
Model Maturity Levels for Embedded Systems
Development, Or: Working with Warnings

Martin Große-Rhode

Fraunhofer Institute for Software and Systems Engineering, Berlin, Germany
martin.grosse-rhode@isst.fraunhofer.de

Abstract. The more modelling substitutes programming the more mod-
elling tools should become development environments. Beyond enforcing
the syntactic correctness of models tools should support a methodologi-
cally guided development in which milestones are indicated and warnings
are generated to inform the user about issues that are to be solved to
reach these milestones. In this paper we present an approach from the
embedded systems domain that is materialized by the implementation
of a prototypical model development environment. It indicates model
maturity levels that correspond to an underlying development method
and shows in the model maturity view which elements or parts of the
model do not yet reach a level and why they do not reach it.

1 Introduction

Program development environments have led to a substantial increase of pro-
ductivity in the construction of software. Completion suggestions based on the
grammar of the programming language and the code produced so far, navigation
in large amounts of code according to different kinds of relations, like place
of declaration or place of usage, and, of course, the indication of errors and
suggestions how to correct them reduce the time needed to produce compilable
code drastically. Beyond the necessary conditions to produce code that can be
compiled warnings are generated by the environment that indicate code quality
according to different criteria. These warnings can be used to produce better
code, or be ignored if they are considered not relevant.

Model development deserves the same kind of comprehensive support. Whether
modelling is employed to replace programming as in pure generative approaches
or to support programming by stating requirements, designs, and algorithms
concisely, the development of models is an engineering task and bears its own
complexity. Therefore it is not enough to be able to build a model. Construction
support, navigation, indication of errors and methodological support are needed,
too.

The modelling language and tool used as example in this paper have been
designed for the automotive domain, in particular the development of AUTOSAR
systems (see [AUT]). The AUTOSAR extension language aXLang (see [aXBench])
is a component description language that is used in the early process stages to

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 85



represent functional requirements as function components, then to map these
to software components, and to describe their distribution onto hardware com-
ponents. The latter two are also defined in the aXLang and can be mapped to
AUTOSAR descriptions.

2 The Development Process

The general pattern of the aXLang development process is shown in Figure 1. A
task is represented by a model that is to be completed in the next step. In order
to do so several solutions are worked out as far as necessary to be able to judge
whether the solution satisfies the task, and to evaluate the solutions to decide for
the best one. The solutions are also represented as models, and the selected best
solution defines the task for the next development step – until the modelling part
of the process has finished and code is produced.

Fig. 1. Models as tasks and solutions in the development process.

There are two possibilities to decide whether a solution solves a task. Either
an appropriate comparison operation on models is given that states whether a
solution model solves a task model, or the development must make sure that the
model is a solution by construction. In the aXLang approach the latter approach
has been chosen, as discussed in Section 2.4.

The identification of the best solution requires appropriate evaluation op-
erations. Furthermore, an indication is needed whether the models are both
sufficiently and homogeneously detailed to yield comparable evaluation results.
An estimation of the software size or the development effort for instance that
is based on counting function points will only yield reliable results if functional
designs are represented in the solution models at comparable levels. Otherwise

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 86



the more detailed models always yield the worse estimations, independently of
the adequacy of the design they represent. The indication of the appropriateness
for an evaluation that demarcates a specific development stage is called a model
maturity level. In general, development stages should always be defined by the
evaluations that have to be passed and the validation operations that are possible
at a stage.

In the aXLang process up to now the following model maturity levels are
defined:

Level 1 Function Interface Model
Level 2 Function Simulation Model
Level 3 Deployment Model
Level 4 AUTOSAR Model

The first two are described in more detail in the following. They can be applied
to any component description language. The third level is specific to languages
that incorporate an application level and a resources layer. The fourth level is
specific to AUTOSAR.

2.1 Function Interface Model

The function interface model is the first model constructed in an aXLang process.
It represents one application function of an embedded system and specifies which
information this function exchanges with the environment or other functions
in the system. Its main usage is virtual integration, i. e. the check whether the
application functions that make up the system according to their interfaces fit
to each other. The model is derived from a use case analysis of the function. A
function interface model has the following elements.

– one component, the one that represents the function;
– the input and output ports of the component;
– the logical signals and the operation calls the function shall accept or is

allowed to deliver to other ones via its ports;
– the services of the component that represent the expected i/o-behaviours of

the function;
– and its internal storages that are used to specify stateful functions.

