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Abstract. Each Event-driven Process Chain (EPC) translates into a free-choice 

system if its control flow branches and joins only at AND- or XOR-connectors. This 

free-choice system defines the free-choice semantics of the AND/XOR-EPC. But 

free-choice systems are not capable to deal with OR-connectors. Therefore a general 

EPC with OR-connectors obtains a semantics not until it has been translated into a 

certain coloured Petri net, named a Boolean system. This Boolean system defines the 

Boolean semantics of the EPC. We show that for well-behaved AND/XOR-EPCs the 

Boolean semantics reduces to the free choice semantics in as far as the Boolean 

system contains the free-choice system. To prove this result we introduce the concept 

of non-blocking components in live and safe free-choice systems. For each non-

blocking component of the free-choice system we then construct a well-behaved 

bipolar system (bp-system), which is a particular Boolean system. We link the bp-

systems of all non-blocking components of a covering to a coloured Petri which is 

named a linked bp-system. Its semantics is the Boolean semantics of the AND/XOR-

EPC. 

Keywords: Bipolar system, EPC, free-choice system, linked bp-system, non-blocking 

component. 

1. Introduction 

Free-choice systems form an important class of ordinary Petri nets. They are best 

analyzed and understood, and the theory of free-choice systems is both deep and 

elegant [DE1995]. Also for commercial applications of information management free-

choice systems play an important role. In the context of Business Process 

Management (BPM) they serve to formalize process languages which have been 

introduced in a more informal way and lacked a well-defined semantics before. 

The process modelling language most widespread in German commercial projects is 

the language of Event-driven Process Chains (EPC). It has been introduced by Keller, 

Nüttgens and Scheer in 1992 [KNS1992, Sch1994]. EPCs represent the control flow 

of a process as the interplay of three components: Events, functions and logical rules. 

The rules use connectors of logical type AND, XOR and OR. More specific, 

concurrency is represented by AND-splits and AND-joins. Strong or exclusive 

alternatives are modelled by XOR-splits and XOR-joins, while OR-splits and OR-

joins model weak alternatives. All EPCs in this paper will be considered with a non-

empty set of distinguished events, the initial events of the process. 

The present paper deals mainly with AND/XOR-EPCs, i.e. with the restricted class of 

EPCs using only connectors of logical type AND or XOR. Each AND/XOR-EPC 

translates at once into a free-choice system FS : Functions and AND-connectors of 



the EPC translate into transitions while events and XOR-connectors translate into 

places of FS . Each initial event of the EPC is marked by a token on the 

corresponding place of FS . The free-choice semantics of the AND/XOR-EPC is 

defined as the semantics of FS  [Aal1999]. 

But the language of free-choice system is not capable to formalize EPCs with OR-

connectors. Therefore we have introduced in a previous paper Boolean systems, a 

class of simple coloured Petri nets [LSW1998]. Boolean systems have two types of 

tokens, high tokens and low tokens. The low tokens serve to skip actions and to 

complete the marking of all pre-sets of a logical transition before a decision about its 

actual firing mode is possible. With the help of formulas from propositional logic the 

transitions of Boolean systems control the flow of the high tokens (true) and the low 

tokens (false). 

A general EPC translates at once into a Boolean system BS : Functions and logical 

connectors of the EPC translate into transitions and events translate into places of 

BS . Each initial event of the EPC is marked by a high token at the corresponding 

place of BS  and if necessary a suitable set of low tokens is added. 

Those Boolean systems, which are needed for the restricted class of AND/XOR-

EPCs, have been invented already in 1984 by Genrich and Thiagarajan [GT1984]. 

They named them Bipolar Synchronization Schemes, today abbreviated as bipolar 

systems (bp-system). 

 

How do these two types of Petri nets, bipolar systems and free-choice systems, relate? 

 

It turns out that each bp-system BS  has a free-choice companion FS  and a canonical 

morphism FSBShigh →:  which maps the flow of high tokens of the coloured 

Petri net BS  onto the flow of tokens of the free-choice system FS . Both systems are 

equivalent in as far as FS  is well-behaved if and only if BS  is well-behaved. In that 

case the morphism has the lifting property, i.e., it lifts occurrence sequences of FS  to 

occurrence sequences of BS  [Weh2010]. 

Yet, this equivalence holds only under the restriction that the behaviour of the free-

choice system is fair. Here fairness is conceived as the absence of frozen tokens. That 

type of fairness is even a structural property, named non-blocking. 

Therefore the present paper investigates a generalization of the above mentioned 

relation between the two classes of Petri nets. Relinquishing the non-blocking 

condition we prove: 

 

For each well-behaved free-choice system FS  a well-behaved linked bp-

system LBS  and a morphism 

FSLBShigh →:  

exist, which maps the flow of high tokens of the coloured Petri net LBS  onto the 

token flow of the free-choice system FS  and satisfies the lifting property (Theor. 17 

and Prop. 19). 

