the contained
elements are accessible through certain aliases. Depending on whether only places,
transitions, or both are accessible, segments are represented as such an element,
in the mixed case as a gadget.

Tool Support. An integral part of PyTri is having tool support for the language,
namely a Monipulator that allows creation, manipulation, monitoring and debug-
ging of net code. In order to allow developers to separate big nets into manageable
chunks, they can be partitioned into fragments, which are joined into a flat whole
net, maintaining the original semantics.

The preliminary maxim of PyTri, which arose due to the global interpreter
lock of Python, is that every agent is its own process. There is no global simulator
process that contains, manages and controls agents. Memory is not shared between
agents, which have to rely on interprocess-interaction, facilitated by a process
present on every machine of a distributed environment.

4 Conclusions

Programing complex systems remains a challenge. This paper provides a vision
in form of a new graphical programming language to address this problem. PyTri
overcomes some drawbacks of the successful extension of Java in the form of ref-
erence nets with agent concepts from Mulan. It does so by amending a different
language, namely Python, and adding several new or adapted constructs and
concepts to the language with respect to the graphical underpinning. While it is
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strongly influenced by Petri nets, its semantics is adapted to the requirements of
programming and explores a lot of different possible programming mechanisms,
in order to investigate the realm of possibility. This allows for powerful expression
of behavior through new constructs and concepts. PyTri’s concepts, the proto-
typical implementation, written in Stackless Python, using PyQt, and the whole
background of the language has been intensively discussed in [10]. Currently the
main features are: Python as the inscription language, a powerful semantics with
concepts and constructs to express important agent features, and an available
prototype for some of the central concepts.

Our current direction of research is now to provide a proper Petri net semantics
for the current concepts and constructs. Concepts and experiences from reference
nets, Renew and Mulan/Capa will give further directions of development
beside the direct evaluation of the current PyTri tool set. The main goal is
to keep and extend PyTri as a powerful modeling and programming language
while trying to regain the analytical power of Petri nets, which is currently
lost. In order to truly seize the power of a language which directly expresses
concurrency, a different implementation base for the execution core and the
inscription language has to be considered, possibly based on PyPy or C++.
Besides PyTri as a language, the tools around PyTri will also be subject to several
different investigations. In the future, a series of prototypes, no longer based on
Stackless, which gradually implement more and more concepts of the language,
will be created. Here concrete, at the beginning rather artificial applications will
further help to find the right modeling and programming concepts.
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Abstract. Since the state space explosion is a common problem when
analysing Petri nets several ways to deal with this problem leading to a
smaller – reduced – state space have been invented. One of them is finding
symmetries, an equivalence relation on places and transitions of a Petri
net, and only evaluating one object from each equivalence class. All other
objects in the same class are then known to yield the same information.
Finding symmetries by brute force is known to be expensive, it is even
unclear if it can be done in polynomial time due to the inclusion of the
graph isomorphism problem. While a first few symmetries need to be
found by brute force, later ones might also be generated. We show how
to generate new symmetries from known ones efficiently, how to tell if
the brute force algorithm enters a branch not containing symmetries, and
how to reduce the symmetries themselves to move towards orthogonality.

Keywords: Petri Net, State Space, Symmetry.

1 Introduction

Tools for state space exploration like LoLA [Wol10] use many techniques to
reduce the state space before exploring it to answer a question. This is due to
the well-known problem of state space explosion, where the size of the state space
can grow exponentially or worse with the size of the system to be analysed. If a
system contains components that are indistinguishable from each other (by the
structure of the system and the question asked about the system) it is obviously
sufficient to analyse one such component only. The result can just be mapped
to an equivalent component then. A mapping maintaining the relation between
components is called a symmetry.

With Petri nets as systems, components are just the places and the tran-
sitions. A symmetry therefore maps each place to some place (possibly itself)
and likewise for transitions, keeping the edges, i.e. a mapped pair of place and
transition has an edge between them if and only if the original pair has that
edge. A symmetry is thus not more than a structure-preserving permutation on
the places and transitions of a net.

Unluckily, the number of symmetries (the size of the automorphism group)
of a Petri net (or any system) can be much larger than the system itself. It is
necessary to find a small set of symmetries (called generator set) from which all
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other symmetries may be derived. If the components are ordered and numbered
(say from 1 to n), a generator set consists of n levels and each level i contains one
symmetry for each possible image j of the component i with j ≥ i. Components
with a number less than i are mapped to themselves. Take the Petri net from
Fig. 1 as an example.

p1

t1

p2

t2

p3

t3

p4

t4

p5

t5

p6

t6

Fig. 1. An example Petri net N

If a place pi is mapped to pj then the transition ti is mapped to tj due
to the structure of the net (each place has only one successor transition). If
we thus use just the number of a place/transition instead of its name, we may
obtain the following generators: the identity for level 1, (2 3) and the identity
for level 2, (4 5 6), (4 6 5) and the identity for level 3. Only components mapped
to different components are shown explicitly in this notation, and each one is
mapped to the next inside the parentheses (the last to the first). For level 2 there
are two replacement candidates for (2 3): (2 3)(4 5 6) and (2 3)(4 6 5). Any one
of these three is sufficient. It can be shown (see e.g. [Sch02]) that any symmetry
σ can be written as the composition of some generators gi, one from each level
i, by σ = g1 ◦ g2 ◦ . . . ◦ gn.

While LoLA seems to implement an algorithm (called Refine*/Define in
[Sch02]) that runs in polynomial time in practical cases, this cannot be guaran-
teed due to the inclusion of the graph isomorphism problem for which member-
ship in P is unknown. Therefore, it is important to rely on such an algorithm
(that builds generators from scratch) as seldom as possible and use already
known generators instead to derive new ones when possible. To a certain extent,
LoLA already does this by composing generators with themselves, building pow-
ers, and checking whether these powers can fill the gaps where generators are
still missing. In the following, we show how this can be improved.

2 Basic Definitions

We assume Petri nets, formally a tuple (P, T, F ) with F : (P ×T )∪ (T ×P )→ N,
to be known to the reader. We also expect some knowledge about linear algebra,
especially the definition of a group, and start now by defining symmetries.

Definition 1 (Symmetry). Given a net (P, T, F ), a symmetry σ is a map σ:
P ∪ T → P ∪ T with σ(P ) = P , σ(T ) = T , and F (σ(x), σ(y)) = F (x, y) for all
x, y ∈ P ∪ T .
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We might also be interested in a (initial or final) marking m, in which case
m(σ(p)) = m(p) must hold additionally for all p ∈ P . A symmetry σ is written
in the style (a11 . . . a1j1) . . . (an1 . . . anjn) where σ(aim) = ai,(m mod ji)+1.

In the following we assume a fixed Petri net N = (P, T, F ), a fixed bijection
b: P ∪ T → {i ∈ N | 1 ≤ i ≤ |P ∪ T |} and identify the places and transitions of
N with their images under b.

Definition 2 (Generator, level, orbit). A symmetry g for level lev(g) = i
(1 ≤ i ≤ |P ∪ T |) is a symmetry with g(k) = k for all k < i. The number g(i) is
called the orbit of g. Each level i also has orbits, numbered from i to |P ∪T |. An
orbit k of level i is consistent if there is a symmetry g for level lev(g) = i with
an orbit g(i) = k, otherwise the orbit is called inconsistent or empty. Define Gi

to be the group of all symmetries for level i (with Gi ⊇ Gi+1). On the other
hand, a generator set G consists of one symmetry, called generator, gij for each
level i and each consistent orbit j on that level.

Corollary 1 ([Sch02]). Let G be a generator set. Each symmetry g for level
i can be expressed as a consecutive composition of one generator gj ∈ G from
each level j ≥ i.

Corollary 2 ([Sch02]). There is an algorithm Refine*/Define taking a level i
and an orbit k as input and producing a symmetry g for level i with g(i) = k
if such a symmetry exists. Otherwise, the algorithm terminates with the result
“inconsistent”.

3 Inheriting Inconsistency

Inconsistencies are obviously the worst result that can be obtained from the Re-
fine*/Define algorithm. They waste time and do not even produce a generator.
Once we know of an inconsistent orbit for some level, we may use this informa-
tion to find other inconsistent orbits without the Refine*/Define algorithm. An
equivalence relation for places/transitions can be helpful here.

Definition 3 (Equivalence of components). Let G be a generator set and
i some level. For x, y ∈ P ∪ T we define an equivalence relation x ≡i y ⇐⇒
∃g ∈ Gi: g(x) = y.

Note that ≡i being an equivalence relation follows from the fact that Gi is a
group with identity, an inverse, and composition as group operation.

Lemma 1 (Inheritance). For level i, let k be an inconsistent orbit and n be
a consistent orbit. Then, n 6≡i k.

Proof. Assume n ≡i k, then there is g ∈ Gi with g(n) = k. Let g′ ∈ G be the
generator for level i with g′(i) = n. Then, g(g′(i)) = k and g′ ◦ g ∈ Gi has the
orbit k. A contradiction, as no symmetry g′′ for level i with g′′(i) = k exists.
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Looking from the other side, this means every orbit m with m ≡i k must be
inconsistent. It is therefore unnecessary to call the Refine*/Define algorithm for
orbits equivalent to k. In our example from the introduction, all orbits k > 1
on the first level are inconsistent, since p1 can only be mapped to itself by any
symmetry. If we know that the orbits 2 and 4 are inconsistent, we conclude
from the generators (2 3) and (4 5 6) (from levels 2 and 3) that 2 ≡1 3 and
4 ≡1 5 ≡1 6. We save three calls to Refine*/Define.

4 Building Products

LoLA so far takes a newly acquired generator g for level i and calculates the
powers g2 = g ◦ g, g3, g4, and so on, until gn(i) = i holds. If one of the powers
has an orbit for which no symmetry has been found so far, the power is saved
as the new gnerator for that orbit. Further powers do not yield anything new as
gn+1 has the same orbit as g1 = g.

Instead, we propose building compositions of any new generator with any
generator found so far until no new generators are derived anymore. This looks
like a losing approach at first as there are by a linear factor more such products
than powers. But note that in the powers approach O(n) (with n = |P ∪ T |)
powers must be calculated until gn(i) = i holds and each composition done also
needs O(n) (the size of the map). The powers approach therefore looks quadratic.

Lemma 2 (Complexity of product testing). Let g ∈ Gi and g′ ∈ Gj with
j ≥ i. A test if the composition g ◦ g′ leads to an orbit for which no generator
has been found so far can be done in O(1).

Proof. We check if there is a generator for level i with orbit g′(g(i)). This takes
O(1) time. If there is none, g ◦ g′ will be the new generator for level i and orbit
g′(g(i)).

Note that this simple test is useless for the powers. We would test and then
calculate the composition anyway, independently of the test’s result, when we
need the next, higher power.

What is important here is that a newly found generator for level i is composed
only with generators of a higher level. To guarantee this, the levels have to be
filled with generators from highest to lowest. This is the way it is done in LoLA
anyway: LoLA uses a recursion from easier to harder problems, and higher levels
represent the easier problems (as more elements are mapped to themselves).

If we try to calculate a complexity for our approach and (falsely) assume that
the size of a generator set G is roughly equal to |P ∪ T | we obtain O(n2) tests
(for pairs of generators in G) with complexity O(1) each and O(n) compositions
with complexity O(n) each. This would suggest a quadratic complexity just like
for the powers’ calculation. There are examples where the size of the generator
set is much higher as well as those where it is much lower than |P ∪ T |, so the
real complexity comparison is much more difficult.
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In general, the product approach will produce more new generators in a
single call than the powers approach, but this depends on the structure of the
automorphism group. If the order of generators (the lowest power yielding the
identity) is lower than the number of orbits on some level, it is impossible to fill
all orbits in a single call of the powers approach. Since products are iterated, from
them the whole subgroup spanned by all known generators could be computed.
This can mean an exponential gain compared to the powers, e.g. in groups with
pn elements (p prime) where gp is the identity for all symmetries g. By powers
at most p − 1 new generators can be built from each call to Refine*/Define,
while with products the group spanned from the known generators increases by
a factor of p for each call.

5 Minimizing the Carrier

Our last optimisation does not deal with the finding of generators but with
the size of their representation. While a smaller size might reduce execution
times there may be other benefits. Let two generators g, g′ be orthogonal if
g(i) 6= i =⇒ g′(i) = i, then g and g′ can be composed without effort. The set
{i | g(i) 6= i} is called the carrier of g. Conclusions drawn about the carrier of g
cannot be influenced by g′ and are thus valid for g ◦ g′. While orthogonality is
unreachable in general, we may still try to minimize the carrier of any generator
g. Candidates that may have a smaller carrier are easy to find:

Corollary 3. If g is a generator for level i and orbit k and n > 0 is the smallest
integer with gn(i) = i, then, from all powers of g, exactly the gjn+1 (for j ∈ N)
are generators for level i and orbit k.

