
Reachability Analysis via Net Structure

Harro Wimmel, Karsten Wolf

Universit�at Rostock, Institut f�ur Informatik

Abstract. Exploitation of the structure of a Petri net is widely believed
to be an ine�cient approach to solving the reachability problem. We show
that structure analysis can be combined with integer programming and
partial order reduction to obtain a fast reachability solver.

Keywords: Petri net, reachability problem, integer programming, structure
analysis.

1 Introduction

The reachability problem for Petri nets, i.e. if a �nal marking can be reached in a
given net from the initial marking, is known to be decidable [May84,Kos82,Lam92]
but EXPSPACE-hard [Lip76]. E�cient tools exist, but they cannot solve all
instances of the problem (at least not in a lifetime). Model checkers, sym-
bolic [CMS06] or with partial order reduction [Wol10], have been used success-
fully to solve quite large reachability problems.

Here we present an approach that is a mixture of several methods, the main
ones being integer programming and structure analysis. The marking equation,
a linear system of integer equations, is known to be a necessary condition for
reachability. When a solution of the marking equation is found, it may represent
the parikh vector of a �ring sequence solving the reachability problem or not. If
it does, the �ring sequence needs to be found, otherwise the marking equation
can be constrained to discriminate the found solution. The needed constraints
are found by analysing the net structure. Consider the example net in Fig. 1.

s

a1

b1

x1

y1

c1

b2

z

y2

c2

b3

`

x2a2

f

Fig. 1. An example Petri net N with initial marking s and �nal marking s+ 3f



The marking equation m0 + Cx = mf (where m0 = 1s, mf = 1s + 3f are
initial and �nal marking and C is the incidence matrix of the netN) can be solved
by any integer programming tool. The smallest solution is 3a1 + 3a2 + 3`, i.e.
each of the three transitions should �re three times (in some unknown order). If
we notice that a token is needed on y2 to �re a2, but none of the three transitions
produces such a token, we might add a constraint \a token should be produced
on y2" to our marking equation to discriminate our �rst solution. A still viable
solution is now 2a1 + 2a2 + b1 + b2 + b3 + 3`, as b2 can produce that token.
But now a token on z is missing. If required by a similar constraint, we come to
2a1+2a2+ b1+ c1+ b2+ c2+ b3+3` but the token on y2 is still not there when
needed for a2. Requiring a higher token production on y2 will �nally lead to the
solution 3b1 + c1 + 3b2 + c2 + 3b3 + 3` and now we \only" have to �nd a correct
�ring sequence, e.g. b1c1b2b3`b1b2b3`b1b2c2b3`.

2 Some Basic De�nitions

We expect the reader to be familiar with the basic Petri net terminology and
some knowledge in linear algebra. All Petri nets here are general ones, i.e. they
may have arbitrary multi-arcs including loops. Vectors are sometimes written as
�nite sums (multisets) over the vector's domain.

De�nition 1 (Reachability problem). A reachability problem is the ques-
tion, when given a tuple (N;m;m0) of a Petri net N = (S; T; F ) and two mark-
ings m;m0 2 NS, whether m0 can be reached from m, i.e. if � 2 T � with m[�im0

exists. The reachability problem then is the set RP = f(N;m;m0) jN = (S; T , F )
is a Petri net, m;m0 2 NS, 9� 2 T �: m[�im0g. A reachability problem (N;m;m0)
is also called an instance of RP, to which the answer is \yes" if (N;m;m0) 2 RP
and \no" otherwise.

The reachability problem is decidable [May84] and making it solvable for as
many instances as possible is our goal. It is well-known that a necessary condition
for a positive answer to a reachability problem is the feasibility of the marking
equation.

De�nition 2 (Marking equation). For a Petri net N = (S; T; F ) let C 2
N
S�T , de�ned by Cs;t = F (t; s)�F (s; t), be the incidence matrix of N . For two

markings m and m0 the system of linear equations m+Cx = m0 is the marking
equation of N for m and m0. A vector x 2 NT ful�lling the equation is called a
solution.

For a �ring sequence � the Parikh vector }(�): T ! N is de�ned by }(�)(t) =
#t(�), where #t(�) is the number of occurrences of t in �. If x is a solution of
the marking equation m + Cx = m0, any �ring sequence � with }(�) = x and
m[�i positively solves the instance (N;m;m0) of the reachability problem. From
linear algebra the following is known:



Theorem 1 (Solution space). For any marking equation m+Cx = m0 over a
net N = (S; T; F ) there are �nite sets of base vectors B � NT and period vectors
P � NT such that all and only the solutions can be expressed as b+

P
i nipi with

b 2 B, pi 2 P , and ni 2 N.

In other words, the solution space is a semilinear set over nonnegative integer
vectors. Period vectors are nonnegative T -invariants where for a �ring sequence
� with }(�) to be a T -invariant,m[�im must hold for all markingsm enabling �.
Adding a T -invariant to a solution of the marking equation will produce another
solution. Apart from multiples, our example net from Fig. 1 contains only one
nonnegative T -invariant: c1 + c2. The base vectors take the form i(a1 + a2) +
(3� i)(b1 + b2 + b3) + 3` with 0 � i � 3.