As a consequence: For an AND/XOR-EPC, which translates into a well-behaved free-

choice system FS , a well-behaved linked bp-system LBS  exists 



with ( ) FSLBShigh = . We define the Boolean semantics of the EPC as the semantics 

of the coloured Petri net LBS . As a consequence, the free-choice semantics and the 

Boolean semantics of well-behaved AND/XOR-EPCs are equivalent. And this results 

allows us to consider the Boolean semantics of general EPCs a proper generalization 

of the free-choice semantics of AND/XOR-EPCs. 

During our way in this paper we introduce two new concepts for Petri nets: Firstly 

non-blocking components of well-behaved free-choice systems and secondly the 

linking of bp-systems with respect to a family of morphisms. 

2. Free-choice systems 

For the convenience of the reader and to fix the notations we recall some fundamental 

concepts from the theory of ordinary Petri nets and define the subclass of free-choice 

systems. 

A finite ordinary Petri net is a pair ( )µ,N : The net ( )FTPN ,,=  comprises a finite 

set P  of places, a disjoint finite set T  of transitions and a set ( ) ( )PTTPF ×∪×⊆  

of directed arcs. The function N→P:µ  is named the initial marking of the net. 

The support of the marking µ  is the set 

( ) ( ){ }0:: >∈= pPpsupp µµ  

of all places marked at µ . All Petri nets in this paper will be assumed finite. 

A path from a node TPXxini ∪=∈ :  to a node Xx fin ∈  is a sequence ( )nxxx ,...,, 10  

with nodes Xxi ∈ , finnini xxxx == ,0  and ( ) Fxx ii ∈+1, . It is named elementary 

path, if ji xx ≠  for all pairs ji ≠ . The net N  is strongly connected if for every two 

nodes Xxx ∈21,  a path from 1x  to 2x  and a path from 2x  to 1x  exists. 

A transition with a single pre-place and two or more post-places is an opening 

transition, a transition with a single post-place and two or more pre-places is called a 

closing transition. Opening transitions with exactly two post-places and closing 

transitions with exactly two pre-places are called binary transitions. A net N  is called 

binary if all its transitions are binary. 

For a net N  the firing rule defines the firing of a transition: A transition Tt ∈  is 

enabled at a marking µ  of N  iff each place from its pre-set ( )tpre  is marked at µ  

with at least one token. Being enabled, t  may occur or fire. Firing t  yields a new 

marking 'µ , which results from µ  by consuming one token from each pre-place of t  

and by producing one additional token on each post-place of t ; this is denoted 

by 'µµ →t
. 

A finite occurrence sequence from µ  is a sequence ktt ...1=σ , N∈k , such that 

k
t

k
t k µµµµ →→ −11 ...,,1 . 



We denote by kµµ σ→  the fact, that firing σ  yields the marking kµ . A reachable 

marking of a Petri net ( )µ,N  is a marking, which results from firing a finite 

occurrence sequence from µ . If not stated the contrary, occurrence sequences in this 

paper will be considered finite occurrence sequences. The concatenation of two 

occurrence sequences 1σ  and 2σ  is denoted by 21 σσ ⋅ . 

A Petri net ( )0, µN  is live iff for each reachable marking µ  and for each 

transition Tt ∈  the Petri net ( )µ,N  has a reachable marking which enables t . A 

Petri net is k -bounded iff a number N∈k  exists bounding from above the token 

content of every place at every reachable marking. If the bound can be chosen 

as 1=k  then the Petri net is named safe. A live and safe Petri net is named well-

behaved. A net N  is well-formed iff there exists a marking 0µ  of N  such that the 

Petri net ( )0, µN  is live and bounded. 

We will often dispense with an explicit notation for the set of places and transitions of 

a net and  use the shorthand Nx ∈  to denote a node of the net. 

1. Definition (P-system, T-system, free-choice system) 

i) A net N  is a P-net if all transitions have exactly one pre-place and exactly one 

post-place, i.e. 

( )[ ] ( )[ ]tpostcardtprecard == 1  for all transitions Nt ∈ . 

A P-system is a Petri net ( )µ,N  with N  a P-net. 

ii) A net N  is a T-net if all places have exactly one pre-transition and exactly one 

post-transition, i.e. 

( )[ ] ( )[ ]ppostcardpprecard == 1  for all places Np ∈ . 

A T-system is a Petri net ( )µ,N  with N  a T-net. 

iii) A net N  is a free-choice net if for every two transitions Ntt ∈21,  

either ( ) ( ) ∅=21 tpretpre I  or ( ) ( )21 tpretpre = . 