Take e.g. the cycle representation of one of the generators for the Petri net
from Fig. 1: g = (2 3)(4 5 6). If we take g as generator for level 2 and orbit 3
then (2 3) is the orbit cycle of g (it contains level and orbit). Its length is n = 2,
i.e. g2(2) = 2. Thus, reduction candidates are g2+1 = (2 3), g4+1 = (2 3)(4 6 5),
g6+1 = g1 and so on. Since 2 + 1 = 3 is divisible by the length 3 of the second
cycle (4 5 6), this cycle is eliminated in g3 (g3(i) = i for i = 4, 5, 6 and identities
are not shown in cycle representation). In general, the following holds.

Lemma 3. Let g be a generator with an orbit cycle o = (o0 . . . oi−1) and an-
other cycle c = (c0, . . . , cm−1). Let k be the greatest divisor of m such that i and
k have a greatest common divisor (gcd) of one. Then, in gk+qm (for q ∈ N) the
cycle c is replaced by k cycles of length m/k and there is no power of g having
the same orbit cycle and shorter replacement cycles for c.

Proof. Just note that gk(c(n+`k) mod m) = c(n+(`+1)k) mod m and for ` = m
k −1 for

the first time gk(c(n+`k) mod m) = gk(c(n+m−k) mod m) = cn+m mod m = cn holds.
If we choose k a greater divisor of m, there can be no j such that k divides ji+1,
since the gcd of k and i also divides ji (and not ji+ 1). Since a divisor of k also
divides k + qm, k + qm = ji + 1 is impossible, i.e. if gcd(i, k) > 1, gk+qm will
not preserve the orbit cycle.
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Thus, for k + qm = ji + 1 the cycle c is reduced as far as possible and at
the same time the orbit cycle stays intact. It is unnecessary though to solve
this equation as the proof of lemma 3 already tells us how the cycle c will be
modified.

6 Experimental Results

The approach of building powers of generators can already be optimal, as it hap-
pens e.g. with the dining philosophers and reader/writer systems. Experiments
for these examples show a worst case slow down of 1 − 2% in execution times
from the powers approach to our new optimisations. This supports our earlier
assumption that building products is not (much) slower than building powers.

A good example to show the difference between old and new approach is the
hypercube ECHO [Rei98], a grid-like network with d dimensions and n com-
municating agents per dimension. The value of detecting inconsistencies can be
shown with the nets Ni, where N3 = N from Fig. 1, and each higher index adds
a new ring with i places and transitions each. Execution times for computing
the symmetries are shown in Table 1.

ECHO #symm #gen Old New

3/3 48 10 0.2s <0.1s
3/5 48 10 4.6s 2.9s
3/7 48 10 29s 16s

4/3 384 21 3.5s 1.6s
4/5 384 21 244s 96s

5/3 3840 41 82s 23s

Ni #gen Old New

N10 45 <0.1s <0.1s
N15 105 0.4s 0.2s
N20 190 2.4s 1.3s
N25 300 8.2s 4.4s
N30 435 25s 13s
N35 595 66s 34s

Table 1. Results for ECHO d/n with numbers of symmetries and computed generators
as well as execution times for old and new approach and nets Ni consisting of i cycles
of lengths from 1 to i

7 Conclusion

Theoretical observations and experimental results have shown that finding and
using symmetries can be optimised beyond the current state of affairs represented
by LoLA. Using products and an equivalence to detect inconsistencies leads to
a clear speed up in not already optimal cases.
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Reachability Analysis via Net Structure
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Abstract. Exploitation of the structure of a Petri net is widely believed
to be an ine�cient approach to solving the reachability problem. We show
that structure analysis can be combined with integer programming and
partial order reduction to obtain a fast reachability solver.

Keywords: Petri net, reachability problem, integer programming, structure
analysis.

1 Introduction

The reachability problem for Petri nets, i.e. if a �nal marking can be reached in a
given net from the initial marking, is known to be decidable [May84,Kos82,Lam92]
but EXPSPACE-hard [Lip76]. E�cient tools exist, but they cannot solve all
instances of the problem (at least not in a lifetime). Model checkers, sym-
bolic [CMS06] or with partial order reduction [Wol10], have been used success-
fully to solve quite large reachability problems.

Here we present an approach that is a mixture of several methods, the main
ones being integer programming and structure analysis. The marking equation,
a linear system of integer equations, is known to be a necessary condition for
reachability. When a solution of the marking equation is found, it may represent
the parikh vector of a �ring sequence solving the reachability problem or not. If
it does, the �ring sequence needs to be found, otherwise the marking equation
can be constrained to discriminate the found solution. The needed constraints
are found by analysing the net structure. Consider the example net in Fig. 1.

s

a1

b1

x1

y1

c1

b2

z

y2

c2

b3

`

x2a2

f

Fig. 1. An example Petri net N with initial marking s and �nal marking s+ 3f
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The marking equation m0 + Cx = mf (where m0 = 1s, mf = 1s + 3f are
initial and �nal marking and C is the incidence matrix of the netN) can be solved
by any integer programming tool. The smallest solution is 3a1 + 3a2 + 3`, i.e.
each of the three transitions should �re three times (in some unknown order). If
we notice that a token is needed on y2 to �re a2, but none of the three transitions
produces such a token, we might add a constraint \a token should be produced
on y2" to our marking equation to discriminate our �rst solution. A still viable
solution is now 2a1 + 2a2 + b1 + b2 + b3 + 3`, as b2 can produce that token.
But now a token on z is missing. If required by a similar constraint, we come to
2a1+2a2+ b1+ c1+ b2+ c2+ b3+3` but the token on y2 is still not there when
needed for a2. Requiring a higher token production on y2 will �nally lead to the
solution 3b1 + c1 + 3b2 + c2 + 3b3 + 3` and now we \only" have to �nd a correct
�ring sequence, e.g. b1c1b2b3`b1b2b3`b1b2c2b3`.

2 Some Basic De�nitions

We expect the reader to be familiar with the basic Petri net terminology and
some knowledge in linear algebra. All Petri nets here are general ones, i.e. they
may have arbitrary multi-arcs including loops. Vectors are sometimes written as
�nite sums (multisets) over the vector's domain.

De�nition 1 (Reachability problem). A reachability problem is the ques-
tion, when given a tuple (N;m;m0) of a Petri net N = (S; T; F ) and two mark-
ings m;m0 2 NS, whether m0 can be reached from m, i.e. if � 2 T � with m[�im0

exists. The reachability problem then is the set RP = f(N;m;m0) jN = (S; T , F )
is a Petri net, m;m0 2 NS, 9� 2 T �: m[�im0g. A reachability problem (N;m;m0)
is also called an instance of RP, to which the answer is \yes" if (N;m;m0) 2 RP
and \no" otherwise.

The reachability problem is decidable [May84] and making it solvable for as
many instances as possible is our goal. It is well-known that a necessary condition
for a positive answer to a reachability problem is the feasibility of the marking
equation.

De�nition 2 (Marking equation). For a Petri net N = (S; T; F ) let C 2
N
S�T , de�ned by Cs;t = F (t; s)�F (s; t), be the incidence matrix of N . For two

markings m and m0 the system of linear equations m+Cx = m0 is the marking
equation of N for m and m0. A vector x 2 NT ful�lling the equation is called a
solution.

For a �ring sequence � the Parikh vector }(�): T ! N is de�ned by }(�)(t) =
#t(�), where #t(�) is the number of occurrences of t in �. If x is a solution of
the marking equation m + Cx = m0, any �ring sequence � with }(�) = x and
m[�i positively solves the instance (N;m;m0) of the reachability problem. From
linear algebra the following is known:
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Theorem 1 (Solution space). For any marking equation m+Cx = m0 over a
net N = (S; T; F ) there are �nite sets of base vectors B � NT and period vectors
P � NT such that all and only the solutions can be expressed as b+

P
i nipi with

b 2 B, pi 2 P , and ni 2 N.

In other words, the solution space is a semilinear set over nonnegative integer
vectors. Period vectors are nonnegative T -invariants where for a �ring sequence
� with }(�) to be a T -invariant,m[�im must hold for all markingsm enabling �.
Adding a T -invariant to a solution of the marking equation will produce another
solution. Apart from multiples, our example net from Fig. 1 contains only one
nonnegative T -invariant: c1 + c2. The base vectors take the form i(a1 + a2) +
(3� i)(b1 + b2 + b3) + 3` with 0 � i � 3.

3 Traversing the Solution Space

Integer Programming (IP) solvers come in two 
avors. Some can compute the
whole solution space at once, but are too slow for practical purposes, others can
only compute one solution. The latter, like lp solve [BEN10], can be directed to
compute a minimal solution (with respect to the sum over all values, leading
to shortest �ring sequences). Constraints can be used to discriminate a solution
and force the IP solver to produce another (greater) one until no more solutions
exist.

De�nition 3 (Constraints). We de�ne two forms of constraints, both being
linear inequations over transitions:

{ a jump constraint takes the form t < n with n 2 N for a transition t.
{ an increment constraint takes the form

Pk
i=1 niti � n with ni 2 N, n 2 N,

and transitions ti.

Assume a linear system with a minimal solution b with b(t) = n, then an
additional jump constraint t < n discriminates b and leads to an incomparable
solution. An increment constraint on the other hand may enforce a greater solu-
tion, adding some T -invariant to b. This idea is depicted in Fig. 2 where dashed
arrows represent jumps and normal arrows the adding of T -invariants.

Since the solution space is semilinear we need jumps to get to other solution
cones and increment constraints to go upwards in a cone. Jump and increment
constraints can contradict each other, but it is possible to remove a jump con-
straint. Assume we have a solution a before and a solution b after adding a jump
constraint. We construct one increment constraint per transition t with t � b(t).
This enforces at least the solution b. Removing the jump constraint now will not
lead to an old (smaller) solution, especially not to a.

4 Building Constraints

Let us �rst argue that for a marking equation, any of the minimal solution
vectors in B can be obtained by using jump constraints. For two solutions b and
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b

Fig. 2. Paths from the minimal solution b to any solution. Black dots represent so-
lutions, cones stand for linear solution spaces over such solutions, which may or may
not intersect or include each other. Normal arrows increment a solution by adding a
T -invariant, dashed arrows are jumps to greater solutions. Such jumps can also occur
on higher levels of linear solution spaces, shown by the dotted arrow

b0 let b � b0 if we can change the solution our IP solver produces from b to b0

by adding new constraints to a system consisting of the marking equation plus
some (old) constraints.

Lemma 1 (Jumps to minimal solutions). Let b; b0 2 B (b 6= b0) be base
vectors of the solution space of the marking equation m+Cx = m0 plus some set
of constraints C. Assume b to be the minimal solution of the system. Then, we
can obtain b0 as output of our IP solver by consecutively adding jump constraints
of the form ti < ni with ni 2 N to C.

Proof. b � b0 and since b0 is a minimal solution, b 6� b0. Thus, 9t 2 T : b0(t) < b(t).
Add the constraint t < b(t) to C, then b is not a solution anymore. Assume b00

to be our IP solver's new solution. As b0 ful�lls t < b(t) it is still a solution,
so from b0 6= b00 we conclude b00 � b0, and the same argument as above holds.
Termination is guaranteed since there are only �nitely many solutions b00 � b0.

Non-minimal solutions may not be reachable this way, since the argument
\b0(t) < b(t) for some t" does not necessarily hold. To determine those, increment
constraints are necessary, and the latter can be obtained from partial solutions.

De�nition 4 (Partial solution). A partial solution of a reachability problem
(N;m;m0) is a tuple (C; x; �; r) of

{ a family of (jump and increment) constraints C = (c1; : : : ; cn),
{ the �-smallest solution x ful�lling the marking equation of (N;m;m0) and

the constraints of C,
{ a �ring sequence � 2 T � with m[�i and }(�) � x,

{ a remainder r with r = x� }(�) and 8t 2 T : (r(t) > 0 =) :m[�ti).
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The vectors x and r are included for convenience only, they can be computed
from C, �, �, and the problem instance.

A full solution is a partial solution (C; x; �; r) with r = 0. In this case, � is a
�ring sequence solving the reachability problem (with answer 'yes').