3 Traversing the Solution Space

Integer Programming (IP) solvers come in two 
avors. Some can compute the
whole solution space at once, but are too slow for practical purposes, others can
only compute one solution. The latter, like lp solve [BEN10], can be directed to
compute a minimal solution (with respect to the sum over all values, leading
to shortest �ring sequences). Constraints can be used to discriminate a solution
and force the IP solver to produce another (greater) one until no more solutions
exist.

De�nition 3 (Constraints). We de�ne two forms of constraints, both being
linear inequations over transitions:

{ a jump constraint takes the form t < n with n 2 N for a transition t.
{ an increment constraint takes the form

Pk
i=1 niti � n with ni 2 N, n 2 N,

and transitions ti.

Assume a linear system with a minimal solution b with b(t) = n, then an
additional jump constraint t < n discriminates b and leads to an incomparable
solution. An increment constraint on the other hand may enforce a greater solu-
tion, adding some T -invariant to b. This idea is depicted in Fig. 2 where dashed
arrows represent jumps and normal arrows the adding of T -invariants.

Since the solution space is semilinear we need jumps to get to other solution
cones and increment constraints to go upwards in a cone. Jump and increment
constraints can contradict each other, but it is possible to remove a jump con-
straint. Assume we have a solution a before and a solution b after adding a jump
constraint. We construct one increment constraint per transition t with t � b(t).
This enforces at least the solution b. Removing the jump constraint now will not
lead to an old (smaller) solution, especially not to a.

4 Building Constraints

Let us �rst argue that for a marking equation, any of the minimal solution
vectors in B can be obtained by using jump constraints. For two solutions b and



b

Fig. 2. Paths from the minimal solution b to any solution. Black dots represent so-
lutions, cones stand for linear solution spaces over such solutions, which may or may
not intersect or include each other. Normal arrows increment a solution by adding a
T -invariant, dashed arrows are jumps to greater solutions. Such jumps can also occur
on higher levels of linear solution spaces, shown by the dotted arrow

b0 let b � b0 if we can change the solution our IP solver produces from b to b0

by adding new constraints to a system consisting of the marking equation plus
some (old) constraints.

Lemma 1 (Jumps to minimal solutions). Let b; b0 2 B (b 6= b0) be base
vectors of the solution space of the marking equation m+Cx = m0 plus some set
of constraints C. Assume b to be the minimal solution of the system. Then, we
can obtain b0 as output of our IP solver by consecutively adding jump constraints
of the form ti < ni with ni 2 N to C.

Proof. b � b0 and since b0 is a minimal solution, b 6� b0. Thus, 9t 2 T : b0(t) < b(t).
Add the constraint t < b(t) to C, then b is not a solution anymore. Assume b00

to be our IP solver's new solution. As b0 ful�lls t < b(t) it is still a solution,
so from b0 6= b00 we conclude b00 � b0, and the same argument as above holds.
Termination is guaranteed since there are only �nitely many solutions b00 � b0.

Non-minimal solutions may not be reachable this way, since the argument
\b0(t) < b(t) for some t" does not necessarily hold. To determine those, increment
constraints are necessary, and the latter can be obtained from partial solutions.

De�nition 4 (Partial solution). A partial solution of a reachability problem
(N;m;m0) is a tuple (C; x; �; r) of

{ a family of (jump and increment) constraints C = (c1; : : : ; cn),
{ the �-smallest solution x ful�lling the marking equation of (N;m;m0) and

the constraints of C,
{ a �ring sequence � 2 T � with m[�i and }(�) � x,

{ a remainder r with r = x� }(�) and 8t 2 T : (r(t) > 0 =) :m[�ti).



The vectors x and r are included for convenience only, they can be computed
from C, �, �, and the problem instance.

A full solution is a partial solution (C; x; �; r) with r = 0. In this case, � is a
�ring sequence solving the reachability problem (with answer 'yes').

If we obtain a partial solution with r 6= 0 there are not enough tokens on
some places to �re the transitions in the remainder r. An underapproximation
of tokens necessary can be computed from a graph G containing the transitions
in r and the undermarked places, an edge from place s to transition t if there
are not enough tokens on s to �re t, and an edge the other way if �ring t

increases the token count on s. From any strongly connected component SCC
in G without incoming edges (= tokens produced by other components, a source
SCC) we compute the minimal number k of tokens needed to activate any of its
transitions. Our constraint now states that the number of tokens produced on the
component's places should be increased by at least that number k. The tokens
produced on a place p can be expressed as

P
t: C(p;t)>0 C(p; t) �x(t) for a solution

vector x, so the constraint takes the form
P

p2SCC

P
t=2SCC: C(p;t)>0 C(p; t) � t �

k+
P

p2SCC

P
t=2SCC: C(p;t)>0 C(p; t) �x(t). Note that we sum up over transitions

outside SCC only, as the transitions inside cannot produce tokens until the �rst
of them gets activated, which is the aim of this constraint.

