
Towards a Systematic Approach for Software
Synthesis

Hamid Bagheri and Kevin Sullivan

University of Virginia,
151 Engineer’s Way,

Charlottesville, VA 22903 USA
{hb2j, sullivan}@virginia.edu

Abstract. Development of software-intensive systems nowadays rely ex-
tremely on middleware platforms as a major building block especially to
handle the distribution issues. This dependency has become even more
crucial in the distributed embedded systems environment. As such, the
architectural choices of such systems are being driven by middleware
platforms. However, diversity and high frequency of evolution in middle-
ware platforms lead to architectural models becoming obsolete relatively
rapidly, which is in distinct contrast to the resistance nature of software
architecture to frequent change. We believe that the key to this is to ab-
stract away from architectural platforms and their induced architectural
styles to more abstract representation of applications. In recent work
we have shown that architecture-independent application models, devel-
oped using modern model-based development (MBD) techniques, can be
mapped to application architectures in a variety of architectural styles.
Although the work provided an important proof of concept, the styles,
or architectural spaces, to which application models were being mapped
were simple, idealized styles. Di Nitto and Rosenblum recognized that
middleware and similar platforms induce defacto architectural styles. In
this paper, we discuss some of the related issues we are addressing in our
research towards a systematic approach for software synthesis.

1 Introduction

Software-intensive systems are continuously growing in size and complexity. In
recent years, they have ever more migrated from the traditional, localized setting
to highly distributed, and embedded environments. While software engineering
researchers and practitioners have recognized software architecture as a promis-
ing means of managing the complexity of software systems in general [17, 15],
other studies have shown its significant role in developing distributed embedded
systems [16, 11].

Distributed embedded systems, furthermore, rely extremely on middleware
as a major building block to handle the distribution issues [8]. However, because
of the pervasiveness of middleware platforms, the architectural choices are being
driven by such platforms and since they are both changing rapidly and are very

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 101



diverse, the architecture of most of software-intensive systems and distributed
embedded systems, in particular, are accidental nowadays [5]. This is in distinct
contrast to the way that software architecture is designated to be, i.e. software
architecture typically comprises the early decisions made about a system, and
is consequently very difficult to change [17]. As such, there is a pressing need to
understand how to make architectural changes much more readily.

We believe that the key to this is to abstract away from architectural styles
and architectural platforms to more abstract representation of applications. In
recent work [2] we demonstrated the feasibility of separating and combining
formal representations of application properties and architectural styles, respec-
tively. In doing so, we defined style-specific architectural mappings that relate
style-independent application models to architectural models in given styles.

We have continued studying the notion of architectural mappings and the
ways in which they can be defined and exploited in system development. In this
paper we discuss some of the issues we are addressing in our work.

2 Previous Work

Our earlier work [2] suggests that the concept of application type, parallel to the
notion of architectural style, is important, and that it is possible to separate, and
combine formal representations of, application contents and architectural styles,
respectively. To that end, we formulate the mapping problem as one of finding
satisfying solutions to a specification that combines an application model of a
given application type, with an architectural style specification, and with rules
for mapping application models of the given type to architectural models in the
given style. We have implemented such mappings using Alloy as a language and
satisfaction engine [9].

In view of the increasing platform diversity and complexity of software-
intensive systems, model-based development (MBD) approach has become a
viable means to address system-integration issues in the early phases of develop-
ment. In recent work [3] we showed that software architectural styles can serve as
analogs to choices of platforms in model-based development, and that the con-
cept of application type leads naturally to an abstract, user-friendly approach to
application modeling. That is, the proposed separation of concerns supports a
model-based development and tools approach to architectural-style-independent
application modeling, and architecture synthesis with style as a separate design
variable. More precisely, by providing a prototype tool, Monarch [1], we illus-
trated how an approach giving as inputs the formal specifications of application
descriptions and architectural styles can be implemented in a computationally
effective manner by being placed within the formal framework of MBD.

These work provided a proof of concept of the feasibility of the proposed
formal architectural mappings in an automated way. However, it suffers from
some shortcomings especially with respect to the pervasiveness of middleware in
system development. In the next section, we discuss some of the ongoing issues
we are addressing in our work.

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 102



3 Proposed Work

3.1 Middleware-induced architectural styles

Middleware infrastructures are emerging to be used extensively as a major
building block in facilitating system development especially in the large-scale
distributed systems. Notwithstanding the several categories of middleware plat-
forms, there are numerous middleware infrastructures from which to choose such
as TAO [13], Aura [16], PolyORB [18] and even Enterprise JavaBeans (EJB) [6].

An approach that may be commonly used and could be ineffective and coun-
terproductive in practice is that a middleware is chosen first with respect to
its provided services and in turn leads to an unnecessary impact over the sys-
tem’s architecture. In contrast, deferring middleware decisions has several ad-
vantages such as separation of concerns and promoting level of abstraction in
the early phase of software design [12, 17]. Furthermore, a middleware decision
is not independent of the system’s architecture. As such, decisions made during
the development of the system’s architecture may limit the decision space of the
middleware that will be used to implement the system.

Problems can arise when the architectural styles chosen for the application
conflict with the assumptions of the chosen middleware. Blair et al. [4] argue
that the architectural models can be used in systematic synthesis of middle-
ware configurations. Particularly, it would be helpful to consider structural and
behavioral constraints implied by middleware infrastructures as architectural
styles [12]. Formal definition of these styles will allow architects to exploit these
styles in a way that avoids unintentional mismatch between the required ap-
plication’s properties and the constraints imposed by the middleware-induced
architectural styles.