A restricted free-choice net is a net which satisfies the stronger condition: For every 

two transitions Ttt ∈21,  

either ( ) ( ) ∅=21 tpretpre I  or ( ) ( ) { }ptpretpre == 21  

with a single place Pp ∈ . A marked (restricted) free-choice net ( )µ,N  is named 

(restricted) free-choice system. 

 

Well-behaved free-choice systems are one of the two classes of Petri nets studied in 

the present paper. By a theorem of Genrich each well-formed free-choice net FN  has 

a marking µ , such that ( )µ,FN  is even well-behaved ([De1995] Theor. 5.10). 



An important means for the examination of free-choice systems is the study of their 

P-components and T-components. 

2. Definition (Components and their intersection) 

Consider a net ( )FTPN ,,= . 

i) A subnet NNP ⊆  which is generated by a nonempty subset TPX ∪⊆  of nodes, 

is a P-component of N  if PN  is a strongly connected P-net with 

( ) ( ) Xppostppre ⊆∪  for all places Xp ∈ . 

Consider a marking µ  of N . If a P-component NNP ⊆  is marked at µ  with a 

single token then ( ) PPPP NN |:,, µµµ = , is named a basic component of ( )µ,N . 

ii) A subnet TN  of N  which is generated by a nonempty subset TPX ∪⊆  of 

nodes, is a T-component of N  if TN  is a strongly connected T-net with 

( ) ( ) Xtposttpre ⊆∪  for all transitions Xt ∈ . 

iii) The net N  is structurally non-blocking iff every P-component PN  of N  

intersects every T-component TN  of N  in a non-empty set ∅≠∩ TP NN . 

Otherwise the net is named structurally blocking. A Petri net ( )µ,N  is non-blocking 

if its underlying net N  is structurally non-blocking. Otherwise the Petri net is named 

blocking. 

3. Example (Well-behaved, but blocking free-choice system) 
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Figure 1: Well-behaved free-choice system FS  



Figure 1 shows a well-behaved restricted free-choice system FS . It is blocking: E.g., 

the P-component PN  generated by the set { }8877 ,,, tete  and the T-component TN  

generated by the set { }4433 ,,, tete  are disjoint. 

 

To prepare the introduction of the new concept of non-blocking components we recall 

some properties of well-behaved free-choice systems. 

Each well-behaved free-choice system can be covered by basic components. Each 

occurrence sequence which fires only transitions from one of these basic components 

lifts to an occurrence sequence of the whole free-choice system. This has been 

observed by Thiagarajan and Voss first. After introducing the concept of a morphism 

of Petri nets we will formulate their result as the lifting property of a certain 

morphism. 

Figure 1 shows a well-behaved restricted free-choice system FS . It is blocking: E.g., 

the P-component PN  generated by the set { }8877 ,,, tete  and the T-component TN  

generated by the set { }4433 ,,, tete  are disjoint. 

 

To prepare the introduction of the new concept of non-blocking components we recall 

some properties of well-behaved free-choice systems. 

Each well-behaved free-choice system can be covered by basic components. Each 

occurrence sequence which fires only transitions from one of these basic components 

lifts to an occurrence sequence of the whole free-choice system. This has been 

observed by Thiagarajan and Voss first. After introducing the concept of a morphism 

of Petri nets we will formulate their result as the lifting property of a certain 

morphism. 

4. Remark (Morphisms of Petri nets) 

Within the category of coloured Petri nets the concept of a morphism 

21: PNPNf →  

between two coloured Petri nets is well-defined, cf. [Weh2006]. Our concept of a 

morphism presupposes coloured nets for the domain and range of the morphism, 

because a morphism maps respectively, certain T-flows and P-flows of 1PN  to 

binding elements and token elements of 2PN . 

The reader, who is not interested in the general definition of a morphism, may use his 

own descriptive concept of a morphism 21 PNPN
f→  to follow the examples of 

this paper. In most cases the domain of definition 1PN  will be an ordinary Petri net 

and the coloured Petri net 2PN  will be equivalent to an ordinary Petri net, too. In 

addition, all morphisms under consideration will be discrete, i.e. for any 

node 2PNy ∈  the fibre ( ) 1
1 PNyf ⊂−  has only isolated nodes. 



Any discrete Petri net morphism 21 PNPN
f→  maps occurrence sequences of 1PN  

to occurrence sequences of 2PN . The question about the surjectivity of this map is 

named the lifting problem. 

5. Definition (Lifting property of a morphism) 

A Petri net morphism 

21 PNPN
f→  

has the lifting property iff for any enabled occurrence sequence 2σ  of 2PN  an 

enabled occurrence sequence 1σ  of 1PN  exists with ( ) 21 σσ =f . The occurrence 

sequence 1σ  is named a lift of 2σ  against f . 

