
Universal Inhibitor Petri Net

Dmitry Zaitsev

International Humanitarian University

Department of Information Technology

Fontanskaya Doroga st., 33, Odessa 65009, Ukraine

http://member.acm.org/~daze

Abstract. The universal inhibitor Petri net was constructed that executes an

arbitrary given inhibitor Petri net. The inhibitor Petri net graph, its marking and

the transitions firing sequence were encoded as 10 scalar nonnegative integer

numbers and represented by corresponding places of universal net. The

algorithm of inhibitor net executing that uses scalar variables only was

constructed on its state equation and encoded by universal inhibitor Petri net.

Subnets which implement arithmetic, comparison and copying operations were

employed.

Keywords: universal inhibitor Petri net, universal Turing machine, encoding,

algorithm

1 Introduction

It is known, that inhibitor, synchronous, priority and other extended Petri net classes

constitute a universal algorithmic system [1,2]. For such universal algorithmic

systems as Turing machines, there are known examples of universal Turing machine

construction [3]. In this connection it is of a definite interest the construction of a

universal Petri net which executes an arbitrary given Petri net that is the goal of the

present paper.

2 The Concept of a Universal Petri Net

The universal net is constructed in the class of inhibitor Petri nets [1,2], the

corresponding universal inhibitor Petri net is denoted as UIPN. Considering

nondeterministic character of Petri net dynamics the most close analog is

nondeterministic Turing machine [3].

As it is of interest the constructing of the universal Petri net with a fixed structure,

the only way of input and output information representation is the marking of a fixed

number of definite UIPN places. Therefore, it is necessary to give rules of a biunique

encoding of Petri net graph and its marking by a fixed quantity of nonnegative integer

numbers. Let there are given the corresponding encoding rules and sXIPN is the code

of Petri net XIPN graph and sQXIPN is the code of the marking QXIPN.

The concept of reachable marking in Petri net implies the existence of the

corresponding enabled sequence of transitions firing [1,2]. But the usage of only

marking QXIPN in the definition of UIPN does not guarantee the obtaining of all the

enabled sequences of transitions firing of the net XIPN. Let definite rules of the

transitions firing sequences encoding are given and sZQXIPN is a code of the enabled

transitions firing sequence ZQXIPN which moves Petri net XIPN from marking

Q0XIPN to marking QXIPN. Then the functioning of UIPN can be represented as the

scheme shown in fig. 1.

Fig. 1. The scheme of universal inhibitor Petri net UIPN functioning.

Definition 1. Petri net UIPN is a universal inhibitor Petri net if and only if for an

arbitrary given inhibitor Petri net XIPN and its initial marking Q0XIPN the net UIPN

stops in the marking (sQXIPN,sZQXIPN), where marking QXIPN is reachable in

XIPN with the transitions firing sequence ZQXIPN and any marking

(sQXIPN,sZQXIPN) which UIPN stops in is a code of a marking QXIPN reachable in

XIPN from initial marking Q0XIPN with the transition firing sequence ZQXIPN.

The requirement of the UIPN stopping possibility even in case of a nondead

marking QXIPN of the net XIPN is connected with the provisioning the checkpoint

(observance) of any reachable marking (and transitions firing sequence) and

abstracting from the implementation of UIPN; otherwise it is necessary to add some

extra restrictions for the exclusion out of the observance the intermediate markings of

UIPN.

3 Formal Representation of Inhibitor Petri Net

Graph of inhibitor Petri net [1,2] is a four-tuple where

 is a finite number of nodes named places, is a finite

number of nodes named transitions and the mappings and

 define the input and output arcs of transitions correspondingly together

with their multiplicity, is the set of nonnegative integer numbers; zero value of

mappings denote the absence of the arc, nonzero – the arc multiplicity, the

special value denotes the inhibitor arc. The mappings can be represented by the

corresponding matrices: и .