If we obtain a partial solution with r 6= 0 there are not enough tokens on
some places to �re the transitions in the remainder r. An underapproximation
of tokens necessary can be computed from a graph G containing the transitions
in r and the undermarked places, an edge from place s to transition t if there
are not enough tokens on s to �re t, and an edge the other way if �ring t

increases the token count on s. From any strongly connected component SCC
in G without incoming edges (= tokens produced by other components, a source
SCC) we compute the minimal number k of tokens needed to activate any of its
transitions. Our constraint now states that the number of tokens produced on the
component's places should be increased by at least that number k. The tokens
produced on a place p can be expressed as

P
t: C(p;t)>0 C(p; t) �x(t) for a solution

vector x, so the constraint takes the form
P

p2SCC

P
t=2SCC: C(p;t)>0 C(p; t) � t �

k+
P

p2SCC

P
t=2SCC: C(p;t)>0 C(p; t) �x(t). Note that we sum up over transitions

outside SCC only, as the transitions inside cannot produce tokens until the �rst
of them gets activated, which is the aim of this constraint.

In our example net from Fig. 1 we start with the solution x = 3a1 + 3a2 +
3`. None of the transitions can �re three times, this leads us to the graph G:
y2 ! a2 ! x2 ! ` ! s ! a1 ! x2 ! a2. The only source SCC of G
consists of just y2 leading to the constraint 1 � b2 � k + 1 � x(b2) = k = 1. Now
the smallest solution becomes x0 = 2a1 + 2a2 + b1 + b2 + b3 + 3` and only b1
can �re as often as wanted. Our constructed graph G0 now has z as its only
source SCC, from which we obtain the constraint 1 � c1 � 1 + 1 � x0(c1) = 1,
leading to x00 = 2a1 + 2a2 + b1 + b2 + b3 + c1 + c2 + 3`. After the sequence
b1c1b2c2b3`a1 we �nd a remainder r = a1 + 2a2 + 2` and get again the graph
G, but now with a constraint 1 � b2 � k + 1 � x00(b2) = 1 + 1 = 2. After the
next solution x000 = a1 + a2 + 2b1 + 2b2 + 2b3 + c1 + c2 + 3` with the graph
y2 ! a2 ! x2 ! `! s (a1 not being in the remainder anymore) the constraint
is increased to 1 �b2 � k+1 �x000(b2) = 1+2 = 3. We now obtain the �nal solution
of 3b1 + 3b2 + 3b3 + c1 + c2 + 3`. Note that the �rst step can also be done by a
jump a1 < 3, but this is impossible for the second step since x00 � x0.

5 Finding Partial Solutions

Finding maximal �ring sequences � for a solution x produced by the IP solver to
obtain partial solutions can be done by a brute force tree search. The execution
time may grow exponentially with the size of the solution, though. Partial order
reduction, e.g. the stubborn set method [KSV06], can be applied to reduce the
execution time. Other reductions can be thought of; even with stubborn sets a
marking may appear more than once, either on a single path (the �ring sequence
is not minimal) or on permutated paths. Finding such spots allows to avoid going
through subtrees unnecessarily.
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6 Conclusion

The algorithm has been implemented in a tool named Sara [Wim10] and tested
well with some small examples and a challenge posed by H. Garavel [Gar03]
in 2003 so far. Four other tools, using di�erent approaches, managed to solve
the challenge, with run times from about 10 minutes to more than an hour (in
2003). A proof to the challenge consists of nearly 800 �ring sequences of di�erent
length; those tools giving such a proof provided (much) longer �ring sequences
than our algorithm. Our implementation takes about 20 seconds on a simple
linux PC and twice that much on a standard Windows PC under Cygwin (in
2010).

Due to the underapproximation of needed tokens when building constraints,
our algorithm runs into trouble when the Petri net has high arc weights. A com-
parison to LoLA [Wol10] suggests an exponential loss with growing arc weights
for some specialised examples.

Overall, we have the hope that our implementation is able to compete with
other tools using state space exploration or symbolic model checking instead of
structure analysis. Of course, more tests are necessary before a stable statement
can be made. The algorithm presented here only tries to make a semi-decision
for the positive case, but we are working on an extension to also make correct
negative semi-decisions in many cases.
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Abstract. We sketch an undecidability result concerning the decentralized con-
trollability problem of open nets and discuss some consequences.

1 Introduction

During the last years, we have used open nets (Petri nets with distinguished interface
places) as a formal model for the behavior (protocol) of services [Wol09b]. Open nets
can also be used as a tool in divide-and-conquer approaches to Petri net verification
[Zai06,OWW10]. For this class of nets, it is interesting to study the interaction with
their environment [Wol09a]. To this end, various notions of controllability [RW87] are
in the main focus. So far, we concentrated on centralized controllability which asks
whether there is a (monolithic) environment that can be composed in such a way to the
given open net that the overall system is deadlock free or deadlock free and livelock
free. In both cases, we were able to come up with decision procedures [LW10a] in the
case where the given net has finitely many states while we showed undecidability for
the case that the given open net is unconstrained [MSSW08].

Decentralized controllability is applied to an open net that has a partitioned inter-
face. The question is: is there a tuple of environments, each communicating with one
part of the interface and not directly communication with each other, such that the
overall system is deadlock free or deadlock and livelock free? In [Wol09a], we gave a
procedure only for the case that N does not run into cycles, i.e. never visits states twice.
Decentralized controllability is a very useful notion as several practically relevant prob-
lems can be reduced to it:

– Adaptibility [GMW10]: Given a service S and a specification of elementary activi-
ties that specify the general space of actions of any adapter, is there another service
R such that S and R can be made compatible by a mediating adapter? In this setting,
the service R and the control unit of the adapter form a decentralized controller of a
system consisting of S and the implementation of the possible elementary activities
of the adapter.

– Realizability [LW10b]: Given a choreography (i.e. a language of event sequences
to happen on the wires), are there services that interact in such a way that the
observed communication fits to that language? In this case, the choreography can be
transformed into an open net which has the tuple of realizing services as controller.

The notion of decentralized controllability must not be mixed up with the one of
autonomous controllability. In the latter notion, the question is whether a decentralized
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controller can be found in such a way that the different parts are not even coordinated
at build time.

In this paper, we consider decentralized controllability for the setting where we want
to enforce deadlock freedom and livelock freedom on the overall system. We further
rule out cotrollers where, at any stage of communication, more than a given number
k of tokens is pending on a message channel and we rule out unbounded open nets as
these would be covered by the undecidability result of [MSSW08]. These restrictions
ensure that the overall system is finite state and the undecidability result of [MSSW08]
does not cover the setting.

To our best knowledge, undecidability of the mentioned problem has not been
shown before while similar problem have been studied. Tripakis shows [Tri04] undecid-
ability of decentralized controllabilty in a different setting. For his problem, the actual
correctness property to be enforced by the synthesized controller is a parameter that is
part of the input (in the shape of a regular language of events) while we consider the
fixed setting of deadlock and livelock freedom. His undecidability result relies on cod-
ing Post’s Correspondance Problem (PCP) into the mentioned language. Bontemps and
Shoppens show [BS07] undecidability of the distributed realizability of a Life Sequence
Chart (LSC) specification. Peculiarly, their setting permits communication between the
distributed agents to be synthesized. In our situation, permission of direct communi-
cation between the distributed parts of the environment would immediately permit the
conclusion that an open net is decentralized controllable if and only if it is centralied
controllable. As we know that centralized controllability is decidable in our case, we
conclude thet the setting of [BS07] includes some, maybe implicite, assumptions that
are not compatible to our setting. In their argument, however, they as well use a reduc-
tion of PCP as their main argument.

Consequently, it is not surprising that our proof relies on a reduction from PCP
as well. However, the particular execution of the reduction differs significantly. While
Tripakis codes the PCP instance into the language used as a correctness criterion, Bon-
temps and Schoppens present the distibuted agents with a challenge generated from
a nondeterministically selected PCP instance that is not solvable iff the PCP instance
has a solution. We generate a controlling distributed strategy from a solution of a PCP
instance and use the given open net as a verifier of that instance.

2 Open nets

In this section, we introduce the notion of open nets. The notion syntactically deviates
a bit from earlier presentations. It is, however, semantically equivalent.

An open net extends a usual place/transition net [P,T, F,m0] with the following
ingredients:

– A set M of message shapes,
– An interface I which is a set of pins partioned into ports Πi (I = Π1 ∪ . . . ∪ Πn,
Π1 ∩ Π j = ∅ for i , j); a pin is a pair [m, d] where m ∈ M and d ∈ {i, o},

– A set Ω of final markings.
– A partial labeling that assigns a message shape to some of the transitions.
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i and o represents incoming and outgoing messages, respectively. For a pin [m, d],
define the notion of a dual pin [m, d] by [m, i] = [m, o] and [m, o] = [m, i]. For the
interface of an open net, we require that, for all pins [m, x], [m, x] ∈ I implies [m, x] < I.
For a port Πi, let the dual port Πi = {[[m, x] | [m, x] ∈ Πi}.

A set of open nets N1, . . . ,Nk is composable iff, for all m and x, [m, x] ∈ Ii and
[m, x] ∈ I j implies i = j (each connection is purely bilateral), and, for each pair of pins
in the same port, their dual pins belong to the interface of the same net, or none of the
dual pins belongs to any interface (ports signal communication with the same partner).

For composable open nets, the composition is built by

– building the disjoint partition of the places, transitions, and arcs of the involved net
(if necessary by renaming);

– introducing additional places for all those pins where both pin and dual pin occur
in some interface;

– inserting an arc from a transition t labeled m to the place inserted for m if [m, o]
occurs in the interface of the net containing t,

– inserting an arc from the place labeled m to a transition t labeled with m if [m, i]
occurs in the interface of the net containing t,

– removing the labels of all such connected transitions,
– letting the new ports be exactly those ports whose pins are not matched with dual

pins in other nets,
– letting the initial marking be the disjoint partition m0 = m01⊕ . . .⊕m0k, i.e. m0(p) =

m0i(p) for the unique i with p ∈ Πi,
– letting Ω = {m1 ⊕ . . . ⊕ mk | mi ∈ Ωi}.

We study the following decentralized controllability problem: Given some number
k, open net N with ports Π1, . . . , Πn, do there exist open nets N1, . . . ,Nn where each Ni

has Πi as its only port such that N ⊕ N1 ⊕ . . . ⊕ Nn is a k-bounded Petri net which is
weakly terminating, i.e. from each reachable marking, a final marking is reachable?

3 Undecidability of Decentralized Controllability

In this section, we present a reduction of PCP to our setting of decentralized controlla-
bility. In PCP, we are given a set d1 = [u1, v1], . . . , da = [ua, va] of pairs of words over
some fixed alphabet Σ. The problem is to decide whether there exists a finite word w
over {d1, . . . , da} such that w[d1←u1,...,da←ua] = w[d1←v1,...,da←va]. It is well known that PCP
is undecidable.

We prove:

Theorem 1. If our decentralized controllability problem is decidable then PCP is de-
cidable.

We argue by translating an instance of PCP to an open net such that the PCP instance
has a solution if and only if the open net is decentralized controllable. The idea is to
design the open net such that the environment must be built from a candidate solution
and leads to termination of the overall system if and only if the candidate solution is
indeed a solution. Our open net is designed to have two ports, U and V . From port
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U, we expect a sequence di1 ui1 di2 ui2 . . . followed by a concluding # while from V we
expect a sequence di1 vi1 di2vi2 . . . followed by a concluding #.Together, the sequences
should form a candidate solution for the PCP. Thus, U has input pins corresponding
to Σ ∪ {d1, . . . , da} ∪ {#}. Correspondingly, V has input ports corresponding to Σ ∪
{d1, . . . , da} ∪ {#} as well which need to be renamed bijectively in order to meet the
syntactical constraints on pins. For each port there is a single output pin representing
the acknowledgment of a received message.

The constructed open net behaves as follows: Whenever it sees more than one mes-
sage in any of the two ports, it immediately moves into some deadlock or trap mark-
ing. This way, the partners are forced to send their content consecutively. Second, after
having processed a message, it sends an acknowledgment to the sender. This way, the
partners know when to savely send the next element of their candidate string. In the core
part, the constructed net verifies the presented candidate strings. Verification includes

(1) Checking whether the candidate strings indeed correspond to a sequence of pairs
of the given PCP instance;

(2) Checking whether the concatenation of the ui is equal to the concatenation of the
vi.

A finite state system cannot check both items concurrently. The reason is that, in
intermeadiate steps, a substring u1 . . . ub may have a different length than a correspond-
ing substring v1 . . . vb. The length difference may exceed any finite bound even if the
substrings can be complemented to a solution of PCP. In the most popular proof of
undecidability of PCP, the difference between u1 . . . ub and v1 . . . vb is used to code a
comple Turing machine configuration including the state of the tape.

For this reason, the idea is to start with an internal nondeterministic decision and
then to check only one of the above items. As the internal decision is not communi-
cated to the environment, the partners can only control the open net by meeting both
requirements.