As indicated in Figure 2 the elements of the model correspond to questions that
should be posed to gather the functional requirements systematically. The model
structure thus serves as a schema for the requirements elicitation.

At the function interface level the services are the use cases of the function.
They are described informally by natural language texts, but constrained by a
schema implemented in the language that guarantees that only the behaviour
visible at the interface is described, and that only declared elements (ports, signals,
operation calls, storages) are used for the description. The schema contains slots
for the precondition, the interaction, and the postcondition of the service. Within
the textual description references to ports, signals, operation calls, and storages

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 87



Fig. 2. Function interface model as requirements elicitation schema.

are marked such that their declaration in the function interface model can be
checked and renamings can be carried through as consistent refactorings.

As running example we use the function Condition Based Service (Cbs). It
monitors the state of a vehicle and computes a summary of the overall state
of the vehicle (green, yellow, red) and a car maintenance service date, i. e. a
suggestion when to go next to the service. The function has been a case study in
a project with the BMW Group (see [VEIA]). A graphical representation of its
interface model is shown in Figure 3, the aXLang description in Table 1.

The behaviour description of the service compute cbs data is given as follows.

service compute_cbs_data {
...
behavior {
precondition {$
The ’ignition’ is on.

$}

interaction {$
1. For each adaptive volume Cbs reads the ’relative_wear’

from the corresponding sensor port.
2. Cbs computes the ’service_date’ and the ’summary_estimation’.

$}
}
...

}

References are indicated by ’ ’, as in ’service date’ and ’summary estimation’.
Deriving function interfaces in this liberal but constrained way turned out to

be very constructive in the industry projects in which a predecessor of the language
has been used (see [Gro08]). The basic idea is that functions are understood best
in terms of their behaviour and that the structure of the function can be elicited
most concisely if it is based on a use case analysis. On the other hand, the method

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 88



top component Cbs {

ports {

in <ignition> pin_ignition;

out <service_date, summary_estimation> pout_driver_interface;

in <tick> pin_clock;

in <cars_time, mileage> pin_board_data;

in <relative_wear, initial_availability> pin_wheels;

in <relative_wear, initial_availability> pin_motor_oil;

optional in <initial_availability, relative_wear> pin_particle_filter;

optional in <relative_wear, initial_availability> pin_spark_plug;

}

storages {

storage cbs_data {

int service_date;

int summary_estimation;

}

}

services {

service display_service_date {...}

service compute_cbs_data {...}

}

}

Table 1. Interface model of the function CBS as aXLang text.

Fig. 3. Interface model of the function Cbs.

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 89



must make sure that behaviour descriptions are constrained to interactions with
the environment; internal behavior must not be specified here. This is achieved in
the aXLang by checking that each phrase in the behaviour description contains
references to the elements declared in the interface model, i. e. each phrase must
refer to an externally visible interaction. In the Cbs behaviour description the
ignition signal is indicated as well as the input signals relative wear and the
output signals service date and summary estimation.

The usage of storages and the description of the access of a function to its
storage in a use case might seem to contradict this principle. However, storages are
considered as interface elements in the sense that they are only used as abstract
means to describe that the function has a state. So the reader of a function
interface model should be informed about the statefulness of the function, and in
the refinement the storages must be refined and finally be implemented, too. In
the Cbs example the storage of the Cbs data is used to decouple the continuous
(periodic) computation of the Cbs data from its occasional display, triggered by
the driver turning on the ignition.

The properties that are checked for the model maturity level function inter-
face model are systematically derived from this methodological approach. Each
element must be justified by its contribution to a use case. Since the model is a
requirements model for the further development this strict rule itself is justified:
Later on each element must be implemented, which results in development costs.
Therefore no superfluous elements are allowed in the model.

The first set of properties that is checked is whether there is at least one
service in the function, and whether each service has a use case (behaviour)
description.

The second set of properties concerns the interconnection of the service with
the structural elements of the function. Each service must have at least one
trigger, which is given by a port and a signal or an operation call declared for
that port. Moreover, the service must yield a result, i. e. there must be a port
onto which the service writes an output or, in the case of a stateful function, there
must be a storage to which the service delivers a result. Since these properties
cannot be deduced automatically from the natural language descriptions the
language contains service specification slots where read and write accesses to
ports and storages are declared. The corresponding part of the specification of
the Cbs service compute cbs data is:

service compute_cbs_data {
trigger pin_clock.tick;
read pin_ignition.ignition;
read pin_wheels.relative_wear;
read pin_motor_oil.relative_wear;
read pin_particle_filter.relative_wear;
read pin_spark_plug.relative_wear;
write service_date;
write summary_estimation;

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 90



behavior {...}
...