The state of net is named a marking and represented by the mapping ,

that gives the number of dynamic elements – tokens within places of net. Inhibitor

Petri net [1,2] is a couple where is the net graph and – its initial

marking. The marking can be represented by the corresponding vector:

XIPN

Q0XIPN

UIPN

QXIPN

ZXIPN

. Thus, the inhibitor Petri net is given by the pair of numbers, pair of

matrices and a vector: N=(.

The dynamics of inhibitor net constitutes a step-by-step process of its marking

transformation as a result of transitions firing [1,2] and can be formally represented

by the following system:

 (1)

The first line of the system (1) describes the marking transformation at the transition

 firing; the function in the second line defines the transition enabling

condition at the current step , the third line defines nondeterministic choice of the

firing transition out of the set of enabled transitions, the fourth line gives the order

of steps sequence; auxiliary mappings and serve for defining the marking

decrement and inhibitor arc recognition respectively.

4 Encoding of Inhibitor Petri Net

In the present section a representation of encoding of inhibitor Petri net, its current

marking and corresponding transitions firing sequence is obtained in the form of the

marking of 10 special places of universal net UIPN (fig. 2). The examples of nets

encoding are shown in Appendix A.

4.1 Encoding of a Vector

Let is a vector (line), containing nonnegative integer elements; suppose that

elements indexing is started from zero. Let also the following value is calculated

The vector encoding function is defined as

Statement 1. The vector encoding function is injective.

The corresponding decoding function is represented as

Inherently, the defined encoding is the form of numbers representation in the radix

notation with the radix .

The encoding can be implemented recursively

 (2)

where the code of the vector equals to .

The decoding can be implemented recursively also

.
(3)

4.2 Encoding of a Matrix

Let is a matrix with nonnegative integer values of elements; suppose that

elements indexing is started from zero. Let also the following value is calculated

While encoding, let us represent the matrix as a vector with the expansion on lines.

Then the matrix is encoded as

Statement 1. The matrix encoding function is injective.

The corresponding decoding function is represented as

The encoding can be implemented recursively

(4)

where the code of the matrix equals to .

The decoding can be implemented recursively also

.

(5)

4.3 Encoding of Inhibitor Petri Net Graph

The graph is represented by the pair of matrices and . Usually the zero value of

the matrix element indicates the absence of the corresponding arc, nonzero – its

multiplicity. The representation of inhibitor arcs of matrix require supplementary

agreements to avoid negative values. Let is the multiplicity of arc, then for its

representation the value is used; the value of 1 is reserved for the inhibitor arc

representation.

It is reasonable the separate encoding according to (4) and storing in separate

places the codes of matrices and , as well as the corresponding values of . For

the storing of the encoded Petri net graph, 6 corresponding places with names , ,

, , , are used shown in fig. 2 which marking contains the values , ,

, , , respectively.

4.4 Encoding of Marking

The marking of a Petri net containing places is given by the vector of size

with the nonnegative integer components . For the storing of the marking

encoded according to (2), 3 places with the names , , are used shown in fig. 2

which marking contains values , , respectively.

4.5 Encoding of the Transitions Firing Sequence

The transitions firing sequence of length is represented by the vector of size

with nonnegative integer components , where is the number of transition

firing on the step . For the storing of the encoded according to (2) sequence, 3 places

with the names , , are used shown in fig. 2 which marking contains values ,

, respectively.

Fig. 2. The representation of the Petri net and transitions firing sequence encoding.

Note that places , are used as the parameters for the encoding (decoding) the Petri

net graph, marking and transitions firing sequence.

4.6 Encoding of the Enabled Transitions Set

The enabled transitions set of Petri net is auxiliary information for the

nondeterministic choice of the firing transition on the current step. For

the representation of the enabled transitions set, the vector of size is used which

components are the enabling indicators of the corresponding transitions

n

n

rB

rB

sD

sD

rD

rD

m

m

sB

sB

sQ

sQ

rQ

rQ

sZ

sZ

 k

 k

, calculated according to (1). Then for the encoding of , the rules of the

vector encoding (2) are applied at .