If the internal decision is in favour of checking (1), the first input message on both
ports is the identifier of some pair. If these identifiers are different or some other mes-
sage is sent, we let the open net proceed into a deadlock. Otherwise, there is a branch
depending on the pair identifier di and the open net matches the input on U with the
sequence ui and the input on V with vi. This is clearly doable in a finite state fashion. If
after that check there is # on both ports, the open net proceeds to a final state, otherwise
it returns to the state where it expects the next path identifier.

If the decision is in favour of the second item, the open net checks whether the
same letters are present in both ports. Thereby, all seen pair identifiers are ignored
(i.e. acknowledged for stepping to the next input). If, at some stage, there appear # on
both ports, we proceed to a final state. If a # appears on only one port, we proceed to a
deadlock state. Otherwise, we continue forever.

At no time, any of the distributed partners is able to make educated guesses about
the outcome of the internal decision between (1) and (2). In both cases, the individ-
ual communication is a straight alternation between inputting a letter of the candidate
string and an acknowledgment. Any deviation from this procedure comes at the risk of
deadlock if the open net is in the opposite mode.
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4 Discussion

There is a few interesting questions that appear immediately.

First, what is the difference if we present the constructed net to a centralized en-
vironment? In the previous section, one crucial argument was that the partners cannot
“sense” the outcome of the internal decision of the constructed open net. It turns out that
a centralized partner is in fact able to sense that outcome in sufficiently many cases. This
ability relies on the already mentioned difference between the lengths of substrings of
the ui and the vi. If the open net is in mode (1), it processes its input such that it syn-
chronises along the pair identifiers. That is, assuming that the length of the sequence
of the ui is longer than the one on the vi, it proceeds farther into U than into V . Tech-
nically, “proceeding farther” corresponds to acknowledgements sent to U earlier than
acknowledgnments to V . If the open net is in mode (2), it synchronises along letters
of the alphabet, i.e., it would send acknowledgments for subsequent pairs on V before
finishing acknowwledgements on U. This way, the outcome of the internal decision be-
tween (1) and (2) becomes visible to the partner at least on those PCP instances where
all solutions go through intermediate steps with greatly diverging lengths between the
ui and vi sequences. Once having recognised the mode of the open net, the partner can
now react with nonstandard strategies. In mode (1) the partner can finish after having
sent a complete pair even if the two sequences do not match. In mode (2), the partner
canm send some matching letters on U and V even if there is no corresponding PCP
pair. Hence, the constructed open net would not establish a valid PCP reduction.

Second, what about using only deadlock freedom as a correctnes criterion? Again,
the used constructive ides does not work. If deadlock freedom is the only criterion, the
distributed partner may choose an infinite sequence of pairs where, for all finite prefixes,
the sequence of the ui matched the corresponding initial segment of the vi. There exist
PCP instances with that property which do not have solutions. They can be built from
nonterminating Turing machines using the translation used in the well known reduction
of the halting problem to PCP. Although the PCP has no solution, the partners provide
input forever without failing in the (1) or (2) checks. It is evident, that it is impossible
to add another finite state check that identifies the nontermination of the input as this
would require reasoning about the halting problem of Turing machines. We conclude
that decidability of decentralized controllabillity w.r.t. deadlock freedom is still open.

Third, what about the autonomous setting? It is easy to see that the two partners are
build-time coordinated. If they want to control the constructed open net, they have to
agree on some PCP solution (although they do not communicate with each other while
feeding it into the open net). In the autonomus setting, there is no reason to believe that
there is any canonical choice for the individual partners that composes to a strategy.

Gven the importance of decentralized controllability for interesting problems like
adaptability of realizability, the floor is now open for proposing approximations or solu-
tions for subclasses of open nets. As one of the core aspects in our proof was the initial
hidden choice between (1) and (2), a closer look into the disclosure of internal choices
to the partners may be an interesting starting point.
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Abstract. Before a system is built in Service Oriented Computing from interact-
ing services, it is modeled and verified with regard to different behavioral cor-
rectness criteria, among others, deadlock freedom. For this purpose, open nets
as a special class of Petri nets are frequently used. In this paper, we present and
compare three formalizations of when two services interact deadlock freely. We
specifically highlight subtle details of existing formalizations and propose a new
formalization that matches the intuition in every case.

1 Introduction

In the context of Service Oriented Computing, a system is built from interacting ser-
vices ([4]). A service is a well defined, self-contained component that provides standard
business functionality which is accessible via a standardized interface. It interacts with
other services through communication, while being independent of their state or context
([1]). Best engineering practice suggests a system to be modeled before it is physically
built. Open nets ([3]) are a special class of Petri nets, which have been proven notably
helpful in modeling the behaviour of open systems, e.g., services.

There exist well-developed methods to analyze the behavior of a service modeled as
open net with regard to different correctness criteria ([6]), among others, deadlock free-
dom. Intuitively, a deadlock describes an unwanted situation in which further progress
in relevant (but not necessarily all) parts of a system is impossible. A system reaching a
deadlock is typically considered malfunctioning. This makes the absence of a reachable
deadlock, i.e., deadlock freedom, desirable behavior. We call two services deadlock free
partners if they interact deadlock freely. There exist various formalizations of deadlocks
and deadlock free partners in the model of open nets ([2], [6]). In this paper, we present
and analyze two existing notions and highlight deficits of these notions arising in subtle
situations. Based on these insights, we propose a new formalization of deadlock free
partners which overcomes these deficits. We finally compare all three notions.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce basic
concepts of Petri nets and our formal model for services, i.e., open nets. Then, in Sect. 3,
we present three different formalizations of deadlocks and deadlock free partners. Sec-
tion 4 is devoted to the comparison of the different notions. Finally, Sect. 5 concludes
the paper and gives directions for future work.

2 Preliminaries

In this section, we recall open nets as a Petri net model for services. We start from
marked net structures, i.e. place/transition nets, with the usual meaning of the con-
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stituents and the standard firing rule. We assume the standard notions of markings, en-
abledness, firing, and reachability in Petri nets. Otherwise, see [5] for an introduction.

Definition 1 (open net structure, partner structures, composition). Let N =(P,T,F)
be a net structure and let I, O be two disjoint sets of places of N, such that •I = O• = /0,
and the environment •t ∪ t• of each transition t of N contains at most one node of
I∪O. Then N together with (I,O) is an open net structure. (I,O) is the interface of N,
IP(N) =def I ∪O is the set of interface places of N, and nodes in IP(N)∪ I• ∪ •O are
interface nodes of N, opposed to inner nodes of N.

For i = 1,2 let Ni = (Pi,Ti,Fi) together with the interface (Ii,Oi) be open net struc-
tures. Without loss of generality, we assume each node x shared by N1 and N2 be an
interface place: Otherwise, replace x by different instances in both open net structures.
N1 and N2 are partner structures iff I1 = O2 and I2 = O1. The composition of N1 with
N2 is the open net structure N1⊕N2 =def (P1 ∪P2,T1 ∪ T2,F1 ∪F2) together with the
interface (I \O,O\ I), where I = I1∪ I2 and O = O1∪O2.

Inner nodes model a service’s business functionality and interface nodes model a ser-
vice’s standardized interface. The concept of partners expresses two services’ capability
of proper communication. On the level of open nets, communication of two partners N1
and N2 is the firing of an interface transition of N1 or N2 in their composition N1⊕N2.
Additionally, we distinguish situations which N1 and N2 shall reach together, i.e., target
markings.

Definition 2 (open net, partners). Let N be an open net structure, let m be a marking
of N with no interface place marked, and let Ω be a set of markings of N with no
interface place marked. Then N together with m and Ω is an open net, with m the initial
marking of N, and Ω the set of target markings of N.

Let N1 and N2 be two open nets with initial markings m1, m2 and target markings
Ω1, Ω2, respectively. N1 and N2 are partners iff N1 and N2 are partner structures. The
initial marking m of N1⊕N2 is defined by m =def m1 +m2, the target markings Ω of
N1⊕N2 are Ω =def {m1 +m2 | m1 ∈Ω1,m2 ∈Ω2}.

We depict the interface of an open net N by drawing its interface places on a dashed
rectangle which contains all inner nodes and interface transitions of N. If N has exactly
one target marking m, we indicate a place p of N with ω if and only if p is marked
in m. See Fig. 1 for some examples. For an open net N, its inner structure inner(N) is
defined by removing the interface places of N, and restrict its initial marking and target
markings accordingly.

3 Deadlocks

In the rest of this paper we assume freely chosen partners N and P. We shall com-
pare several deadlock notions for open nets by means of N and P being deadlock free
partners. Intuitively, deadlock free interaction is the avoidance of unwanted situations
in which further progress in relevant parts of a system is impossible. In the model of
open nets, we formulate this as follows: Whenever one relevant part, i.e., N or P, of the
system N⊕P stops, than there is a wanted situation, i.e., a target marking, reachable
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in N ⊕P, or N and P will eventually communicate again. Massuthe [2] uses the no-
tion of a dead marking to define a deadlock of two interacting services. This definition
discriminates between target and non-target dead markings, the latter ones must not be
reachable.
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Fig. 1. The open nets N, P and Q. N and P are DFPM-partners, N and Q are not.

Definition 3 (dead marking, deadlockPM , DFPM-partners). A marking m of N is
dead in N iff no transition of N is enabled in m. A dead non-target marking of N is
a deadlockPM of N. P is DFPM-interacting with N (synonymous to N and P are DFPM-
partners) iff no reachable marking of N⊕P is a deadlockPM of N⊕P. We write DFPM(N)
for the set of all open nets DFPM-interacting with N, and DFPM for the set of all DFPM-
partners.

For example, the open net N (Fig. 1(a)) models a service which is able to receive a
query (input place q), and then either replies to the query (output place r) or denies
access (output place d). Afterwards, the service can terminate in the target marking
[p3]. Typically, the decision between reply or denial is made depending on data inside
the received query. As we abstract from data in open nets, we model the decision’s
outcome using non-determinism (interface transitions t2 and t3). The open net P (Fig.
1(b)) is DFPM-interacting with N: Whether N sends a reply or denial, P is able to receive
it. Thus, the only marking of N ⊕P with no transition enabled is the target marking
[p3,q3] of N⊕P, i.e., [p3,q3] is no deadlockPM . In contrast, the open net Q (Fig. 1(c))
is not DFPM-interacting with N: There are two deadlocksPM , [p3,r,q2] and [p3,d,q2],
reachable in N⊕Q.

Massuthe’s definition provides a good first impression on how to formalize dead-
locks in open nets. However, it is not precise enough. As an example, consider the open
net R (Fig. 2(a)), which originates from Q by adding an inner loop (transition t5). R
is as malfunctioning as Q: Two markings, [p3,r,q2] and [p3,d,q2], are reachable in
N⊕R, such that neither N nor R is in a target marking, and they will never commu-
nicate again. Intuitively, N and R should not be deadlock free partners. Nevertheless,
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R is DFPM-interacting with N, i.e., N and R are DFPM-partners. This example shows
a general drawback of Definition 3: Every open net N has at least one open net M
which is DFPM-interacting with N. M consists of an interface that is compatible with
N’s interface, and an inner loop without communication. Wolf [6] refines Massuthe’s
notion and introduces responsiveness of open nets to overcome endless loops without
communication 1.

Definition 4 (responsiveness, DFKW -partners). An open net N is responsive iff, from
each reachable marking in inner(N), a marking is reachable in inner(N) which is a
target marking or which enables an interface transition of N. P is DFKW -interacting
with N iff P is responsive and no reachable marking of N⊕P is a deadlockPM of N⊕P.
N and P are DFKW -partners iff N is DFKW -interacting with P and P is DFKW -interacting
with N. We write DFKW (N) for the set of all open nets DFKW -interacting with N, and
DFKW for the set of all DFKW -partners.
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Fig. 2. Another three open nets R, S and T .

Responsiveness rules out some intuitively unwanted interacting open nets with end-
less loops without communication (like R in Fig. 2(a), which is not DFKW -interacting
with N), but unfortunately not all. Figure 2 depicts an example. The open net S (Fig.
2(b)) is responsive and DFKW -interacting with N. However, we would intuitively clas-
sify the reachable marking [p3,d,q2] of N⊕ S as a deadlock: Neither N nor S is in a
target marking, and they will never communicate again. Additionally, responsiveness is
a rather strong restriction on partners. Intuitively, N and the open net T (Fig. 2(c)) are
deadlock free partners: N⊕ T has no reachable marking which enables transition t7.
Nevertheless, T is not responsive and not DFKW -interacting with N according to Def. 4.