 

Any enabled occurrence sequence of a basic component of a well-behaved free-choice 

system lifts to an enabled occurrence sequence of the whole system. 

6. Proposition (Lifting property for basic components) 

Consider a well-behaved free-choice system ( )µ,NFS =  and a basic component BN  

of FS . Then the projection 

( )BBB NNFS |,: µπ →  

has the lifting property. 

Proof. [TV1984], Theor. 2.1 proves the claim under the additional assumption that 

the free-choice system FN  is restricted. But any cluster from a free-choice net can be 

substituted by two clusters of a restricted free-choice net. Therefore it suffices to 

prove the claim for restricted free-choice systems, q. e. d. 

7. Corollary (Union of basic components) 

Consider a well-behaved free-choice system ( )µ,NFS =  and a subnet NN ⊂1  

which is the union of basic components of FS . Then the projection 

11 : FSFS →π  

onto the restriction ( )111 |,: NNFS µ=  has the lifting property and 1FS  is well-

behaved. 

Proof. Any union of P-components of a free-choice net is free-choice itself. P-

components are transition bounded. Therefore also the subnet NN ⊂1  is transition 

bounded, which implies that the projection 11 : FSFS →π  is a morphism of Petri 

nets. In order to verify its lifting property it suffices to consider an occurrence 

sequence 1σ  of 1FS  with a single transition 1Nt ∈ . By assumption the transition t  



belongs to one of the distinguished basic components BFS . We consider the 

composition of projections 

BFSFSFS B→→ ππ
1

1  

According to Proposition 6 the occurrence sequence ( )1σπ B  lifts against the 

composition BB FSFS →:1ππ o  to an occurrence sequence σ  of FS . 

Therefore σ  is also a lift of 1σ  against 1π . The lifting property of 11 : FSFS →π  

and the liveness of FS  imply that 1FS  is live too. Safeness of 1FS  follows from the 

fact that 1FS  is a union of basic components of FS  and that each of them is also a 

basic component of 1FS , q. e. d. 

 

The first new concept of this paper is the concept of a non-blocking component. It is a 

maximal well-behaved and non-blocking subsystem of a well-behaved free-choice 

system. 

8. Definition (Non-blocking component) 

Consider a well-behaved free-choice system ( )µ,NFS = . 

i) For a connected subnet NNB ⊆  the restriction 

( ) NBNBNS BB |:,,: µµµ == , 

is named a non-blocking component of FS , iff NS  is 

• a union of basic components of FS  and 

• non-blocking and 

• maximal with respect to these two properties, i.e. no subsystem of FS  exists 

with these properties and containing NS  as a proper subsystem. 

ii) A family ( )
IiiNS ∈  of non-blocking components iNS  of FS , Ii ∈ , with 

U
Ii

iNSFS

∈

=  

is named a non-blocking covering of FS . 

 

Apparently any well-behaved free-choice system has a non-blocking covering 

because each basic component is non-blocking. In addition, each non-blocking 

component of FS  is well-behaved itself due to Corollary 7. This will be a crucial 

means for the construction in Definition 14. 

 

A covering of a free-choice system is named unshortenable if no proper subfamily is 

a covering too. Each covering contains an unshortenable covering as a subfamily: 

After successively cancelling covering elements contained in the union of other 

elements we eventually obtain an unshortenable covering. 



9. Example (Non-blocking covering) 

The well-behaved blocking free-choice system FS  from Figure 1 has an 

unshortenable non-blocking covering with two non-blocking components, cf. Figure 

2. One non-blocking component is the union of three different basic components 

while the other non-blocking component is a single basic component. 
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Figure 2: Two non-blocking components of the free-choice system from Figure 1 

3. Linked bp-systems 

Bp-systems are a simple class of coloured Petri nets. As mentioned in the 

Introduction they can be used to define the Boolean semantics of AND/XOR-EPCs. 

For the present paper we do not need the concept of coloured Petri nets in full 

generality, the interested reader is referred to [Jen1992]. 

10. Definition (bp-system) 

i) A bipolar synchronization graph (bp-graph) BG  is a coloured net. It extends a 

T-net ( )FTPN ,,=  by attaching to each place Pp ∈  the fixed set 

( ) { }lowhighBoolepC ,:==  

with two token colours and provides each transition Tt ∈  with one from two types of 

logic: 

• An AND-transition ANDtt =  has a set of firing modes ( ) { }lowhightB ,=  with 

two elements: The high mode (respectively low mode) is enabled iff all pre-

places of ANDt are marked with at least one high token (respectively low token). 



Its firing consumes one high token (respectively low token) from each pre-place 

and creates one high token (respectively low token) on every post-place. 