5 Algorithm of Inhibitor Petri Net Executing

On the system (1) according to the chosen way of the encoding of Petri net graph,

marking and transitions firing sequence let us construct the algorithm AUIPN of

inhibitor Petri net executing using C-like pseudo language:

void AUIPN()

{

 uint u, l;

 inputXIPN();

 k=1; sZ=0;

 while(NonDeterministic())

 {

 CheckFire(&u);

 if(u==0) goto out;

 PickFire(u, &l);

 Fire(l);

 mul_add(&sZ,n,l-1);

k++;

 }

out: outputXIPN();

}

The following variables are used: u – the code of enabled transitions indicator, l – the

number of the firing transition, k – the number of the current step; procedures:

CheckFire – checking the transitions enabling conditions, PickFire – the firing

transition choice, Fire – the firing of the transition; NonDeterministic –

nondeterministic choice of a number belonging to the set . The algorithms of the

auxiliary procedures mod_div, mul_add are the following:

void mod_div(&m,&x,y)

{

 (*m) = (*x) mod y;

 (*x) = (*x) div y;

}

void mul_add(&x,y,z)

{

 (*x) = (*x) * y + z;

}

The algorithm of the procedure CheckFire is the following:

void CheckFire(uint *u)

{

 uint i, j, qj, bij, ui, uij;

 uint sB1, sQ1;

 sB1=sB; &u=0;

 for(i=n; i>0; i--)

 {

 sQ1=sQ;

 ui=1;

 for(j=m; j>0; j--)

 {

 mod_div(&qj,&sQ1,rQ);

 mod_div(&bij,&sB1,rB);

 uij=1;

 if(bij==0) continue;

 bij--;

 if(bij==0) uij=(qj==0);

 else uij=(qj>=bij);

 ui=ui && uij;

 }

 mul_add(&u,2,ui);

 }

}

Lemma 1. Algorithm CheckFire creates the set of transitions enabled in the current

marking.

Proof. The algorithm constitutes the sequential computation of the vector

components according to the second line of the system (1) and their simultaneous

encoding (2) into the variable u after the calculation of the current component in the

variable ui. The loop on the variable i defines the exhaustion of all the transitions, the

nested loop on the variable j defines the exhaustion of all the places for the chosen

transition. The order of the sequential decoding of matrix and vector elements

corresponds to the order of the loops indices modification according to (3) and (5).

The algorithm of the procedure PickFire is the following:

void PickFire(uint u, uint *l)

{

 uint ui, i;

 i=0;

 while(u>0)

 {

 mod_div(&ui,&u,2);

 i++;

 if(ui==0) continue;

 if(NonDeterministic()) goto out;

 }

out: *l=i;

}

Lemma 2. Algorithm PickFire executes the choice of an arbitrary firing transition

from the set of enabled transitions.

Proof. The condition of the firing transition choice corresponds to the third line of the

system (1) as well as to the order of the vector decoding according to (3). For the

nondeterministic choice of the firing transition the function NonDeterministic is used

for the exit out of the loop. The condition provides the loop completion after

the last enabled transition processing which is chosen as the firing at least.

The algorithm of the procedure Fire is the following:

void Fire(uint l)

{

 uint rQ1, maxQ1, shift, qj, bij, dij, j;

 uint sB1, sD1, sQ1;

 sB1=sB; sD1=sD; sQ1=0; rQ1=rQ+rD-1; maxQ1=0;

shift=(n-l)*m;

 while(shift--)

 {

 mod_div(&b,&sB1,rB);

 mod_div(&d,&sD1,rB);

 }

 for(j=m; j>0; j--)

 {

 mod_div(&qj,&sQ, rQ);

 mod_div(&bij,&sB1, rB);

 if(bij>0) bij--;

 dij=mod_div(&sD1, rD);

 qj=qj-bij+dij;

 maxQ1=max(qj,maxQ1);

 mul_add(&sQ1,rQ1,qj);

 }

 sQ=0; rQ=maxQ1+1;

 for(j=m; j>0; j--)

 {

 mod_div(&qj,&sQ1,rQ1);

 mul_add(&sQ,rQ,qj);

 }

}

Lemma 3. Algorithm Fire implements the marking transformation as a result of the

specified transition firing.