In our example net from Fig. 1 we start with the solution x = 3a1 + 3a2 +
3`. None of the transitions can �re three times, this leads us to the graph G:
y2 ! a2 ! x2 ! ` ! s ! a1 ! x2 ! a2. The only source SCC of G
consists of just y2 leading to the constraint 1 � b2 � k + 1 � x(b2) = k = 1. Now
the smallest solution becomes x0 = 2a1 + 2a2 + b1 + b2 + b3 + 3` and only b1
can �re as often as wanted. Our constructed graph G0 now has z as its only
source SCC, from which we obtain the constraint 1 � c1 � 1 + 1 � x0(c1) = 1,
leading to x00 = 2a1 + 2a2 + b1 + b2 + b3 + c1 + c2 + 3`. After the sequence
b1c1b2c2b3`a1 we �nd a remainder r = a1 + 2a2 + 2` and get again the graph
G, but now with a constraint 1 � b2 � k + 1 � x00(b2) = 1 + 1 = 2. After the
next solution x000 = a1 + a2 + 2b1 + 2b2 + 2b3 + c1 + c2 + 3` with the graph
y2 ! a2 ! x2 ! `! s (a1 not being in the remainder anymore) the constraint
is increased to 1 �b2 � k+1 �x000(b2) = 1+2 = 3. We now obtain the �nal solution
of 3b1 + 3b2 + 3b3 + c1 + c2 + 3`. Note that the �rst step can also be done by a
jump a1 < 3, but this is impossible for the second step since x00 � x0.

5 Finding Partial Solutions

Finding maximal �ring sequences � for a solution x produced by the IP solver to
obtain partial solutions can be done by a brute force tree search. The execution
time may grow exponentially with the size of the solution, though. Partial order
reduction, e.g. the stubborn set method [KSV06], can be applied to reduce the
execution time. Other reductions can be thought of; even with stubborn sets a
marking may appear more than once, either on a single path (the �ring sequence
is not minimal) or on permutated paths. Finding such spots allows to avoid going
through subtrees unnecessarily.



6 Conclusion

The algorithm has been implemented in a tool named Sara [Wim10] and tested
well with some small examples and a challenge posed by H. Garavel [Gar03]
in 2003 so far. Four other tools, using di�erent approaches, managed to solve
the challenge, with run times from about 10 minutes to more than an hour (in
2003). A proof to the challenge consists of nearly 800 �ring sequences of di�erent
length; those tools giving such a proof provided (much) longer �ring sequences
than our algorithm. Our implementation takes about 20 seconds on a simple
linux PC and twice that much on a standard Windows PC under Cygwin (in
2010).

Due to the underapproximation of needed tokens when building constraints,
our algorithm runs into trouble when the Petri net has high arc weights. A com-
parison to LoLA [Wol10] suggests an exponential loss with growing arc weights
for some specialised examples.

Overall, we have the hope that our implementation is able to compete with
other tools using state space exploration or symbolic model checking instead of
structure analysis. Of course, more tests are necessary before a stable statement
can be made. The algorithm presented here only tries to make a semi-decision
for the positive case, but we are working on an extension to also make correct
negative semi-decisions in many cases.

References

[BEN10] M. Berkelaar, K. Eikland, P. Notebaert: Lp solve Reference Guide,
http://lpsolve.sourceforge.net/5.5/, 2010.

[CMS06] G. Ciardo, R. Marmorstein, R. Siminiceanu: The saturation algorithm
for symbolic state space exploration, Software Tools for Technology

Transfer 8:1, pp.4-25, 2006.
[Gar03] H. Garavel: E�cient Petri Net tool for computing quasi-liveness,

http://www.informatik.uni-hamburg.de/cgi-bin/TGI/pnml/getpost

?id=2003/07/2709, 2003.
[Kos82] S.R. Kosaraju: Decidability of reachability in vector addition systems,

Proceedings of the 14th Annual ACM STOC, pp.267{281, 1982.
[KSV06] L.M. Kristensen, K. Schmidt, A. Valmari: Question-guided Stubborn Set

Methods for State Properties, Formal Methods in System Design 29:3,
pp.215{251, Springer, 2006.

[Lam92] J. Lambert: A structure to decide reachability in Petri nets, Theoretical
Computer Science 99, pp. 79{104, 1992.

[Lip76] R.J. Lipton: The Reachability Problem Requires Exponential Space, Re-
search Report 62, Yale University, 1976.

[May84] E. Mayr: An algorithm for the general Petri net reachability problem,
SIAM Journal of Computing 13:3, pp.441{460, 1984.

[Wim10] H. Wimmel: Sara { Structures for Automated Reachability Analysis,
http://www.informatik.uni-rostock.de/�nl/wiki/tools/download,
2010.

[Wol10] K. Wolf: LoLA { A low level analyzer, http://www.informatik.uni-
rostock.de/�nl/wiki/tools/lola, 2010.