1 Additionally, Wolf restricts Def. 4 to bounded open nets and bounded communicating partners
for decidability reasons [3]. As we just compare the notion of deadlocks and deadlock free
partners (whether decidable or not), we do not employ this restriction.
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In order to overcome those drawbacks, we propose a new, third definition of dead-
locks and deadlock free partners. Our definition is based on the observation that a dead-
lock of two interacting services N and P is intuitively described from the view of one
of the involved services, e.g., N, by three facts: (1) N is in an unwanted situation, (2)
further progress in N⊕P by N alone is impossible, i.e., there is a need for interaction
of P with N, and (3) P will never interact with N anymore. Therefore, we propose to
describe deadlocks in open nets locally, i.e., from the view of one service, rather than
from a global point of view on both partners. We do so by using the target markings of
only one of the involved open nets, and by considering silent markings, which capture
the absence of further communication between the partners.

Definition 5 (silent marking, deadlockRM , DFRM-partners). A marking m of N⊕P is
silent in N⊕P iff for all markings m′ of N⊕P reachable from m holds: At most inner
transitions of P are enabled in m′. A silent marking m of N⊕P such that m|N is no target
marking of N, is a deadlockRM of N⊕P. P is DFRM-interacting with N iff no reachable
marking of N⊕P is a deadlockRM of N⊕P. N and P are DFRM-partners iff N is DFRM-
interacting with P and P is DFRM-interacting with N. We write DFRM(N) for the set of
all open nets DFRM-interacting with N, and DFRM for the set of all DFRM-partners.

Notice the discrimination between wanted and unwanted situations by means of N’s
target markings instead of N⊕P’s target markings like in Def. 3 and 4. Definition 5
matches our intuition in every previously mentioned example: N and P as well as N and
T are DFRM-partners, whereas all other partners are not.

4 Comparison

In this section, we shall compare Definitions 3, 4, and 5 in terms of the characterized
deadlock free partners, and the complexity of the notions. Given an open net N, the set
of open nets deadlock freely interacting with N generally differ, depending on which
definition of deadlock free interaction is employed. Every open net DFKW -interacting
with N is DFPM-interacting with N as well, the opposite is not true (see R and S in Fig.
2 for an example). An open net DFRM-interacting with N can be DFPM-interacting with
N, DFKW -interacting with N, or neither. Consider Fig. 3(a) for an illustration of above
coherences as Venn diagram.

An open net DFRM-interacting with N, which is not DFPM-interacting with N, may
seem counter-intuitive for a notion of deadlock free partners. However, Def. 5 says
DFRM-partners have to be mutually DFRM-interacting with each other, therefore every
two DFRM-partners are DFPM-partners as well. Again, this matches our intuition. Every
two DFKW -partners are DFPM-partners. The sets of all DFKW -partners and all DFRM-
partners lie diagonally: There exist DFKW -partners, which are no DFRM-partners (e.g.
the open nets N and S in Fig. 1(a) and 2(b)), and vice versa (e.g. the open nets N and T
in Fig. 1(a) and 2(c)). Figure 3(b) depicts above coherences.

All three presented formalizations differ in how complex it is to check whether two
given open nets N and P are deadlock free partners or not. Checking according to Def.
4 is more complex than according to Def. 3, as responsiveness of N and P has to be
checked additionally. Checking according to Def. 5 is more complex than according
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all partners

Q

RP

   T

S

   DFPM(N)      DFRM(N)   DFKW(N)
(a) deadlock free interaction

all partners

             DFKW     DFRM  DFPM
(b) deadlock free partners

Fig. 3. The sets of open nets deadlock freely interacting with N (Fig. 1(a)), and the sets of dead-
lock free partners.

to Def. 4, because it is more complex to check if a marking m of N⊕P is silent than
to check if m is dead. To sum up, there is a trade-off between matching our intuitive
deadlock notion and the complexity of a formalization.

5 Conclusion

We have presented two existing formalizations of when two services interact deadlock
freely, and gave an idea of their deficits in subtle situations. Our approach for overcom-
ing these deficits is a third formalization, describing deadlocks from a local point of
view rather than globally. To the best of our knowledge, this is new. Finally, we com-
pared all three formalizations, and highlighted their differences in complexity as well
as matching our intuition. Though more complex, the new formalization matches our
intuition in every case.

There exists strong theory for characterizing all deadlock free partners, based on the
two existing formalizations ([2], [6]). It is part of further work to determine if those
theory can be applied with the new formalization as well.
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Abstract. Service-oriented computing aims at composing independent
services to achieve a common goal. Although very flexible, this indepen-
dence may result in incompatibilities. A pragmatic approach to overcome
such incompatibilities offer adapters. An adapter is again a service which
reorganizes the message exchange in a service composition to avoid in-
compatibilities.
Given a set of domain-specific message transformation rules, adapters can
be generated fully automatically. This paper presents a graphical user
interface to support the systematic design of these transformation rules.

1 Introduction

Service-oriented computing [10] aims at replacing large monolithic systems by a
composition of services. By abstracting from underlying technologies and imple-
mentations, it is possible to focus on the functionality of a service and to reuse
it in other compositions. Consequently, services can be designed independently
from the compositions they are used in, which in turn allows for faster production
cycles at lower costs. A downside of this flexibility is the possible incompatibil-
ity of independently designed services. To avoid the redesign of incompatible
services, an adapter (sometimes called mediator) can resolve incompatibilities
by manipulating the communication protocol between the incompatible ser-
vices. State-of-the-art techniques [1,2,3,5,9,4,11,6] allow to generate adapters
automatically given a set of domain-specific message transformation rules.

So far, the design of such transformation rules was out of scope of most
existing adapter generation approaches, and of course transformation rules can
be formulated independently of a concrete service composition. However, it is
likely that the design of such rules can be accelerated if the services to be adapted
is taken into account. This paper follows this idea and presents an approach to
iteratively create proposals for the designer of semantic message transformation
rules. These proposals are derived by diagnosing behavioral incompatibilities.
The approach is complete; that is, if services can be adapted using some rule set,
then this set can be constructed.

The rest of this paper is organized as follows. The next section briefly sketches
the automatic generation of adapters and introduces a running example. It further
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discusses how transformation rule proposals can be derived from diagnosed
incompatibilities. Section 3 presents the main contribution of this paper, a Web-
based graphical user interface for the iterative construction of transformation
rules. Finally, Sect. 4 discusses possible future extensions and concludes the
paper.

2 Adapter generation

We shall briefly outline the basic concepts of an adapter generation algorithm
and its meaning for finding transformation rules in this section.

2.1 Synthesis using message transformation rules rules

For adapting two services A and B several approaches agree on using message
transformation rules (creating, removing, or changing messages) [1,2,3,5,9,4,11,6],
which handle semantical incompatibilities.

We concentrate on the approach of Gierds et al. [6], consisting of two: They
model transformation rules as an artifact called engine E. Then they try to
synthesize a controller C, such that the composition of A, B, E, and C behaves
according to a certain correctness criterion (e. g., deadlock freedom). The compo-
sition of E and C thus yields an adapter for A and B and ensures semantical
and behavioral correctness of the two services.

Service A Service B

Engine E

Controller C

Adapter

Fig. 1. Two services A and B and an adapter (engine E and controller C) in the middle

Figure 1 depicts a schema of this approach. The two services A and B
communicate via the adapter in the middle. As it is indicated, an adapter
comprises two parts: The engine E implements the message transformation
rules and thus ensures semantically correctness. The controller C ensures correct
behavior; that is, the correct order of applying rules and sending messages to the
services.

Figure 2 shows a small example based on open nets [7], an extension of
classical Petri nets. Interface places are positioned on the dashed border of a net.
As running example, the model of a beverage vending machine is depicted on the
left (cf. Fig. 2(a)). After receiving a Euro (MEuro), either the tea (MTeaButton)
or the coffee button (MCoffeeButton) must be pressed. Afterward the appropriate
beverage is delivered (MServedTea and MServedCoffee, resp.). On the right (2(c)),
a coffee drinker provides a Euro (DEuro), then forgets to press a button, and
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ω

MEuro

MTeaButton

MCoffeeButton

MServedTea

MServedCoffee

(a) Beverage vending ma-
chine

(b) Adapter

DEuro

DServedCoffee

ω

(c) Coffee drinker

Fig. 2. The two services to be adapted with an adapter

waits for its coffee (DServedCoffee). Obviously, this service is not compatible to
the vending machine. To overcome this incompatibility, the adapter in Fig. 2(b)
simply transforms a DEuro message to an MEuro message and MServedCoffee to
DServedCoffee, which seems obvious concerning the names. Further it creates
a MCoffeeButton message. Due to structural reduction, we may identify the
controller part only by the initially marked places, allowing each rule to be
applied exactly once.

To synthesize such an adapter automatically, the before-mentioned three rules
must be provided as input to the synthesis algorithm.

2.2 Finding additional rules

As mentioned, one of the essential parts of the adapter approach is the set of
message transformation rules. Although correct in isolation (in the example, there
exist compatible drinker and vending machine services, resp.), two services may
only be adaptable if a certain set of rules is provided. So whenever the synthesis
algorithm fails to create an adapter, this is caused by missing rules.

Previous approaches almost totally rely on Semantic Web technologies for
providing rules. We will briefly sketch an idea on how to extend the set of trans-
formation rules by behavioral diagnosis. During controller synthesis deadlocks
will be reached if no deadlock free controller exists. These deadlocks provide
valuable information, how an additional rule might look like. The setting does
not allow to change one of the services, but we are free to add as many new rules
as we like. Let m be a deadlock marking, then we can analyze which messages
remain in the engine, thus are pending and could be transformed. Further we
check whether one of the services could continue if we provided a certain message,
so we check which messages are required. A new rule then may transform pending
into required messages. Consequently, m will no longer be a deadlock marking,
because we can apply the newly added transformation rule now (which behaves
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like a transition added to a net, which is enabled by the pending messages). This
step can be repeated until we find a controller and therefore an adapter, or until
we are no longer able to add meaningful transformation rules.

For our example in Fig. 2, starting with an empty set of transformation
rules, our proposed algorithm will state that DEuro is pending (in Fig. 2(c) the
appropriate transition is activated and thus fired), MEuro is required, and thus
we may add the rule transforming MEuro to DEuro. In the next step (as shown
in Fig. 3) we will see, that MTeaButton and MCoffeeButton are required. After
providing a corresponding rule, we will see, that MServedCoffee is pending, and
DServedCoffee is required. Finally the rule set is sufficient and we gain an adapter
for our example.

In the given example the single steps are straightforward. For more complex
examples, the number of deadlocks as well as the number of details for each
deadlock grows significantly. Thus we need a good representation for this kind of
information.

3 Using the Web as graphical user interface

Interactive approaches highly benefit from a concise way of presenting information.
A user must be able to quickly access all relevant information. Graphical solutions
with means to highlight or hide information based on a user’s demands clearly
excel console applications in this point. Marlene as single purpose tool has
already been integrated into service-technology.org/live [8], which is our platform
to demonstrate the functionality of our tools and allow a user to perform more
complex tasks involving several of our tools by simply using a Web browser. The
previously described interactive approach has also been integrated there and can
be tested at the URL http://service-technology.org/live/marlene.

In an interactive approach, we do not only need to present the input and
output artifacts, but also intermediate information which shall enable the user to
make a next step. In our case, we have to list all possible suggestions for adding
new transformation rules without showing all details at once and thus confusing
the user.

Figure 3 shows the essential part for our approach: an editing field for
transformation rules and below a table with information on all deadlocks, which
may help in providing additional rules. Additionally, but not depicted here, the
services are visualized. We divide the table in the following columns:

– type might either be deadlock or a livelock (in case we want an adapter
ensuring also livelock freedom);

– the pending messages, which can be used in a rule on the left side;
– the required messages, of which at least one must be provided for resolving a

deadlock in one of the services
– the triangle button, for showing additional information on a deadlock or

livelock

http://service-technology.org/live
http://service-technology.org/live/marlene
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Fig. 3. Screenshot of interactive site

The additional information might state, that one of the services is already in
a final state thus needing no further attention, and which rules have been applied
prior to reaching a certain deadlock.

We have decided to initially show only the first line for each deadlock (the
line starting with deadlock, thus hiding all additional information at first). As
we can see in Fig. 3, providing all available information on a deadlock in a clear
way requires a lot of space. Presenting a larger number of deadlock then would
almost immediately require the user to scroll the page. This would clearly hamper
deciding which deadlock to resolve, because a direct comparison of deadlocks
would always depend on scrolling.

In our understanding, pending and required messages are the most important
information for a certain deadlock. Thus showing only this piece of information
should be sufficient in most case. By clicking the triangle at the end of a line the
user gets additional information as described above.