Proof. The algorithm implements the recalculating of the marking according to the

first line of the system (1) and the described way of the matrices and the vector

 decoding according to (5) and (3). The value of the variable shift corresponds to the

number of the passing through elements for the positioning to the beginning of the

firing transition line with the number l. Then into the first loop on the variable j the

preliminary recalculating of the marking code (2) is executed into the variable sQ1; at

that the value of rQ1 is used which provides the storing of the maximal possible value

of the new marking element rQ+rD-2. For the avoiding the rQ growth, into the second

loop on the variable j the final recalculating of the marking code (2) is executed into

the variable sQ according to the actual value of the maximal element maxQ1.

Theorem 1. Algorithm AUIPN implements the dynamics of an arbitrary given

inhibitor Petri net.

Proof. Let us show that the algorithm AUIPN recalculates the marking of inhibitor

Petri net according to the system (1) and stores the employed transitions firing

sequence. The algorithm of the step executing is represented by the loop while of

AUIPN and completely corresponds to the system (1). At the beginning, the

procedure CheckFire determines the enabled transitions set and forms the code (2) of

the corresponding enabled transitions indicator u (Lemma 1). At the absence of the

enabled transitions , the algorithm stops that corresponds to a dead marking.

The procedure PickFire implements nondeterministic choice of the firing transition

from the set of the enabled transitions; the variable l returns the firing transition

number (Lemma 2). The procedure Fire implements the current marking

transformation as a result of the transition with the number l firing and its

simultaneous encoding (2) (Lemma 3). Then into the code (2) of the transitions firing

sequence sZ is added the number l and the value of the current step k is incremented

by unit. Nondeterministic exit out of the loop corresponds to the Definition 1.

Algorithm AUIPN was also encoded in C language using the library MPI for the

representation of lengthy integers and tested on a series of Petri nets.

Theorem 2. Algorithm AUIPN can be represented by an inhibitor Petri net.

The Theorem 2 proof is the immediate consequence of the facts that inhibitor Petri

net is a universal algorithmic system [1] and the algorithm AUIPN uses nonnegative

integer scalar variables only which values can be represented by the marking of the

corresponding Petri net places.

For the constructive proof of Theorem 2, the corresponding net is constructed on

the algorithm AUIPN in the following sections of the work.

6 Principles of Algorithms Encoding by Inhibitor Petri Net

There are known various approaches to the algorithm encoding by a Petri net based

on the principles of combining data flows and control flows [2,4,5]. Let us employ the

direct encoding of the basic C language operators for the representing of single

control flow. Each of variables is represented by the corresponding place of Petri net;

all the variables are static global (fig. 3). The control flow is modeled by the trace of a

single token passage from initial place start to the final place finish.

Fig. 3. Overall organization of the net UIPN.

For the unified organization of work with variables let us represent the operators of

the programming language in the form shown in fig. 4.

start

Variables

Control flow
finish

Fig. 4. Representation of the programming language operator.

To provide the reentering the control flow through the operators (procedures) let us

adopt the following agreements: all the internal places have zero marking; before the

beginning of the work the input variables are copied into the input places of the

operator; the work of the operator is launched by a token put into the place start (s);

the operator finishes its work at the hitting the place finish (f) by the token; at the

completion of work all the places of the operator are empty excepting the output

places which contain the result. Dashed arcs denote the following extra rules of the

forming the values of the operator input and output variables: at the launch the

content of the variable is copied into local input place of the operator; after the

completion the variable is cleaned and the value from the local output place of the

operator is moved into it (fig. 5).