• An XOR-transition XORtt =  with n  pre-places and m  post-places has a set of 

firing modes ( ) ( ){ }jibtB ,=  with mn ⋅  high modes and one low mode: The high 

mode with index ( ) mjniji ≤≤≤≤ 1,1,, , is enabled iff the i -th pre-place is 

marked with at least one high token and all other pre-places with at least one low 

token. Firing the high mode consumes a high token from the i -th pre-place and a 

low token from every other pre-place and creates a high token at the j -th post-

place and a low token at every other post-place. The low mode is enabled iff all 

pre-places are marked with at least one low token. Firing the low mode consumes 

a low token from each pre-place and creates a low token at every post-place. 

Adhering to the common notation of coloured nets we call a pair 

( ) ( )pCcPpcp ∈∈ ,with, , a token element and a pair ( ) ( )tBbTtbt ∈∈ ,with, , a 

binding element. A binding element is named low binding element, if its firing 

consumes and creates only low tokens. Otherwise it is named high binding element. 

ii) A bipolar synchronization system (bp-system) is a coloured Petri net ( )µ,BGBS =  

with a bp-graph BG  and an initial marking µ  with at least one high token. 

 

Bp-systems are a special case of Boolean systems which have been introduced in 

[LSW1998]. 

11. Definition (Well-behavedness of a bp-system) 

i) A bp-system BS  is safe iff each reachable marking marks every place with at most 

one token. 

ii) A binding element of a bp-system BS  is live iff for every reachable marking 1µ  

of BS  the bp-system ( )1, µBG  has a reachable marking which enables the given 

binding element. BS  is live with respect to all its high bindings iff every high binding 

element of BS  is live. 

iii) A bp-system BS  is well-behaved iff it is safe and live with respect to all its high 

bindings. 

 

In a previous paper [Weh2010], Chap. 2, we have attached several ordinary Petri nets 

to a given bp-system ( )µ,BGBS = . Notably, a bp-system BS  has a restricted free 

choice system 

( )highhighhigh BGBS µ,= , 

the high-system of BS , together with a morphism highBSBShigh →:  as well as a 

T-system 

( )skelskelskel BGBS µ,= , 

the skeleton of  BS , together with a morphism skelBSBSskel →: . 



Conversely, each restricted free-choice system FS  extends to a bp-system BS  

with FSBS high = . Hereby one introduces an AND-transition of BS  for a branched 

transition of FS , an XOR-transition of BS  for a branched place of FS  and a high 

token of BS  for each token of FS . 

12. Example (Well-behaved bp-systems) 
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Figure 3: Bp-systems of the non-blocking components from Figure 2 

 

Figure 3 shows two bp-systems 2,1, =iBSi . Both are well-behaved. Their high-

systems 
high

iBS  are the two non-blocking components from the well-behaved free-

choice system from Figure 2. Note the low token marking the post-place of transition 

4t . 

 

The following Proposition 13 shows the relation between well-behaved bp-systems 

and well-behaved restricted free-choice systems. The proposition has been proven in 

[Weh2010]. 



13. Proposition (Bipolar systems and non-blocking free-choice systems) 

i) A bp-system is well-behaved iff its skeleton and its high system are well-behaved 

and its high-system is non-blocking. 

ii) The high-morphism highBSBShigh →:  of a well-behaved bp-system BS  has 

the lifting property. 

iii) Any well-behaved, non-blocking restricted free-choice system FS  is the high-

system of a well-behaved bp-system BS . 

 

To obtain a marking such that the bp-scheme BS  in Proposition 13, iii) is well-

behaved, possibly some low tokens have to be added in addition to the high tokens 

prescribed by the marking of FS . 

 

On the other hand, if a restricted free-choice system FS  is well-behaved but 

blocking, no well-behaved bp-system BS  exists with FSBS high = . 

 

It is our particular concern in this paper to remedy this situation. Therefore we will 

apply Proposition 13, iii) separately for each element from a non-blocking 

covering ( )
IiiFS ∈  of FS : For each non-blocking component iFS  we obtain a well-

behaved bp-system iBFS  with i
high

i FSBFS = . For each pair of bp-systems 

( )ji BFSBFS ,  we fuse those subsystems of iBFS  and jBFS  which project along the 

high morphisms onto the same subsystem of FS . In the Petri net iBS , which results 

from iBFS , we consider the low tokens from iBFS  to belong to iBS  exclusively. 

For each pair ( )ji FSFS ,  of non-blocking components of FS  we substitute each 

branched transition ( ) FSFSFSt ji
high ⊂∩∂∈  from the boundary by a transition 

which fuses the corresponding bp-systems ( )ji BSBS , . The fusing transition has to 

satisfy the following requirements: 

• When firing it consumes and creates high tokens from iBS  and jBS  in the same 

manner as hight  processes tokens from iFS  and jFS . 