The user is frfee to add and change the rules arbitrarily in the text field. By
clicking Save Rules the page is updated and information based on the new rule
set are provided. Finally, if a sufficient set of rules was added, the generated
adapter is presented.
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4 Conclusion and outlook

We have presented a first idea for the interactive retrieval of transformation rules
in the setting of service adaptation. We have also focused on an appropriate
visualization of information. First tests indicate that interaction as described
here with the proposed degree of initial information offers easy access to the
approach. This of course is only a first step.

First, the algorithm for finding new transformation rules has to be described
in detail and we have to proof its feasibility in adapter generation (i. e., that
when an adapter exists, the algorithm leads to a corresponding set of rules).
Second, we have to evaluate acceptance of the Web site. Only feedback of real
users playing through real-word examples will give us valuable hints on how to
improve presentation of our tool.

Especially the order of different deadlocks might facilitate decision, which
one to resolve—the higher the position of a deadlock, the more likely it will
be considered. Here we have to find heuristics based on user behavior and its
reason to prefer certain deadlocks. Also highlighting certain situations (e. g., both
services are already in a final state, but superfluous messages must be removed)
might help a user to pick more goal leading deadlocks.

Although not having finished the approach, yet, using a Web front-end for our
prototype allows us to test our approach from the very beginning and distribute
it easily, thus gaining valuable feedback from prospective users.
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Abstract. When developing an existing service further, new functionalities can
be added and existing functionalities can be changed or removed. Consequently,
also test cases have to be added to or removed from the existing test suite. In
this paper, we present an idea how a test suite can be adjusted to these changes.
Thereby, we focus on modifications concerning the communication behavior of a
service.

1 Introduction

Testing is an effective instrument to detect errors in software. However, for thorough
testing the number of required test cases increases rapidly with growing software com-
plexity. To reduce the effort for testing, test cases are generated and executed by tool
support as much as possible.

In the paradigm of service-oriented computing (SOC) [1], modern software systems
are composed by a set of loosely-coupled and possibly geographic distributed services.
Each service implements an encapsulated, self-contained functionality and communicates
via message exchange over a well-defined interface with its partner services. In earlier
work [2] we presented a black box testing approach to test the communication behavior
for a single service.

The development of a service is rarely finished with its initial release. In most cases,
maintenance follows. This includes both, correction (i.e., fixing of discovered bugs)
and integration of enhancements and new features. To adequately test the new service
version, also the test suite must be revised: New test cases have to be added and existing
test cases may be removed. Using the updated test suite, all (new) parts of the new
version are taken into account during testing. Further, one can be sure that a failed test
case indicates a bug in the implementation and is not caused by the specified changes.

In this paper, we present an idea how a test suite, generated by our approach [2], can
be updated. For that purpose, unsuitable test cases are removed directly from the test
suite and test cases for new functionalities are created selectively. Consequently, it is
not necessary to again generate the complete test suite for a new service version. This
can be useful, because there are still some small manual steps involved which do not
need to be repeated for those test cases that can stay in the test suite. Especially, if only
small changes are specified and most parts of the test cases can remain in the test suite
the effort for test case generation can be reduced with this idea.

The rest of this paper is organized as follows: Section 2 introduces basic formalisms.
Section 3 recalls the testing approach of [2]. Section 4 describes our idea to update a
test suite for a new service version. In Sect. 5, open issues are discussed, before Sect. 6
concludes the paper.
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2 Formalization

Black box testing [3,4] means that test cases are created without consideration of
the actual code. For an automatic generation of a test case, a formal specification is
indispensable. To model the specified communication behavior of a service we use open
nets [5], a class of Petri nets. Thereby, the interface is specified by special input and
output places which represent the possible message types. In the model, we abstract
from the content of messages and focus on sending and receiving events only. They
are represented by transitions producing or consuming a token on the interface places
of the open net. Furthermore, an open net has an initial and a final marking. A final
marking distinguish desired end states from undesired deadlocks. To emphasize the data
abstraction we also speak of an abstract specification S∗ for a given service S.

Figure 1(a) shows the abstract specification Q∗ of a simple online shop Q. The shop
expects a costumer to log in and to choose one of the payment methods: cash on delivery
(cod), credit card (cc), or bank transfer (bt). However, for setting the payment method
the login must be accepted first, otherwise the login is rejected and the user has to retry
to login. The final marking of this net is the marking [ω] which only marks the place ω:
the control flow reached its end and all message channels are empty.

A partner P for a given service S is again a service that interacts deadlock freely
with S. That means, no deadlocks (except the final state) can occur in the composition
of the both services. To model the communication behavior of a partner P , we use again
open nets. Since we also abstract from the data, the net models an abstract partner P ∗

of P .
As an example we consider a partner R for the service Q (cf. Fig. 1(a)). Its abstract

version R∗ is depicted in Fig.1(b). To check deadlock freendom between Q and R it is
sufficient to compose their abstract versions Q∗ and R∗. For this purpose, we only need
to merge interface places with the same label. In the composed system, these merged

(a) Q∗ (b) R∗ (c) OGQ

Fig. 1: The open net Q∗ in (a) specifies the communication behavior of a simple online shop. In
(b) an abstract partner of Q∗ is shown and in (c) the operating guideline OGQ derived from Q∗ is
depicted.
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interfaces place become to ordinary places. In our example the composition of Q∗ and
R∗ is free of deadlocks (except the final marking).

The set of all partners of a given service S can be characterized by its operating
guideline OGS [6]. Formally, an operating guideline is an annotated service automaton.
That is a finite state automaton which edges are labeled with sending or receiving events
and states are annotated with a Boolean formula. The labels determine which events
of the partner may occur in a certain situation and the Boolean formulas defines which
combinations thereof are allowed. Each service P belonging to the set characterized by
an operating guideline OGS fulfills the following requirements: First, the reachability
graph of the abstract version P ∗ is a subgraph of OGS (including an initial state). Further,
each node n of the reachability graph satisfies the Boolean formula of its corresponding
state in OGS . The interested reader is referred to [6]. If a services P is characterized
by an operating guideline OGS then we also say: P matches with OGS . Operating
guidelines can be generated from abstract specifications using the tool Wendy1 [7].

Figure 1(c) depicts the operating guideline OGQ∗ of the abstract specification Q∗

(see Fig. 1(a)). In the graphical representation of operating guidelines, sending events
are preceded by “!” and receiving events are preceded by “?”. Initial states have an
incoming arc from nowhere. Final states are double-lined. Since the reachability graph
of R∗ is a subgraph of OGQ∗ (see the bolded part of OGQ∗ ) and the Boolean formulas
of the “touched” states are fulfilled, R is characterized by OGQ∗ ; that is, R is a partner
of Q.

3 Testing Communication Behavior

To test whether the implemented service interacts correctly with its environment we
create partner services as test cases. As they are derived from the specification they
interact by design deadlock freely with the service under test (SUT). If, however, during
testing a deadlock still occurs, we can conclude that the implementation contains (at
least) one error.

The generation of test cases for a service S bases on the operating guideline OGS .
As there is usually a high number of abstract partners characterized by OGS , it is not
recommended to take every partner for testing. But among the test cases there is some
redundancy, such that is possible to to select a subset without reducing the test suite’s
quality [2]. That means, it is still possible to find all errors, that can be found using the
whole set of (abstract) partners. After we have selected the required abstract partners
from the operating guideline we have to fill the message content with test data, and
finally, transform them into “real” services. The latter can be done automatically by
tool support, e.g. by oWFN2BPEL2 [8] for generating a BPEL process. Data are not
integrated into the concept of operating guidelines at the current state. However, data for
sending messages can be generated randomly and then easily added to an abstract test
case. Therefore, only the message types need to be respected. More sophisticated data
have to create manually.

1 Available at http://service-technology.org/wendy
2 Available at http://service-technology.org/owfn2bpel

http://service-technology.org/wendy
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Fig. 2: A graphical overview of the general procedure for generating test cases.

Figure 2 gives again a graphical overview of the general procedure of generating
test cases. First, the service specification is transformed (1) into a formal model. Based
on this abstract specification the operating guideline is constructed (2) and a set of
abstract partners is selected (3). To achieve executable test cases, the abstract partners
are enriched with data information and retranslated into real services (4). The actual test
procedure (5) can be finally sketched as follows: The service to be tested is deployed in
a testing environment together with the test suite. To process the test suite, the contained
test cases are executed one after the other. Thereby, each test case interacts as designed
with the service under test. The testing environment then is responsible for logging
and evaluating exchanged messages. We thereby assume the test environment is able to
detect whether the implementation terminates properly; for instance, whether a BPEL
process instance has completed successfully. Except the generation of test data in (4), all
steps can be executed automatically.

4 Adjust existing test suites to new specifications

As already mentioned in the introduction, it can be required to modify an existing service
from time to time. By introducing enhancements and new features the specification is
changed. This entails existing test cases to become invalid. That makes the test suite
inconclusive. Further, after adding new functionalities, there are parts in the new version
of the service which are not taken into account by the old test suite.

To ensure a thorough testing, the test suite needs to be revised. Instead of discarding
all old test cases and deriving a new test suite from the scratch, we aim to keep as much
old test cases as possible. This is desirable because the procedure for generating the
test case (see Sect. 3) is not fully automatic. Thus, this strategy helps to reduce the
manual effort. Further, it is reasonable to use the same data in the remaining test cases.
By generating test cases from scratch, these data information would be lost.

First, we describe in the following how invalid test cases can be removed from the
test suite. Afterward, we suggest how the new test cases can be found.

Making the test suite conclusive. Integrating new functionalities can change the control
flow and with it the communication behavior such that existing test cases become
invalid. This is demonstrated by the following example. Figure 3 shows a modification
Q∗

new for the specification in Fig. 1(a): If the credit card (cc) is chosen as payment
method, a voucher is sent to the customer. Now, the composition of Q∗

new and R∗ (see
Fig. 1(b)) contains a deadlock because the voucher cannot be received from R∗. When
testing the new version of the simple online shop with R the test fails even through the
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Fig. 3: An modified specification Q∗
new for the simple online shop, cf. Fig.1(a).

implementation is correct. In converse, if the implementation is incorrect the test can
succeed.

To achieve a conclusive test suite for the new specification we discard the invalid test
cases. They can be detected using the matching algorithm for operating guidelines (cf.
Sect. 2). For each test case we check whether it matches with the operating guideline of
the new specification. This can be done using the tool Cosme3. Non-matching test cases
are invalid and have to be removed. After this procedure we have a conclusive test suite.

Adding missing test cases. To cover new parts during testing, test cases have to be
added to the test suite. For a systematic approach we make the following considera-
tion: Let OGS be the operating guideline of a specification and OGSnew

the operating
guideline of the new specification. Let TS be the set of test cases characterized of OGS

and TSnew be the set of the test cases characterized by OGSnew . When calculating the
difference TSnew \TS we get exactly the set of test cases for testing the new parts.

Unfortunately, the result of the difference operation cannot be represented as an
operating guideline. Instead, it can be represented as an extended annotated service
automaton (EAA for short) [9]. This kind of finite automata extends annotated service
automata (cf. Sect. 2) by a global Boolean formula. It constrains the combinations of
states in the EAA that have to be “touched” during matching. Further, the structure of
the Boolean formulas in the states is not restricted as much as in an operating guideline.

Formally, an operating guideline can easily be transformed into an EAA by setting
the global Boolean formula to true; that is, there are no additional requirements for the
states. For EAAs all basic set operations (including the difference) are defined [9] and
supported by the tool Safira4 [10].

Thus, we are able to calculate the set TSnew
\TS based from the corresponding

operating guidelines. The result is an EAA that characterizes the test cases to be added.

3 Available at http://service-technology.org/cosme
4 Available at http://service-technology.org/safira

http://service-technology.org/cosme
http://service-technology.org/safira
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In the next step, the (abstract) test cases needs to extract from the EAA and transformed
into executable test cases.

5 Future Work

The set of test cases to be added, can be only represented by EAAs, an extension of
operating guidelines. In contrast to operating guidelines, the extraction of test cases from
an EAA is a time-consuming task. In [9] we proved that this problem is NP-complete
in general. This is caused by the more complex Boolean formula (in comparison to the
operating guidelines). In future work, we intend to find a good heuristic such that the
selection is practicable for EAAs. Thereby, it can be useful that the EAA is resulted
by applying the difference operation to two operating guidelines. Thus, the boolean
formulas in the result are less complex, than it could be in an arbitrary EAA.

6 Conclusion

In this paper, we presented a concept to manage test suites for services in an iterative
development process. With the contained test cases the communication behavior can be
tested thoroughly. We demonstrated how invalid test cases can be detected and removed
from the test suite and we principle show how new test cases can be added. Thereby,
most steps are supported by existing tools.
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Abstract. This paper introduces the Petri Net API, a C++ library of
Petri net-related functions. The Petri Net API is currently used in more
than a dozen Petri net tools, ranging from compilers to verification tools.

