
Demonstration of XML Validation Framework using

OASIS CAM approach

David Webber

OASIS CAM TC Chair,

630 Boston Road, Suite M-102

Billerica, MA 01821,

United States of America.

David Webber, drrwebber@acm.org

Abstract. A XML validation approach using OASIS Content Assembly

Mechanism (CAM) templates is presented. The approach permits support of a

wide array of complex message exchanges with singleton template patterns and

sets of context rules. The approach with CAM templates simplify and

externalize the validation rules while allowing a validation gateway to act as a

pass-through on information that is not directly relevant. The demonstration

uses an open source implementation component built using Eclipse and Java

technology to deliver the needed validation services.

Keywords: XML, exchange, validation, XSD, schema, template, framework,

OASIS, CAM, content assembly, CCTS.

1 Introduction

In today's complex information exchanges with XML and associated large XSD

schema, coupled with an array of trading partners, it becomes a significant challenge

to support and maintain accurate handling of all incoming transactions. Currently,

XML schemas and DTDs provide the ability to validate, or verify, the structural

content of a XML document. The associated business content validation rules cannot

be adequately accommodated as part of XML schemas and hence use of OASIS CAM

templates provides the ability to express extended contextual handling rules.

With the advent of industry specific exchange standards expressed as XML schemas

the consumers and providers of information exchange services must comply with

these schemas to be conformant and interoperable with industry partners. However,

such industry specific schemas are loosely bound with minimal validations and can be

used for only structural validation of the incoming XML.

The solution approach we present here is to implement the XML validation services

based on the OASIS Content Assembly Mechanism (CAM) specification. The OASIS

CAM template approach is based on a simple approach to XML content handling and

validation that allows businesses to create common interchange models for their

exchanges in XML. CAM templates support context-based rules, code-lists, and

cross-field validations.

The solution includes CAM Studio (an Eclipse-based UI template editor) that is used

to define the CAM template. Then the CAMV validation engine provides a set of

open source Java APIs which are used to validate the XML with the specific compiled

CAM templates for run-time deployment in production environments. The CAM

Studio template editor supports adding custom XPath expressions to its generated

templates. Writing rules with XPath expressions has proven to be an extremely

powerful way of implementing the required XML handling and logic. These

validations prevent errors when the data is received by applications or components

that expect the data to be in a particular structure and comply with business content

validation rules.

The demonstration will illustrate an exchange where two different exchange

patterns are required based on the context of an exchange partner. Sample XML

message instances show how dramatically different information exchange patterns

can be handled with ease using the CAM template approach.

2 Implementation Approach

2.1 Validation Template Generation

Developing XML validation templates is discussed here. Figure 1 below shows

the Model, Author and Test, Deploy, and Monitor stages in the life-cycle of

developing the validation rules.

Figure 1. Validation rules life cycle

Source: IBM Developer Works - http://www.ibm.com/developerworks/java/library/x-camval

2.1.1 Model Stage

In this step the data entities and their data elements are identified along with their

corresponding validation rules. The required XML exchange schema is designed;

alternatively, the required elements are mapped to an existing industry standard

schema. The CAM Studio editor provides the capability to import and tailor existing

exchange schema this is discussed next stage.

2.1.2 Author and Test Stage

CAM Templates are assembled or authored using the CAM Studio editor. There

are the three possible editor options provided to create a CAM template:

1. Create from scratch or hand-crafted

2. Use an existing XML Schema

3. Use an existing XML instance

Once you create the CAM template, the next step is to review each required XML

element and attribute and their applicable validation rules. A panel in the editor

displays the rules for each template node. The Figure 2 here shows an example

template structure in the CAM Template Editor.

Figure 2 - CAM template in the CAM Template Editor

While all such validation rules need not be binary in nature (that is, either pass or

fail), CAM supports classifying validation failures as Warnings and Informational

level reports. This feature comes in handy for scenarios where corrective action can

be taken at the service provider-end, modifying the payload to make the message

usable rather than rejecting the complete message. For example, a rule might require

the length of a particular comment field to be within 255 characters; however, a

request message should not be rejected when the length exceeds the maximum value,

but a warning should be sent to the message consumer specifying that only the first

255 characters will be used from the comment.