}

Checking the properties thus is a simple task; having these declarations in the
model, however, is an important methodological contribution and within larger
developments their indication in the maturity level view is indeed helpful.

Now, as mentioned above, it is checked whether all structural elements are
justified by a use case. First for each port it is checked whether signal or operation
calls are declared for this port at all; otherwise it is superfluous. Then it is checked
whether the incoming signals and operation calls at the port are read by some
service and whether the declared outgoing signals and operation calls are provided
by some service. The analogous property is checked for the storages: each one
must be both written and read by one or more services.

2.2 Dealing with Variants

Since the aXLang has been designed for the automotive domain it must provide
means to deal with variants. At the architectural level, including the function
interface models, variability can be expressed by alternatives, encapsulated in
mutually exclusive elements (xor), optional elements, and parameterised elements
(see [MR09]). In the case of a function interface model ports, signals, operation
calls, and storages can be optional; services can be xor, i. e. product specific
behaviours of a service can be specified.

Since the product specific behaviour and structure of a system in general
cannot be localized to one place in the architecture but is spread over several
components, feature models are employed to encapsulate the variance. An aXLang
model altogether thus consists of several specific models. One is the application
model, a model of the component architecture of the application view of the
system. The function interface model is an application model at the first level
of maturity; it represents an application function as one component. A second
one is the feature model that characterizes the commonalities, differences, and
dependencies of the different variants of the system in terms of abstract system
features. The feature model is a tree of features indicating the mandatory, optional,
and alternative features of the products of the system family. A mapping of
the features to the application model defines which of the variant architecture
elements are present in a system variant when a given configuration of features is
selected. (For an introduction to feature oriented software product line engineering
see [KLLK02].)

In the model of the Cbs function we have optional ports for the particle filter
and spark plug sensor inputs because these are not present in all vehicles. They
are indicated by the keyword optional (see Table 1). Whether one of the optional
ports is present depends on whether the vehicle has a diesel or a gasoline engine.
This is expressed in the feature model and the mapping of the feature model to
the application model (f2a mapping):

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 91



featuremodel CbsFeatures {
features {
xor engine {
diesel;
gasoline;

}
}

}
...
f2a_mapping CbsApplicationBinding CbsFeatures -> CbsApplication {
\\ feature to port links
f2p_links {
engine.diesel -> pin_particle_filter;
engine.gasoline -> pin_spark_plug;

}
}

The feature mapping is estimated according to the same principle as above:
each element must be justified. In this case this means first that each optional or
alternative feature of the feature model must be mapped to an element of the
function interface model and that each variant element of the function interface
model must be bound by a feature. Furthermore the semantics of the features and
the variant element must be respected: No mandatory feature must be mapped
to a variant architecture element and no invariant architecture element must be
bound by a variant feature.

2.3 Evaluation of Function Interface Models

As mentioned above a development stage should be defined by the evaluations
that have to be performed and by the validation operations it allows.

The validation operation that becomes possible (and meaningful) with function
interface models is virtual integration, i. e. the check whether the interfaces of
the application functions of the systems fit to each other. For that purpose a
system model is built by connecting the considered function interface models.
More precisely: the ports of the function interface models are connected to specify
which functions are senders and receivers of which signals and operation calls
respectively. Communication with the environment is modelled by encapsulating
the function interface models in a common super component (the system) and
delegating the corresponding ports to the ports of the super component (see
Figure 4). Composition and decomposition of components are discussed in more
detail in section 2.4.

The necessary condition of the virtual integration is that each required signal
and operation is provided, either within the system or by the environment. Input
signals are required by a function, otherwise it would not be able to produce
its output. Thus the connections in the system must be checked as to whether
each signal is delivered somewhere and transported to the requesting function.

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 92



Fig. 4. Virtual integration of function interface models.

Operation calls are required by a function if they are sent from an output port.
There must be a function that receives the function call at an input port, and
operates it.