1 Introduction

Algorithms to reason about the correctness of distributed systems usually have
devastating worst-case complexities. Nevertheless, experiences in the field of
model checking show that the feared state space explosion can be alleviated by
state space reduction techniques or symbolic representations [5]. Therefore, novel
techniques to verify correctness often require a proof-of-concept implementation
to conduct experiments or to demonstrate feasibility on realistic input data.
We recently investigated the academic software development process [14] and
claimed that single purpose tools have the right granularity to be implemented
using rapid prototyping techniques. A prerequisite for this is the encapsulation of
frequently recurring functionality into reusable libraries to avoid an unnecessary
“reinvention of the wheel” and to minimize the amount of untested ad-hoc code.

This paper introduces with the Petri Net API such a reusable library. It was
originally derived from the back-end of the compiler BPEL2oWFN [12] and offered
simple net management functionality and the file output in several formats. In
the last years, the functions of the Petri Net API have been revised and collected
into a consistent C++ library. The main focus of the API is to organize Petri nets,
rather than to implement verification algorithms (i.e., to build and analyze state
spaces) or to provide a graphical front-end. We claim that these tasks should be
part of a dedicated tool rather than a library that is designed to be shared by
several tools. As of September , the Petri Net API is used by  tools, see
http://service-technology.org/tools for an overview.

The rest of this paper is organized as follows. The next section presents the
features that are implemented by the Petri Net API. Then Sect. 3 shows how
the Petri Net API can be used in novel tools, discusses its availability, and the
integration in third-party tools. Section 4 presents a small case study in which
the Petri Net API is used to perform some structural modifications to check a
correctness notion for workflow nets. Section 5 briefly compares the Petri Net API

to existing frameworks, before Sect. 6 concludes the paper.

mailto:pnapi@service-technology.org
http://service-technology.org/tools
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2 Features

The Petri Net API implements the following features to organize Petri nets.

– Petri net creation and manipulation (creation, modification, deletion, copying,
and search of nodes and arcs),

– file import and export of Petri nets in various file formats (PNML [9], LoLA [22]
file format, Fiona [15] open net format, Woflan [21] workflow nets),

– generation of graphical representation using Graphviz dot,
– efficient application of structural reduction rules [17,19,18],
– structural checks (e.g., workflow net structure, free-choice property),
– import from automata (using the region theory tools Petrify [6] or Genet [3]),
– export to automata,
– support for open nets [23] (ports, net composition)
– organization of final markings, and
– support for role annotations.

The Petri Net API can be easily extended to new features. As of now, we only
moved features from a tool into the Petri Net API when this feature is used by
at least one other tool. This avoids a cluttered API full of too specific functions.
At the same time, it ensures a high test case coverage of the features.

3 Usage

Integration as C++ library. The API itself is written in C++ and can be
integrated into other tools with no more effort than including a header file.
Listing 1.1 shows example code to read a file in PNML format, structurally reduce
it using the Murata rules [17], and output a graphical representation.

Listing 1.1. Example using the Petri Net API as C++ library.

#include <pnapi/pnapi.h>
using namespace pnapi;

int main() {
// read PNML net from file
std:: istream in("file.pnml", std:: ios_base ::in);
in >> io::pnml >> net;

// apply reduction rules
net.reduce(PetriNet :: SET_MURATA);

// output the Petri net in Graphviz dot format
std::cout << io::dot << net;

return 0;
}

The Petri Net API complies with the 1998 ANSI/ISO C++ standard and
can be compiled on many platforms, including Microsoft Windows, Sun Solaris,
GNU/Linux, Mac OS X, and other UNIX-based operating systems.
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Command-line tool. Beside the direct integration, we implemented a command-
line tool petri (part of the Petri Net API distribution) for the most common
operations. The call

petri *.pnml --input=pnml --reduce=murata --output=png

performs a similar transformation as the code in Listing 1.1, but is also able to
read multiple files and to directly create graphics files. This front-end tool is very
useful in shell scripts to process large libraries of nets.

Integration into third-party tools. The Petri Net API is currently indirectly
(as front-end tool or library) integrated into the business process modeling tool
Oryx [7], the process mining toolkit ProM [20], and the YAWL workflow editor [2].
In all tools, the Petri Net API organizes the exchange of Petri Net models in
PNML format.

3.1 Availability

The Petri Net API is free open source software, licensed under the GNU LGPL 3.1

The most recent version together with its manual can be downloaded at
http://service-technology.org/pnapi.

4 Case study: Checking relaxed soundness

To demonstrate the usage of the Petri net API in a realistic setting, we discuss a
small case study in this section. We show how relaxed soundness [8], a correctness
property of workflow nets [1], can be translated into a series of reachability
problems that can be checked by LoLA [22].

Relaxed soundness requires for every transition of the workflow net to occur
in at least one successful firing sequence from the initial marking [i] to the final
marking [o]. Dehnert and Aalst [8] provided a verification algorithm for this
property in which builds the state space of the workflow net and then analyzes
its runs. This algorithm is implemented in the tool Woflan [21]. It is, however,
not clear whether state space reduction techniques are applicable.

Alternatively, we can reformulate the above requirement in a reachability
problem as follows. Given a workflow net N and a transition t of N , we can
construct a Petri net Nt which only reaches a final marking iff N reaches a final
marking by a transition sequence which includes t. We create Nt by adding to
N a transition t′ and two places p1 and p2. Figure 1 illustrates the construction.
Thereby, p1 is marked as long t has not yet fired, and p2 is marked after t has
fired at least once. We then can check wether the marking [o, p2] is reachable
from the initial marking [i, p1]. If this check succeeds for all nets Nt, we can
conclude relaxed soundness of N .

1 GNU Lesser General Public License, http://www.gnu.org/licenses/lgpl.html

http://service-technology.org/pnapi
http://www.gnu.org/licenses/lgpl.html
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t

(a) subnet of N
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t

(b) subnet of Nt

Fig. 1. Transforming relaxed soundness into a reachability problem.

Listing 1.2. Construction of Nt using the Petri Net API.

#include <pnapi/pnapi.h>
using namespace pnapi;

void constructAnalysisNets(PetriNet &N) {
// iterate transitions
PNAPI_FOREACH(trans , N.getTransitions ()) {

// create copy of the net
PetriNet Nt(N);

// create analysis subnet for current transition (see Fig. 1)
Place &p1 = Nt.createPlace ();
Place &p2 = Nt.createPlace ();
Transition *t = Nt.findTransition ((* trans)->getName ());
Transition &tprime = Nt.createTransition ();

// connect analysis subnet
PNAPI_FOREACH(p, t->getPreset ()) {

Nt.createArc (**p, tprime);
}
PNAPI_FOREACH(p, t->getPostset ()) {

Nt.createArc(tprime , **p);
}
p1.setTokenCount (1);
Nt.createArc(p1 , *t);
Nt.createArc (*t, p2);
Nt.createArc(p2 , tprime);
Nt.createArc(tprime , p2);

// write nets into LoLA files
std:: ofstream o;
o.open("N_" + (*trans)->getName () + ".lola", std:: ios_base ::trunc);
o << pnapi::io::lola << Nt << std::endl;
o << "FORMULA (" << pnapi ::io::lola << Nt.getFinalCondition ()

<< " AND " << p2.getName () << " = 1 )" << std::endl;
}

}

Listing 1.2 shows a function implementing this construction. It assumes a
Petri net N is given and writes, for each transition t of N , a Petri net Nt in
LoLA file format together with a formula expressing the final marking to disk.

The implementation is straightforward and is — due the encapsulation of the
Petri net functions — nearly on a pseudocode level. The Petri net model checker
LoLA can read these generated files and check whether the included formula can
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be satisfied by a reachable marking. The described transformation and check is
implemented as service-oriented extension of the business process editor Oryx [7].

5 Related work

The idea to collect Petri net-related functions in a library or toolbox is not
new (see [16,4] and the Petri Net World Website2 listing hundreds of tools). We
discuss two prominent examples.

The Petri Net Kernel [11] was designed as a modular kernel that is designed
to integrate Petri net algorithms. Petri net types are not fixed, but can be
freely defined and extended. Similarly, the PNML framework [10] is a reference
implementation of the PNML standard. It is designed to facilitate import and
export of PNML standard compliant files and provides a complex meta model to
support different kinds of Petri nets. Again, its focus lies on flexibility.

In contrast, the Petri net API has a fixed feature set and new features are only
added when they are also used by other tools. Furthermore, it was not originally
designed as a generic Petri net framework, but was created by “outsourcing”
Petri net-related code from actual tools. Finally, it is implemented in C++ due to
performance considerations.

6 Conclusion

This paper introduced the Petri Net API, a library of Petri net-related functions.
We observed that the Petri Net API greatly simplified rapid prototyping. The
encapsulation of Petri net-related functions lead to smaller tools which could
focus on their main functionality; see [13] for a discussion. After four years of
development and a consolidated feature set, we claim that this API is useful to
other researchers in the Petri net community. The main advantage of the Petri
Net API is that its implemented functions are heavily used for several years and
thus has a well-tested and justified feature set.

Acknowledgments. The authors thank Christian Gierds, Dennis Reinert, Georg
Straube, Robert Waltemath, and Martin Znamirowski for their work on earlier
versions of the Petri Net API.
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Zusammenfassung Offene Netze sind eine petrinetzbasierte formale Beschrei-
bung von Services. Zwei offene Netze sind füreinander Partner, wenn ihre Kom-
position aus jedem erreichbaren Zustand einen Endzustands erreichen kann. Die-
ser Beitrag erweitert das Konzept der offenen Netze auf High-Level Petrinetze,
um die Verarbeitung von Daten in Services darzustellen. Es werden exemplarisch
Partner offener High-Level Netze und die in ihnen vorkommenden Ausdrucks-
mittel untersucht.

1 Einleitung

Service Oriented Computing (SOC) beschreibt ein Paradigma zum Aufbau verteilter
Systeme aus Services. Ein Service ist eine eigenständige funktionale Einheit, die durch
asynchrone Nachrichtenkanäle mit anderen Services kommunizieren kann. Offene Net-
ze [2,3] sind ein Mittel zur formalen Beschreibung von Services. Mit offenen Netzen
lassen sich Kommunikation und Komposition von Services auf natürliche Weise im
Petrinetzkalkül ausdrücken.

Ein offenes Netz ist ein Petrinetz mit speziell ausgezeichneten Sende- und Emp-
fangsplätzen, welche Puffer für asynchrone Nachrichtenkanäle repräsentieren. Abb. 1
zeigt ein offenes Netz N1 mit einem Empfangsplatz a und einem Sendeplatz b. Wir ver-
zichten im Folgenden auf eine formale Definition und verweisen für technische Details
auf [1,2]. Zwei offene Netze N1 und N2 heißen (syntaktisch) kompatibel, wenn jeder
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Abbildung 1: Kompatible offene Netze und ihre Komposition

Sendeplatz eines Netzes ein Empfangsplatz des jeweils anderen Netzes ist. Kompati-
ble offene Netze werden komponiert, indem gleichnamige Empfangs- und Sendeplätze
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verschmolzen werden. Die verschmolzenen Plätze werden dabei zu internen Plätzen
der Komposition N1⊕N2. Die Komposition ist ein geschlossenes Netz ohne Sende- und
Empfangsplätze.

Für ein einzelnes offenes Netz stellt sich die Frage nach seiner Bedienbarkeit: Gege-
ben ein offenes Netz N, gibt es ein kompatibles offenes Netz S, so dass die Kompositi-
on N⊕S aus jedem erreichbaren Zustand einen ausgezeichneten Endzustand erreichen
kann? Eine Ursache von Nichtbedienbarkeit können in der Komposition erreichbare
Deadlocks sein. Bedienbarkeit ist ein Grundproblem der Controllersynthese und wur-
de im Kontext von offenen Netzen z. B. in [2,3] untersucht. Der den Analyseverfahren
zugrunde liegende Formalismus berücksichtigt die in den Nachrichten enthaltenen Da-
tenwerte bisher nicht explizit. Offene Netze, die große oder gar unendlich große Do-
mänen verwenden, können mit rechnergestützten Methoden nur schwer oder gar nicht
analysiert werden.