As the warning is returned only if the length of specific element exceeds the

specified length, this rule is specified as conditional and an XPath expression is

created to perform the length check as depicted in Figure 3 screen capture of the

CAM Studio Editor expression entry wizard tool:

Figure 3. How to configure a warning rule

Once definition of the rules is completed then the template can be deployed.

2.1.3 Deploy Stage

The CAM templates are compiled using the CAM Studio Editor before you use

them with the application run-time CAMV engine. The compiled format is the

condensed XML version of the original CAM template itself and is designed to

optimize performance of the CAMV validation engine. To compile the CAM

Template, select the menu option Tools > Compile Template. This will generate the .cxx

file format of the template which will be used at run time.

The CAMV validation engine offers a simple, open-source Java API which can be

used in any Java application to validate an input XML with the applicable CAM

template. The code snippets in Listing 1 illustrate the usage of CAMV:

Listing 1. Usage of CAMV API

TemplateValidator tv = new TemplateValidator(templateDocument);

tv.setErrHandler(new ElementErrorHandler(tv));

boolean tvResult = tv.validate(ioReader);

if (tvResult){

 System.out.println("No errors, might be warnings.....");

}

List errList = tv.getErrors();

List warnList = tv.getWarnings();

You can cache CAMV templates into memory to perform repeated validations and

not read the templates from the hard disk for each and every validation performed.

This reduces the disk I/O and significantly improves the performance and throughput.

Next we consider the verification of the rules scenarios in the template.

2.1.4 Monitor Stage

During the monitor stage the performance of the templates is tracked and

adjustments performed to fine tune handling of actual exchange message instances.

By virtue of using the CAMV engine, you can now externalize all the validation

checks and need not embed them inside code or otherwise implement rules using

custom coding. During the monitoring cycle, you can meet the need for additional

validations by simply updating the validation templates to add additional validations

or remove existing ones. Then simply redeploy the compiled CAM template (.cxx

files).

2.2 Further Template Considerations

The CAM template format is represented in XML itself (see Appendix A for

example) and hence can be readily edited directly, as well as through using the CAM

studio editor. This flexibility permits development of sets of CAM templates to

match particular business application scenarios by cloning and adapting existing

exchange templates.

3 Conclusion

Using the CAM template XML validation framework approach, you can enforce

validation checks consistently and then rapidly change rules to fine-tune message

handling to match particular partner exchanges and content. By externalizing the

validation rules, which in conventional deployment have been embedded deep inside

the backend application code, you have much better control and management along

with more predictable message handling. In addition the CAM rules templates can

optionally be shared with partners to facilitate better content handling alignment

across systems.

With a more adaptive and fault tolerant process, the template based validation

framework is able to handle a wider variation in content and, hence, more easily

support a broad set of interaction partners with reduced support and maintenance

costs—which is the opposite of normal XML validation practice today.

The use of open source greatly facilitated collaboration on developing the solution

and integrating the CAMV engine into the deployment environment.

Overall, this project demonstrated that innovative use of XML and dynamically

configurable XML rule templates can provide a better, more stable, faster, and

capable customer application experience than relying on static compiled code

resources alone.

Appendix A – Example CAM template

Fig. 4. XML syntax representation of CAM Template

Related Work

Schematron XML validation framework and ISO specification

http://www.schematron.com/resources.html

Reference Saxon XSLT engine implementation and Sourceforge project

http://saxon.sourceforge.net/

References

1. OASIS Content Assembly Mechanism (CAM) technical specification, version 1.1, published

Boston, MA – http://docs.oasis-open.org/cam (2006).

2. OASIS SET TC work on automated component mapping –

 http://www.oasis-open.org/committees/set

3. Kathuria, P., Roberts, M.E., Webber, D.R.R. : XML Validation Framework using OASIS

CAM (CAMV). In: IBM DeveloperWorks,

 http:/www.ibm.com/developerworks/library/x-camval/index.html May (2010)

4. JCAM Engine with XML Editor / Validator: See information about the CAMV project at the

SourceForge Web site.

5. The OASIS CAM Wiki: Visit a resource site for users and developers of CAM templates and

CAM processors.

6. Meet CAM: A new XML validation technology (Brian M. Carey, developerWorks,

September 2009): Read an introduction and overview of CAM.

7. Taking XML Validation to the Next Level: Introducing CAM: Read an article series

representing CAM: The Missing Manual.