A sanity check can and should be performed here, too. If a function provides
a signal at one of its output ports, there should be someone in the system or
the environment who needs the signal; i. e. there must be a connection to the
input port of a function where the signal is consumed, or an explicit delegation
to the environment. Otherwise the specification would require the generation of a
useless signal by the originating function – which produces development overhead.
Since the implementor of the function typically does not receive the whole system
model but only the model of the function she cannot check whether the required
functionality is indeed needed. Analogously, operation calls at input ports of a
function are checked: is there someone in the system or the environment who
needs (calls) the operation? If no, remove it from the specification.

The evaluations of a function interface model implemented in the aXBench,
the modelling environment for the aXLang, are estimations on the size of the
software and the effort of its development. Both are based on a metric for system
family models (see [KFS06]) that is an extension of the function point metrics
to specifications including variance. The first estimation, the software size, is
important for the cost estimation of the product (the necessary size of memories),
the second one is important for the cost estimation of the process.

The aXBench furthermore provides an interface for the integration of other
evaluation operations. Metrics that count elements as the one mentioned above,
for instance, would get the elements of the model via the interface and deliver
their results as a view to the aXBench.

2.4 Function Simulation Model

The behaviour of a function has been described in the function interface model
in natural language only. The second milestone in its development is reached
when an executable model is delivered.

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 93



In general an application function of an automotive system is too large as
to be immediately modelled in such detail that the model can be executed.
Therefore the model has to be decomposed into components representing parts of
the function that are small enough to be provided with an executable description.

Decomposition is supported in the aXLang as in most other component
or architecture description languages by component hierarchies. To allow the
multiple use of subcomponents of the same type, the hierarchy is not directly
represented in the language. Instead, components and subcomponents are different
entities in the metamodel; a component (strongly) aggregates subcomponents and
each subcomponent has a reference to a component that is its type. This encoding
of hierarchies via instance-type relations is common in component or architecture
description languages, as for instance in the UML composite structure diagrams,
EAST-ADL, AADL, and AUTOSAR.

Executable behaviour is described in the aXLang by programming language
code. Beyond the standard assignments and control structures it contains expres-
sions for the access to the ports of the function. A write statement, used for the
emission of signals and operation calls respectively, is of the form write(port.signal,
value) or write(port.operation, par 1 value, ..., par n value). An expression for
reading a signal at a port has the form read(port.signal). Operation parameters
can be read in the function that received the call with read(port.operation, par j).

Checking the function simulation model maturity level first means to check
whether each service of an atomic function has an executable behaviour descrip-
tion. Only atomic functions are checked because the decomposition overwrites
the higher level description. The behaviour of the composed function is com-
pletely described by the composition of the behaviour of the subfunctions. The
higher level function does not add behaviour to its parts, but just organizes their
interconnection by connecting their interfaces.

The replacement of the function interface model by the function simulation
model via decomposition implies the further checks that are performed to reach
the function simulation model maturity level.

The first part is the structural decomposition. According to the definition of
the language subcomponents can only be introduced and interconnected within
the component that is decomposed. Thus the structural coincidence of the function
interface model with the top level of the function simulation model is guaranteed
by construction (see Figure 5).

What has to be checked, however, is whether the subcomponents are connected
with each other correctly and whether they are connected with the higher level
component correctly. Both amounts to checking the data flow in the composition,
as in the virtual integration discussed above. Each required signal or operation
call at the port of some subcomponent must be provided either by another
subcomponent via a connection or by the super component via a delegation. To
be economic, furthermore, each provided signal or operation must be requested
by another subcomponent or the super component.

The second part of the check concerns the behavioural decomposition, or,
to be more precise, the structural aspect of the behavioural decomposition. A

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 94



Fig. 5. Decomposition of services and storages.

service of the super component is refined by services of subcomponents, which
means that the abstract (informal) specification of the super service is replaced
by the more concrete (executable) specifications of the subservices that refine the
super service. To state which subservices refine the super service, the language
has a subservices slot for each service (see also Figure 5).

service compute_cbs_data {
...
subservices {
clientWheels.compute_cbs_client_data;
clientMotorOil.compute_cbs_client_data;
clientParticleFilter.compute_cbs_client_data;
clientSparkPlug.compute_cbs_client_data;
master.compute_cbs_master_data;

}
}

In the subservices slot only the set of refining subservices is given; the way in
which they interact to realize the super service is determined by the way in which
the containing subcomponents are connected. Thus there is no need to describe
control structures in the subservices slot.

The first property that is checked for the maturity level is thus whether
each service of the function interface model is decomposed, i. e. it has a non

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 95



empty subservices slot. Next the declaration of the interconnection of the super
service within the super component is checked: Are its triggers and read and
write accesses correctly refined by the decomposition?