Dieser Beitrag verfolgt den Ansatz, Datenwerte explizit in den Formalismus der of-
fenen Netze mit einzubeziehen. Dafür erweitern wir das Konzept der offenen Netze auf
High-Level Petrinetze. Datenwerte werden in einem High-Level Petrinetz durch farbige
Marken dargestellt. Da die im Folgenden behandelten Probleme weitgehend unabhän-
gig vom verwendeten High-Level Petrinetzformalismus sind, soll die Definition hier
nur kurz skizziert werden:

Ein High-Level Petrinetz besteht aus einer Menge von Plätzen P, einer Menge von
Transitionen T , einer Menge F von Kanten und einer Anfangsmarkierung m0. Jedem
Platz p ist eine eine Menge von Werten (seine Domäne) dom(p) zugeordnet. Jeder
Transition t ist ein Guard g(t) und eine Menge var(t) von Schaltvariablen zugeordnet,
wobei jede Variable x ebenfalls eine Domäne dom(x) hat. Die Kanten sind mit Termen
über den Schaltvariablen beschriftet. Eine Markierung m ist eine Funktion, die jedem
Platz p eine Multimenge von Elementen aus dom(p) zuweist. Eine Funktion β , die je-
de Variable x ∈ var(t) einer Transition t mit einem Element e ∈ dom(x) belegt, heißt
Schaltmodus von t. Beim Schalten einer Transition in Modus β werden die Kantenbe-
schriftungen mit β ausgewertet und entsprechend Marken von Vorplätzen konsumiert
bzw. auf den Nachplätzen produziert. Voraussetzung zum Schalten ist, dass der Guard
für β zu true auswertet.

Der folgende Abschnitt erläutert zunächst den Begriff des Partners und zeigt exem-
plarisch einige Partner von offenen High-Level Petrinetzen. Es wird untersucht, wie sich
die Verwendung von Variablen in einem offenen Netz auf die Struktur seiner Partner
auswirkt. Es zeigt sich, dass sich selbst bei Verzicht auf Ausdrucksmittel wie Guards,
Funktionssymbole und Konstanten nicht-triviale Abhängigkeiten ergeben, die ein Part-
ner berücksichtigen muss.

2 Partner eines datenverarbeitenden Services

Wir betrachten im Folgenden die Partner von offenen High-Level Netzen. Zwei offene
Netze mit jeweils ausgezeichneten Mengen von Endmarkierungen nennen wir Partner,
wenn ihre Komposition schwach terminiert (vergleiche hierzu Def. 4 in [2]).

Definition 1 (Partner). Ein (geschlossenes) Petrinetz terminiert schwach, wenn von je-
der erreichbaren Markierung aus eine Endmarkierung des Netzes erreichbar ist. Seien
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N,S kompatible offene Netze. Wir nennen S einen Partner von N, wenn die Komposition
N⊕S schwach terminiert. Die Menge der Partner von N notieren wir mit Partner(N).

Die Endmarkierungen der Komposition ergeben sich kanonisch aus den Endmarkierun-
gen der komponierten offenen Netze. Man beachte, dass N⊕S nicht schwach terminiert,
wenn N⊕S einen Deadlock enthält. Das folgende Beispiel dient zunächst der Erläute-
rung des Partnerbegriffs. Die einzige Endmarkierung der offenen Netze bestehe jeweils
aus einer Marke auf dem Platz p f in bzw. r f in. Die Domäne jedes Platzes sei entwederN
oder {•}, wobei • das Symbol für eine Marke ist, die keinen Wert trägt. Jede Variable
habe die DomäneN.

Beispiel 1 Das offene Netz N aus Abb. 2 setzt eine Nachrichtenweiterleitung um. Die
von N auf a (durch Schalten von t0) empfangene Nachricht wird unverändert (durch
Schalten von t1) auf b zurückgeschickt. Das offene Netz S1 ist ein Partner von N. S1
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Abbildung 2: Ein offenes Netz N und kompatible offene Netze

sendet zunächst durch Schalten von s0 eine Nachricht auf a mit dem Wert 3. Da N auf
b den selben Wert 3 sendet, kann auch s1 schalten. Beide offene Netze erreichen somit
ihre Endmarkierungen [p f in] und [r f in]. Daher terminiert N⊕ S1 schwach. Das offene
Netz S2 ist ebenfalls ein Partner von N. Es kann alternativ zum Wert 3 auch den Wert
4 senden und und diesen anschließend empfangen. Das offene Netz S3 ist dagegen kein
Partner von N. Es sendet den Wert 3 auf a, kann auf b aber nur Nachrichten mit Wert
4 empfangen. Da N auf b jedoch den Wert 3 sendet, kann s1 nicht schalten und die
Endmarkierung [r f in] von S3 wird nicht erreicht. Das offene Netz S4 ist ein Partner von
N. Es wählt zunächst nichtdeterministisch eine natürliche Zahl als Belegung für x und
sendet diese auf a. Anschließend empfängt es einen beliebigen Wert auf b (unabhängig
davon, ob dieser gleich dem gesendeten ist) und wechselt in seine Endmarkierung [r f in].
S5 verhält sich auf die gleiche Weise, verlangt jedoch, dass der auf b empfangene Wert
gleich dem auf a gesendeten Wert sein muss. S5 ist in diesem Sinne präziser als S4:
Beide offene Netze sind gleichermaßen Partner von N, jedoch lässt die Struktur von
S5 einen genaueren Rückschluss auf die Funktionsweise von N zu. Aus S4 kann man
nicht erkennen, dass der von N auf b gesendete Wert stets gleich dem von N auf a
empfangenen Wert ist.

Das nächste Beispiel zeigt ein für High-Level Netze spezifisches Phänomen auf.
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Beispiel 2 Das offene Netz N′ in Abb. 3 hat die gleiche Struktur wie S2 aus Abb. 2. Es
ähnelt dem offenen Netz N aus Abb. 2, jedoch sind Eingabe und Ausgabe vertauscht.
Trotz dieses scheinbar geringen Unterschieds verfügt N′ über zwei entscheidende Aus-
drucksmittel, über die N nicht verfügt:

t0

t1

pfin

p1

p0

a

b

x

x

x

x

(a) N′

s0

s1

rfin

r1

r0

a

b

x

x

x

x

(b) S′1

s0

s1

rfin

r1

r0

a

b
y

x

(c) S′2

s0

s1

rfin

r1

r0

a

b

3

3

(d) S′3

Abbildung 3: Ein offenes Netz N′ und kompatible offene Netze

1. t0 ist eine erzeugende Transition, d. h. sie führt einen neuen Wert in das Netz ein.
Die Variable x ist beim Schalten von t0 nicht gebunden an den Wert einer Marke
auf einem Eingangsplatz. Vielmehr wird x nichtdeterministisch an einen beliebigen
Wert seiner Domäne dom(x) gebunden. Im Unterschied zu N, wo t0 einen auf a
bereits vorhandenen Wert auf p1 lediglich verschiebt, wird in N′ auf den Plätzen p1
und a ein Wert neu erzeugt.

2. t1 führt einen Test auf Gleichheit aus. t1 kann nur dann schalten, wenn auf p1 und b
Marken mit gleichen Werten liegen. Somit bestimmt der von der Umgebung auf b
gesendete Wert direkt, ob N′ seine Endmarkierung [p f in] erreichen kann oder nicht.

Über einen Partner von N′ können wir folgern: Der vom Partner auf b gesendete Wert
darf nicht unabhängig sein vom auf a empfangenen Wert. Vielmehr muss ein Partner
Sorge dafür tragen, dass der von ihm auf b gesendete Wert gleich dem von ihm auf
a empfangenen ist. Aus diesem Grund ist S′1 ein Partner von N′, S′2 jedoch nicht. S′3
berücksichtigt im Unterschied zu S′2 die Gleichheit von empfangenem und gesendeten
Wert, deckt aber nur einen einzigen Wert aus dom(x) ab. Daher ist s0 für die meisten
auf a empfangbaren Werte nicht aktiviert und S′3 infolgedessen kein Partner von N′.

Da dom(x) =N eine unendlich große Menge ist, muss jeder Partner ebenfalls über
ein Ausdrucksmittel verfügen, das einen unendlich großen Wertebereich abdeckt. Diese
Folgerung formulieren wir wie folgt:

Vermutung 1. Jeder Partner von N′ enthält eine Kante, die mit einer Variablen beschrif-
tet ist, deren Wertebereich unendlich groß ist.

Eine weitere entscheidende Beobachtung ist, dass ein Partner offenbar gewisse Abhän-
gigkeiten zwischen gesendeten und empfangenen Werten einhalten muss. Augenschein-
licher Verursacher dieses Phänomens ist die Transition t1. Diese ist eine datenabhängige



158

x

x

(a)

x y

x

(b)

x y

x

[x=y]

(c)

3

x

(d)

x x

x

(e)

Abbildung 4: Datenunabhängige Transitionen: (a) - (b). Datenabhängige Transitio-
nen: (c) - (e).

Transition. Wir nennen eine Transition datenabhängig, wenn die Entscheidung, ob sie
schalten darf, von den Werten der Marken auf ihren Vorplätzen abhängt. Umgekehrt
ist eine Transition datenunabhängig, wenn die Entscheidung nur von der Anzahl der
Marken auf den Vorplätzen abhängt. Die Werte der produzierten Marken dürfen dage-
gen sehr wohl von den Werten der konsumierten Marken abhängen. Abb. 4 zeigt einige
datenabhängige und -unabhängige Transitionen. Transitionen mit Guards sind im all-
gemeinen datenabhängig. Es ist offensichtlich, dass eine datenunabhängige Transition
genau dan schalten kann, wenn sie im Skelett des Netzes schalten kann.

Das nächste Beispiel zeigt, dass jedoch auch Partner, die keine datenabhängige
Transition enthalten, Abhängigkeiten zwischen Datenwerten berücksichtigen müssen.
Auch dies steht, wie im vorangehenden Beispiel, in engem Zusammenhang zur Werter-
zeugung.
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Abbildung 5: Ein offenes Netz N′′ und kompatible offene Netze

Beispiel 3 Das Netz N′′ aus Abb. 5 empfängt zunächst zwei Werte auf a1 und a2 und
trifft anschließend eine nichtdeterministische Entscheidung: Es wird eine Marke entwe-
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der (a) auf p5 oder (b) auf p6 produziert. Diese Wahl wird der Umgebung kommuniziert,
indem entweder (a) der auf a1 empfangene Wert oder (b) der auf a2 empfangene Wert
auf b gesendet wird. N′′ erwartet anschließend (a) eine Nachricht auf c1 oder (b) eine
Nachricht auf c2. Ein Partner von N′′ darf niemals zwei gleiche Werte auf a1 und a2
senden. In diesem Fall sind die beiden Fälle (a) und (b) anhand der auf b empfangenen
Nachricht nicht unterscheidbar und der Partner kann nicht wissen, ob N′′ eine Antwort
auf c1 oder c2 erwartet. Der Guard [x 6= y] an Transition s1 in S′′3 ist also zwingend
erforderlich, um zu verhindern, dass N′′ möglicherweise einen Deadlock erreicht. Auf-
grund des Guards ist s1 eine datenabhängige Transition. Ebenfalls datenabhängig sind
jeweils die Transitionen s2 und s3 in S′′1 sowie s3,s4 in S′′3 , welche eine Fallunterschei-
dung abhängig vom auf b empfangenen Wert treffen. Wir gelangen zu der folgenden
Vermutung:

Vermutung 2. Jeder Partner von N′′ enthält mindestens eine datenabhängige Transition.

Diese Folgerung ist bemerkenswert, da N′′ selbst weder datenabhängige noch erzeugen-
de Transitionen enthält. Die Partner verwenden also Ausdrucksmittel, die in N′′ nicht
vorkommen: S′′1 verwendet Konstanten, S′′3 einen Guard. N′′ verwendet weder Konstan-
ten noch Guards.

3 Schlussfolgerungen und Ausblick

Die untersuchten Beispiele zeigen, dass selbst bei beschränkten Ausdrucksmitteln (nur
Variablen, keine Guards) vergleichsweise komplexe Anforderungen an Partner eines of-
fenen Netzes entstehen. Insbesondere zeigt Beispiel 3, dass jeder Partner eines offenen
Netzes unter Umständen Ausdrucksmittel verwendet, die im offenen Netz selbst nicht
vorkommen. Dies ist vor allem für das Problem der Partnersynthese wichtig. Offen ist,
welche Typen von Transitionen hinreichen, um jeden Partner eines offenen Netzes, dass
keine datenabhängigen Transitionen enthält, zu beschreiben. Ebenfalls offen ist, welche
Techniken zum Beweis der aufgestellten Vermutungen notwendig sind.
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Prüfer, Robert, 16

Rohr, Christian, 88

Schneider, Christoph, 22
Schwarick, Martin, 80
Simon, Jochen, 106
Sura, Christian, 148

Wagner, Christoph, 154
Wehler, Joachim, 22
Wimmel, Harro, 112, 118
Wolf, Karsten, 118, 124

Zaitsev, Dmitry, 1