Although a number of approaches explored to separate and relate middleware
infrastructures and architectural styles induced by them in various domains (e.g.
embedded systems [11], web-based systems [7]) insufficient progress has been
made on mapping architecture-independent application models into the mod-
ern and practical, middleware-induced architectural styles and in turn, into the
realized architecture implementations. We envisage an approach that is based
on model-based development to mapping architecture-independent application
models, considered as platform-independent models, to the realized architecture
implementations in conformance with the architectural styles that are induced by
middleware platforms and other complex and practical application frameworks.
This approach can be used to automate the derivation of the architectural models
(Platform-specific models) from the application models (Platform-independent
model) that refines application types.

3.2 Code Generation

The architectural styles so derived promise benefits for both development and
maintenance. However, formal specifications often lack bindings to implementation-
level constructs. Thereby, it is particularly difficult to verify the fidelity of the

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 103



developed software system with respect to the formally generated architectural
model. To use generated architectural models and stylistic guidelines extracted
from the middleware platforms in an effective manner, they should be provided
with support for their implementation [14]. Implementing architectural models
further is an issue of considerable importance that relates design decisions to
implementation elements that realize those decisions [17], which in turn, leads
to a gap between the architectural concepts from one side and the constructs of
the target programming language from the other side.

There are various kind of tools intended for supporting the implementation
of considerable part of code on varying programming languages. However, to our
best knowledge neither of them pay enough attention to the key role that archi-
tectural styles can play in filling the implementation gap. The lack of flexibility
on the subject of the architectural styles is a significant limitation of current
approaches to code generation from architectural models [10]. That is, the ar-
chitect is forced to develop models in a specific architectural style supported by
a given approach, rather than a suitable style chosen by the architect.

In this regard, architectural frameworks are emerged to support specific archi-
tectural styles. In concrete terms, an architectural framework is a software tech-
nologies built upon the functionalities provided by the programming language
and the operating system that provides services with respect to supported archi-
tectural styles [17]. Architectural frameworks are practical technologies that fa-
cilitate the system’s development in conformance to specific architectural styles.
They are considered as a significant strategy for bridging the gap between ar-
chitectural models and their associated implemented technologies. We investi-
gate the extensions of our work to include subsequent mappings for synthesis
of executable code from formally derived architectural models on the basis of
architectural styles for a wide variety of such frameworks that support architec-
tural styles to which the architectural models conform, which in turn returns
the responsibility for stylistic decisions to the architect.

4 Conclusion

In this paper we have discussed the role of architectural mappings in synthe-
sis of software implementations from abstract application models. We have also
touched upon a number of issues we are exploring in our study of architec-
tural mappings. Consequently, we believe that architectural mappings represent
a promising approach to addressing the challenges of software-intensive systems
and especially of the embedded systems, and will continue to be a focus of our
ongoing research in this domain.

References

1. Monarch tool suite. http://monarch.cs.virginia.edu/.
2. H. Bagheri, Y. Song, and K. Sullivan. Architectural style as an independent vari-

able. In Proceedings of the 25th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’10), 2010.

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 104



3. H. Bagheri and K. Sullivan. Monarch: Model-based development of software ar-
chitectures. In Proceedings of the 13th International Conference on Model Driven
Engineering Languages and Systems (Models’10), 2010.

4. G. S. Blair, L. Blair, V. Issarny, P. Tuma, and A. Zarras. The role of software
architecture in constraining adaptation incomponent-based middleware platforms.
In IFIP/ACM International Conference on Distributed systems platforms, pages
164–184, New York, United States, 2000. Springer-Verlag New York, Inc.

5. G. Booch. The accidental architecture. IEEE Software, 23(3):9—11, 2006.
6. L. DeMichiel and M. Keith. Enterprise JavaBeans specification documentation,

2006.
7. S. Giesecke and J. Bornhold. Style-based architectural analysis for migrating a

web-based regional trade information system. In First International Workshop
on Web Maintenance and Reengineering (WMR 2006) in conj. with CSMR 2006,
volume 193, pages 15—23, Bari, Italy, 2006. CEUR Workshop Proceedings.

8. V. Issarny, M. Caporuscio, and N. Georgantas. A perspective on the future of
middleware-based software engineering. In 2007 Future of Software Engineering,
pages 244–258. IEEE Computer Society, 2007.

9. D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

10. S. Malek. Effective realization of software architectural styles with aspects. In Pro-
ceedings of the Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008), pages 313–316, 2008.

11. S. Malek, M. Mikic-Rakic, and N. Medvidovic. A Style-Aware architectural mid-
dleware for Resource-Constrained, distributed systems. IEEE Trans. Softw. Eng.,
31(3):256–272, 2005.

12. E. D. Nitto and D. Rosenblum. Exploiting ADLs to specify architectural styles
induced by middleware infrastructures. In Proceedings of the 21st international
conference on Software engineering, pages 13—22, Los Angeles, California, United
States, 1999. ACM.

13. D. Schmidt and C. Cleeland. Applying patterns to develop extensible ORB mid-
dleware. Communications Magazine, IEEE, 37(4):54—63, 1999.

14. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik.
Abstractions for software architecture and tools to support them. IEEE Trans.
Softw. Eng., 21(4):314–335, 1995.

15. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

16. J. P. Sousa and D. Garlan. Aura: An architectural framework for user mobility in
ubiquitous computing environments. In Proceedings of the 3rd Working IEEE/IFIP
Conference on Software Architecture, pages 29—43, 2002.

17. R. N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley, 2009.

18. T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB: a schizophrenic
middleware to build versatile reliable distributed applications. In Reliable Software
Technologies - Ada-Europe 2004, pages 106–119. 2004.

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 105