• It consumes and creates low tokens from iBS  without synchronizing them with 

high tokens or with low tokens from jBS . Analogously it consumes and creates 

low tokens from jBS . 

 

The resulting coloured Petri net is named a linked bipolar system (bp-system). It is the 

second new concept introduced in this paper. 

14. Definition (Linked bp-system) 

Consider a well-behaved free-choice system FS  and a covering ( )
IiiFS ∈  of FS  by 

non-blocking components. According to Corollary 7 each non-blocking 



component iFS , Ii ∈  is a well-behaved free-choice system. It is the high-system of a 

well-behaved bp-system iBFS , and the high-morphism iii FSBFShigh →:  has 

the lifting property according to Proposition 13. We define a coloured Petri net 

( )
Iii

Ii

i

high

BFS

LBS

∈

•

∈=
U

:  

by forming the quotient of the disjoint union of the bp-systems iBFS , Ii ∈ , modulo 

the identification with respect to the family of high 

morphisms iii FSBFShigh →: . The coloured Petri net LBS  is named a linked 

bipolar-system (bp-system) attached to FS  with respect to the covering iFS , Ii ∈ . 

The high morphisms induce a well-defined morphism of Petri nets 

FSLBShigh →: . 

 

Note that for each index Ii ∈  a projection LBSBFSii →:π  onto the quotient 

exists. The image is a transition bounded subsystem 

( ) LBSBFSBS iii ⊂= π: . 

Using the notations 

( )µ,LBNLBS = , ( )iii BFNBFS µ,= , ( )iii BNBS µ,= , 

( )ν,FNFS = , ( )iii FNFS ν,=  

Definition 14 of a linked bp-system LBS  can be made explicit as follows: 

• Nodes LBX : Two nodes ii BFXx ∈  and jj BFXx ∈  fuse to a node LBXx ∈  

iff ( ) ( ) ( ) FXFXFXxhighxhigh jijjii ⊂∩∈= . A well-defined 

map FXLBXhigh →:  results. We define 

( ) { }ii BFXxtiverepresentaahasxIixI ∈∈= :: . 

• Token colours of LBN : A place LBXp ∈  gets the set of token colours 

( ) { } ( ){ }pIilowhighpC i ∈∪= :: . 

• Bindings and firing rules of LBN : For a transition LBXt ∈  the binding 

set ( )tB  has as low bindings the low bindings of all 

representatives ( )tIiBFNt ii ∈∈ , , of t , each taken with its firing rule. 

On the other hand, the high bindings in ( )tB  correspond bijectively to the high 

bindings of one arbitrary it . Each high binding gets an unchanged flow of high 



tokens. If all representatives it  have logical type AND, then the firing rule of a 

high binding of t  does not consider any low tokens. When all representatives it  

have logical type XOR, then the firing rule of a high binding may change the 

flow of low tokens: When a high binding of 
0i

t  consumes a single low token of 

type 
0i

low  at a pre-place of 
0i

t  or creates a single low token of type 
0i

low  at a 

post-place, then the corresponding high binding from ( )tB  respectively 

consumes and creates all low tokens of type ( )tIilowi ∈, , at the corresponding 

place of LBN . 

• Initial marking of LBS : At a place LBNp ∈  the initial marking µ  is defined as 

( ) ( )( ) ( )
( )

( )
N

pCpphighvp
pIi

i
low
i ∈+= ∑ ∈

µµ : . 

• High morphism: For each index Ii ∈  the morphism iii FSBFShigh →:  

induces a morphism iii FSBShigh →:  from the quotient ( )iii BFSBS π=: . 

These local morphisms fuse to a global morphism FSLBShigh →: , such that 

i

i

i

FSFS

highhigh

LBSLBS

→

↓↓

→

 

commutes for all Ii ∈ , the horizontal maps being the restrictions onto closed 

subsystems. 

 

Figure 4 displays the most simple case of linking two binary bp-

systems iBFS , 2,1=i , at a transition )( 21 BNBNt ∩∂∈ . The token colours of its 

pre- and post-places are  

{ } 2,1,, == ilowhighBoole ii , and { }2112 ,, lowlowhighBoole = . 

BN_2BN_1BN_12

BN_2BN_1

SEPUNITE

Boole_2Boole_1

Boole_12

Boole_12

Boole_2Boole_1

BN_12

 

Figure 4: Transitions of type UNITE  and SEP  



Figure 4 shows on the left the neighbourhood of a fused closing transition of logical 

type UNITE and on the right of an opening transition of logical type SEP (separate). 
 

Table 1 shows the corresponding firing rules of all transitions from 

2112 : BNBNBN ∩= . Note in particular the different types of low tokens and their 

flow. 