The decomposition must show the same effects at the function interface as the
super service, i. e. it must neither introduce new inputs or outputs nor must it
ignore inputs or outputs of the super service. If a decomposition of a service would
require more input than the super service the integration of the implemented
functions would fail. If it provides more output more implementation work than
necessary would have to be done.

In order to check this property the data flow of the subcomponents according
to the declaration of their services (read and write accesses inside the subcompo-
nents) and their connections (data flow in between the subcomponents) has to
be computed. With this information the read and write accesses of the composed
subservices to the ports of the function interface can be compared with the read
and write accesses of the super service declared in the function interface model.

Analogous to the decomposition of the services of the super component into
services of the subcomponents the storages must be decomposed. For that purpose
the aXLang provides a substorages slot in the specification of a storage:

top component Cbs {
...
storages {
storage cbs_data {

int service_date;
int summary_estimation;
substorages {
master.cbs_data {
service_date -> master.cbs_data.service_date;
summary_estimation -> master.cbs_data.summary_estimation;

}
}

}
}

}

In the example the storage is not distributed to subcomponents but resides in
one single component, the master.

Using the substorages declaration also the correct decomposition of the read
and write accesses of higher level services to their storages can be checked. If
the super service has read or write access to a storage then at least one of its
subservices must have an access of the same type to at least one of the substorages.
Vice versa the subservices must not introduce more accesses than declared by
the superservice.

Obviously the analysis of the decomposition is not complete. It covers only
the structural declarations at the two levels. Whether the behaviour respects
the declarations is another issue, which requires program or behaviour model
analysis techniques that are not incorporated into the aXBench yet.

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 96



2.5 Refinement and Iteration

The check of the consistency of the function interface model and the function
simulation model is based on the correctness of the decomposition. The basic idea
thereby is to use hierarchical decomposition as refinement. Since the interface of
the abstract model is fixed – additions are only made in the internal structure – we
thus have substitutability by construction. In whatever way the function interface
model is refined it fits structurally into the overall system. The decomposition
information in the function interface model, i. e. the subservices and substorages
slots, allows requirements tracing. They indicate the implementation (composition
of lower level services) of a functional requirement (description of a higher level
service) as well as the implementation of the required state properties.

In a development process, however, requirements typically are not entirely
stable. One reason is that the more detailed design of a solution often reveals that,
for instance, more input is needed by a function to compute its outputs, or that
a restriction to less output would make the overall design more adequate. Having
both the abstract super component (the requirements) and the subcomponents
(the solution design) as hierarchy levels in one model supports the proliferation
of requirements changes immediately. The maturity level check indicates whether
new input signals for instance have been introduced at the sublevel but not yet
delegated to the super level. Thus the user receives a warning that the interface of
the super component has to be updated. Changing this interface must of course
be reflected by a revision of the virtual integration, which can and should not
be automated. However, the maturity level check provides the methodological
support for the users’ activities that yield concisely documented requirements
change requests. The management of the changed requirements is best supported
by organizational means in the process.

2.6 Simulating Models with Variants

The possible evaluations of the function simulation model are the same as the
ones for the function interface model: counting elements to measure the predicted
software size and development effort. The difference is that the basis for the
estimation is now more detailed and thus the prediction more precise.

The major advantage of the function simulation model is that simulation
becomes possible to validate and to debug the model. The aXBench has a
simulation machine that uses the aXLang programming language description of
the services’ behaviours and the interconnection as expressed in the structure, i.
e. the connection of the subcomponents.

A challenge in the automotive domain, as mentioned above, is dealing with
variants. One possibility is to derive product specific models from the family
model and then to simulate each of these. The aXBench has an operation that
performs this derivation. Given an application model, a feature model, a feature-
to-application mapping, and a feature configuration (i. e. a consistent subset of
the feature model) it returns a new application model where all variant elements
that are not bound to features in the configuration are removed. The removal of

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 97



course respects all dependencies such that the result of the operation is a correct
model again.

However, this procedure is tedious and neglects the advantages of product line
engineering, namely to use only one model for all variants. A better solution is to
provide a simulation that simulates all variants simultaneously, i. e. a simulation
of the family model. The essential idea thereby is that each simulation run
collects all configuration decisions that must be drawn in order to realize this run.
Thus whenever a run encounters an xor component with its delegations to the
alternatives it splits into all alternatives and memorizes in each branch that this
alternative has been chosen. The result is then a tree of events where in each step
the selected variant elements are indicated. This result can be used to identify
behavioural invariants (commonalities) as well as to validate the variant specific
behaviour (differences). The details of this system family model simulation are
out of the scope of this paper, however.