Fig. 5. The forming of input and output variables.

In case of a few variables the chains of copy are created for the sequential copying

of input variables and the chains of clean, move for the moving of the output variables

values. The sequence of clean, move is denoted as assign. The represented scheme

provides the correct work with variables in general case. In some cases the work with

variables can be optimized, when they are temporary or input and output at the same

time. For the expressions calculating the approach of data flows [2] can be

implemented: the executing of operations is ordered according to their priorities; input

places of operations are fused with output places of the next operation.

Let us consider the basic control constructions of the programming language:

sequence, conditional (unconditional) branch, loop. Let us abstract from the used

variables.

Operator

Input variables

s

Output variables

copy

x

clean f

move f

f/

s

y

s

f s

Output variables

. . .

Input variables

. . .

Operator (procedure)

Lemma 4. Algorithmic control constructions of the programming language can be

encoded by inhibitor Petri net in the following way (fig. 6):

Name Form Net

Sequence operator1;

operator2;

a)

Branch if(condition()) then operator1; else

operator2;

b)

Loop while while(condition()) operator; c)

Loop for for(i=n;i>0;i--) operator; d)

a) sequence c) loop “while”

b) branch d) loop “for”

Fig. 6. Encoding of the programming language control constructions.

For each control construction the correctness of its representation can be proven by

the way of classifying all the enabled transitions firing sequences and their

comparison with the order of operators execution into the constructions of the

programming language [2]. Note that according to fig. 6a) the operators superposition

at the program encoding is implemented by the merging (fusion) of the output place f

of the first operator with the input place s of the second operator.

There are known the representations of basic algebraic and logic operations by

Petri nets [2,6]. In some cases it is convenient the direct representation of the most

used actions such as, for example, mod_div and mul_add for the decoding and

encoding of Petri nets. In Appendix B the nets implementing the operations used in

the algorithm AUIPN are listed. For the graphical representation of inhibitor arc the

hollow circle at the end of arc is used. Arc with the filled circle at its end denotes the

couple of arcs with the opposite direction and equal multiplicity; they are used for the

checking of a place marking.

Lemma 5. Nets listed in Appendix B implement the specified operations.

For each of the represented nets it is possible to bring the proof of the correct

implementation of the specified operation on the base of all the enabled transitions

firing sequences classification [2,6].

a) UIPN

b) PickFire

c) CheckFire

d) Fire

Fig. 7. Universal inhibitor Petri net UIPN.

7 Composing Universal Inhibitor Petri Net UIPN

Let us encode the algorithm AUIPN of universal inhibitor Petri net work by inhibitor

Petri net according to the rules described in Section 6. Note that Lemma 4 and

Lemma 5 lists all the control constructions and all the operations employed in the

algorithm AUIPN. The net UIPN represented in fig. 7 is obtained. For the

representing of the algorithm variables, fused places are used: all the places with the

same name are logically the same place; fused places simplifies the graphical

representation of the net. Let us suppose that before the net UIPN launch, the code of

target (executing) net XIPN is loaded into places shown in fig. 2 and after the

stopping of the net UIPN, the code of the marking and the transitions firing sequence

of the net XIPN is read from the corresponding places.

Dashed arcs denotes considered in Section 6 agreements on the input and output

variables copying. Bidirectional arcs are used for the work with variables which are

the both input and output; in this case the copying can be optimized applying twice

move without cleaning. In some cases for the copying of an input variable together

with its cleaning it is reasonable the usage of move instead of copy; as the

corresponding notation the dotted arc is used. The substitution of a transition implies

the copying of the corresponding subnet with the merging (fusion) of contact places.

In general case the transition substitution requires the indication of input and output

places mapping; in the listed nets the places mapping is defined implicitly by the

context of the used operations and is not indicated.

Theorem 3. Net UIPN is the universal inhibitor Petri net.