 

Transition Bindings consumes produces 

)( 21 BNBNt ∩∂∈  of type SEP high  high  ( )highhigh,  

 
1low  1low  ( )−,1low  

 
2low  2low  ( )2, low−  

UNITE: reverse SEP    

o)( 21 BNBNt ∩∈ from opening 

XOR 

lefthigh  high  ( )21, lowlowhigh +

 

 
righthigh  high  ( )highlowlow ,21 +

  

 
1low  1low  ( )11, lowlow  

 
2low  2low  ( )22 , lowlow  

closing XOR: reverse opening XOR    

o)( 21 BNBNt ∩∈ from opening 

AND 

high  high  ( )highhigh,  

 
1low  1low  ( )11, lowlow  

 
2low  2low  ( )22 , lowlow  

closing AND: reverse opening AND    

Table 1: Binding elements of 12BN  

15. Example (Linked bp-system) 

Figure 5 shows the linked bp-system attached to the well-behaved free-choice system 

from Example 3 and its non-blocking covering from Example 9. 
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Figure 5: Linked bp-system attached to the free-choice system from Figure 1 

16. Remark (Non-uniqueness of a linked bp-system) 

According to the construction from Definition 14 a well-behaved free-choice 

system ( )ν,FNFS =  has more than one linked bp-system ( )µ,LBNLBS =  in 

general. 

A first reason for non-uniqueness is the choice of a non-blocking 

covering ( )
IiiNS ∈=N  of FS . In general FS  has more than one non-blocking 

covering which is non-shortenable. Therefore the underlying net ( )N,FSLBNLBN =  

depends not only on FS  but also on N . 

This kind of dependency is similar to other situations from mathematics. E.g., 

compare the definition of a differentiable manifold, which is considered a pair ( )A,X  

formed by a topological space X  and a maximal differentiable atlas A  on X . But 

different from the situation of differentiable manifolds two non-blocking 

coverings 1N  and 2N  of a well-behaved free-choice system FS  are compatible with 



each other: Their union 21 NN ∪  is a non-blocking covering of FS  again. 

Employing the definition of morphisms between coloured Petri nets from [Weh2006] 

one can show that the net of the corresponding linked bp-system is the fibre product 

),(),(),( 2121 NNNN FSLBNFSLBNFSLBN FS×=∪  

with respect to the high-morphisms 

2,1,),(: =→ iFNFSLBNhigh ii N . 

As a consequence the covering maxN  formed by all non-blocking components of FS  

is the unique maximal non-blocking covering of FS  and one can 

define ( )max,NFSLBN  as the underlying net of any linked bp-system of FS . 

A second reason for non-uniqueness is the choice of the low tokens when considering 

a fixed non-blocking component iFS  of FS . In general more than one marking iµ  

exists with ( )iii BFNBFS µ,=  well-behaved and i
high

i FSBFS = . Two different 

markings differ by the distribution of low tokens. As a consequence, there may exist 

more than one marking µ  on ( )max,NFSLBNLBN =  with ( )µ,LBNLBS =  a linked 

bp-system of FS . 

 

The following Theorem 17 and its corollary Proposition 19 are the main results of the 

present paper. They prove that any linked bp-system of a well-behaved free-choice 

system is well-behaved too. 

17. Theorem (High morphism of a linked bp-system) 

Consider a well-behaved free-choice system FS  and a non-blocking 

covering ( )
IiiFS ∈  of FS . The high morphism 

FSLBShigh →:  

from a linked bp-system LBS  attached to FS  with respect to ( )
IiiFS ∈  has the lifting 

property. 

Proof. We use the following notations from Definition 14 

( )µ,LBNLBS = , ( )iii BFNBFS µ,= , ( )highFNFS µ,= , ( )high
iii FNFS µ,=  

and denote by 

ii FNFNpr →:  

the canonical projection. 

In order to prove the lifting property of FSLBShigh →:  we start considering an 

occurrence sequence 



highhigh
high

νµ σ  →  

of FS . Without loss of generality we may assume that highσ  comprises only a single 

transition FNr ∈ . For each index Ii ∈  we define the transition ( ) iii FNrprr ∈=: . 