3 Summary and Conclusion

Modelling is a part of the development process. In order to be useful it must
be guided by a method and supported by a tool that does not only allow the
construction of models but gives feedback on the state and the quality of the
models.

The model maturity levels discussed in this paper are an effort to supply
this kind of support, without constraining the development activity unduly.
A distinction is made between syntactically correct models and models that –
beyond that – represent milestones of the process. Error messages and correction
suggestions are given in the case of violations of syntactic rules. Warnings are
used to indicate what is missing in order to reach the maturity levels defined
in the process. These warnings are grouped according to the checks that are
preformed for the different levels, as discussed above. Within these groups the
elements that are the causes for not passing a test are given and linked with the
model editor such that corrections or amendments can be made immediately.
Analogous to program development environments, the idea is to rise the efficiency
of the modelling process by this support, and to achieve models of a better –
since checked – quality.

Beyond the two maturity levels discussed in this paper two further ones are
implemented in the aXBench. The first one, the deployment model maturity level,
addresses models that contain a further specific model, the resource model. This
one represents the computation and communication resources of the system, i. e.
the nodes (electronic control units) and the buses and other communication means
of the system. Similar to the feature-to-application mapping the aXLang supports
the specification of application-to-resource mappings that define how the functions
are allocated to the nodes and how the application level communication is realized
by the communication infrastructure of the underlying system. The corresponding
maturity level is checked according to the same principles as discussed above. Are

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 98



all relevant model elements present; are all elements justified; are the semantics
respected?

Having the resource level included in the model further evaluations are possible.
A real time behaviour analysis for example can be made, provided information is
given on the real time behaviour of the resources. A prototypical implementation
of a schedule analysis algorithm has been used in the aXBench to illustrate the
integration of an evaluation operation into the aXBench development process.
The long term goal, however, is to use the aXBench interface to connect other,
more professional evaluation tools.

The next maturity level indicates the AUTOSAR interface, i. e. the step in the
process where the requirements and function design models of the aXLang can
be handed over to the system generation process of the AUTOSAR methodology.
The check of this maturity level is done constructively. The AUTOSAR export
operation tries to translate an aXLang model to an AUTOSAR representation,
and thereby collects all obstacles, i. e. all elements that cannot be translated to
AUTOSAR. This yields the warnings of the AUTOSAR maturity level that are
presented to the user in the maturity level view.

As discussed above the definition and implementation of a maturity level might
not be technically challenging. Rather, a detailed analysis of the methodological
role of the model’s elements is required. The effect of the maturity level checks
and the presentation of the results as a view in the tool, however, is considerable,
as the programming development environments have shown.

References

[AUT] AUTOSAR development cooperation. AUTOSAR – Automotive Open
System Architecture. www.autosar.org

[aXBench] aXBench-Homepage. The Autosar Extensible Workbench.
axbench.isst.fraunhofer.de

[Gro08] Martin Große-Rhode. Methods for the Development of Architecture Models
in the VEIA Reference Process. ISST-Bericht 85/08, Fraunhofer-Institut
für Software- und Systemtechnik, May 2008.

[KFS06] Sebastian Kiebusch, Bogdan Franczyk, and Andreas Speck. An unadjusted
size measurement of embedded software system families and its validation.
Software Process: Improvement and Practice, 11(4):435–446, 2006.

[KLLK02] Kyo Chul Kang, K. Lee, J. Lee, and S. Kim. Feature oriented product
line software engineering: Principles and guidelines. In Domain Oriented
Systems Development – Practices and Perspectives. Gordon Breach Science
Publishers, 2002.

[MR09] Stefan Mann and Georg Rock. Dealing with variability in architecture-
descriptions to support automotive product lines. In David Benavides,
Andreas Metzger, and Ulrich Eisenecker, editors, Proc. 3rd Int. Workshop
on Variability Modeling of Software-intensive Systems (VAMOS 2009),
ICB-Research Report No. 29, pages 111–120.

[VEIA] VEIA-Homepage. Verteilte Entwicklung und Integration von Automotive-
Produktlinien. veia.isst.fraunhofer.de

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 99