The Theorem 3 proof directly follows from Theorem 1 and the correctness of used

rules of sequential algorithm encoding by inhibitor Petri net (Lemma 4) and the

correctness of nets implementing the used operations (Lemma 5).

Note that net UIPN is represented in a component-wise way according to the used

procedures, operations and the rules of work with variables. There is of a definite

interest the binding of UIPN in the form of united inhibitor Petri net and its execution

in the environment of a simulating system that simulates the firing of transitions.

8 Conclusions

In the present work the universal inhibitor Petri net was constructed that executes an

arbitrary given inhibitor Petri net.

It is possible the constructing of universal nets in other classes of Petri nets which

are the universal algorithmic system [2]: priority, synchronous, timed. Moreover, it is

possible the combined constructing, for example, of inhibitor net that executes an

arbitrary synchronous net.

There are known examples of universal Turing machines constructing with the

minimal number of used symbols/states [7,8]. In this connection there is of a definite

interest the constructing of universal Petri net with the minimal number of places

(transitions), the minimal value of the marking.

References

1. Agerwala T. A Complete Model for Representing the Coordination of Asynchronous

Processes, Baltimore, John Hopkins University, Res. Rep. No. 32, July 1974.

2. Kotov V. Petri Nets, Moscow, Nauka, 1984, 160 p. In Russ.

3. The Universal Turing Machine. A Half-Century Survey / Rolf Herken (ed.), Springer-

Verlag, Wien New York, 1994, 609 p.

4. Best E, Devillers R., Koutny M. Petri Nets, Process Algebra and Concurrent Programming

Languages. Lecture Notes in Computer Science, Vol. 1492: Lectures on Petri Nets II:

Applications / Reisig, W.; Rozenberg, G. (eds.), 1998.

5. Goltz U. On Representing CCS Programs by Finite Petri Nets. Proc. MFCS-88, Springer-

Verlag Lecture Notes in Computer Science Vol.324, 339-350 (1988).

6. Sleptsov A.I. State equation and equivalent transformations of loaded Petri nets (algebraic

approach) // Formal models of parallel computations: Proceedings of all-USSR

conference, Novosibirsk (Russia), 1988, p. 151-158. In Russ.

7. Minsky M. Size and structure of universal Turing machines using tag systems. In

Recursive Function Theory, Provelence, 1962. AMS, vol. 5, p. 229-238.

8. Rogozhin Y. Small universal Turing machines. TCS, 168(2):215-240, 1996.

Appendix A: Examples of Nets Encoding

1) Petri net graph

Net m n sB rB sD rD

add 6 4 21180169496 3 282946 2

max 8 8 254813592433189871074065241

412

3 293862152152879368 2

mul 10 9 646549072061101455668889034

663481743952654

3 1935225908529245455

5975681

2

2) Marking

Net Marking sQ rQ

add addQ0 (2,3,1,0,0,0) 2880 4

add addQ (0,0,0,5,1,0) 186 6

max maxQ0 (2,3,1,0,0,0,0,0) 46080 4

max maxQ (0,0,0,3,1,0,0,0) 832 4

mul mulQ0 (2,3,1,0,0,0,0,0,0,0) 737280 4

mul mulQ (0,0,0,6,1,0,0,0,0,0) 722701 7

3) Transitions firing sequence

Net Q0 Q Z sZ k

add addQ0 addQ t1,t3,t2,t2,t3,t3,t4 2411 7

max maxQ0 maxQ t1,t2,t2,t6,t7,t8 4983 6

mul mulQ0 mulQ t1,t2,t4,t4,t5,t6,t6,t7,t2,

t4,t4,t5,t6,t6,t7,t2,t4,t4,

t5,t6,t6,t7,t3,t9,t9,t8

109815712212339723705298 26

Appendix B: Implementation of Used Operations

CLEAN (MUL (

COPY GTE ()

MOVE (MAX ()

ADD (MUL_ADD (Add to the code)

SUB (MOD_DIV (Extract from the code)