The condition ( ) rbthigh =,  determines a unique transition LBNt ∈  and a unique 

high binding ( )tBb ∈  of t . Analogously, for each index Ii ∈  the 

condition ( ) iiii rbthigh =,  determines a unique transition ii BFNt ∈  and a unique high 

binding ( )ii tBb ∈  of it . In addition, according to Proposition 13 an occurrence 

sequence 

ii

low
i µµ σ ~ →  

exists in the low-system low
iBFS  such that the marking iµ~  of iBFS  activates the 

binding element ( )ii bt , . By catenation we obtain an occurrence sequence 

ii
i νµ σ→  

of iBFS  with ( )ii
low
ii bt ,: ⋅= σσ . Because LBSBS low

i ⊂  is a place bounded 

subsystem the occurrence sequence ( )low
ii σπ  of low

iBS  can be considered an enabled 

occurrence sequence of BS . Firing ( )low
jj σπ  for an arbitrary index ij ≠  does not 

remove the firing concession from ( )low
ii σπ . By catenation we obtain an occurrence 

sequence of LBS  

µµ σ ~ →
low

 with ( ) ( )low
nn

lowlow σπσπσ ⋅⋅= ...: 11  

Due to Definition 14 the occurrence sequences 

( )
i

bt
i

ii νµ  → ,~ , Ii ∈ , 

of all bp-systems iBFS  link to an occurrence sequence 

( ) νµ  → bt,~  

of LBS . By catenating ( )btlow ,: ⋅= σσ  we obtain the occurrence sequence of LBS  

sought-after 

νµ σ→  

satisfying ( ) highhigh σσ = , q.e. d. 

 

For a linked bp-system the definition of liveness with respect to all its high bindings is 

literally the same as in Definition 11, part ii) for a bp-system. 



18. Definition (Well-behavedness of linked bp-systems) 

Consider a linked bp-system LBS  attached to a well-behaved free-choice system FS  

and a non-blocking covering of FS  with 1≥k  elements. 

i) LBS  is high-safe iff every reachable marking of LBS  marks each place either with 

a single high token but no low token or with at most k  low tokens but no high token. 

ii) LBS  is well-behaved iff it is high-safe and live with respect to all its high 

bindings. 

19. Proposition (Well-behavedness of a linked bp-system) 

Any linked bp-system LBS  attached to a well-behaved free-choice system FS  with 

respect to a non-blocking covering ( )
IiiFS ∈  is well-behaved. 

Proof. With the notations of Definition 14 we set 

( )0, µLBNLBS = , ( )( ) highLBShighFNFS == 0, µ  and ( )
IiiBFS ∈ . 

i) High-safeness of LBS  follows from the existence of the 

morphism FSLBShigh →:  and the safeness of  each IiBFSi ∈, . 

ii) For the proof that LBS  is live with respect to all high bindings we employ the 

lifting property of FSLBShigh →: . We consider an occurrence sequence 

10
1 µµ σ→  and a transition LBNt ∈  with a high binding ( )tBb ∈ . By definition 

the binding element ( )bt,  of LBN  is a transition of FN . Liveness of FS  implies the 

existence of an occurrence sequence 

( ) high
high

high 21
2 µµ σ  →  

such that the marking 
high

2µ  activates ( )bt, . According to Theorem 17 the 

occurrence sequence 
high

2σ  lifts to an occurrence sequence 21
2 µµ σ→  such that 

the following diagram commutes 

( ) ( ) ( ) ( ) ( )2210

210

221

21

µµµµ

µµµ

σσσ

σσ

highhighhigh

highhighhigh

highhighhigh
high

= → →

↓↓↓

→→

=

 

Therefore LBS  is live with respect to all high bindings, q. e. d. 

20. Remark (Semantics of AND/XOR-EPCs) 

Let EPC  be an AND/XOR-EPC. As described in the Introduction a free-choice 

system FS  exists, which defines the free-choice semantics of EPC . Also a 

translation of EPC  into a bp-system BS  exists. We have FSBS high = . 



i) If FS  is non-blocking, then BS  is well-behaved iff FS  is well-behaved, cf. 

Proposition 13. 

ii) If FS  is well-behaved, then the Boolean semantics of EPC  is defined by a well-

behaved linked bp-system LBS  with FSLBS high = , cf. Proposition 19. 

iii) If FS  is non-blocking and well-behaved then BSLBS = , cf. Definition 14. 

4. Outlook 

We have shown that any AND/XOR-EPC, which is well-behaved with respect to its 

free-choice semantics, can be provided with a Boolean semantics which is well-

behaved too. In order to obtain this result, we had to generalize bp-systems to linked 

bp-systems, a class of coloured Petri nets which is slightly more general. 

This step is necessary to tackle EPC with connectors of arbitrary logical type. 

Apparently one can translate every EPC literally into a Boolean system. But 

Example 15 indicates that the literal translation possibly has to be altered afterwards 

to avoid the blocking of low tokens. 

Future investigations have to consider the literal translation of an EPC into a Boolean 

system only as a starting point. For the next step we need an algorithm which 

identifies well-behaved components of the Boolean system. Then it should link these 

components to a linked Boolean system, which avoids the blocking of low tokens 

from different components. These well-behaved components generalize the bp-

systems of non-blocking components while linked Boolean systems generalize the 

concept of linked bp-systems introduced in the present paper. 
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