
A Framework for Performance Study of

Semantic Databases

Xianwei Shen1 and Vincent Huang2

1 School of Information and Communication Technology,
KTH- Royal Institute of Technology, Kista, Sweden

2 Services and Software,
Ericsson AB, Kista, Sweden

Abstract. Presently, the Semantic Web is gaining popularity. Conse-
quently, there is an increased demand for benchmarking of the perfor-
mance of RDF stores and SPARQL queries with simulated test data.
However, there is not sufficient work on how different RDF stores per-
form with various SPARQL elements. The work presented in this paper
seeks to explore the performance issues of data storage, data retrieving
and data inference. We present a framework for performance study of
semantic databases. We used this framework to evaluate several exist-
ing semantic databases. The evaluation results show that our framework
can facilitate the performance study and there is room for improving the
performance of current semantic databases.

Keywords: Semantic Web; RDF; SPARQL; database; perform study;
evaluation

1 Introduction

The Semantic Web is an extension of the existing Web [2]. It evolves step by
step leveraging structured data technologies like XML (eXtensible Markup Lan-
guage), and remote service technologies as well as decades of research and de-
velopment of artificial intelligence. The goal of the Semantic Web is to give
data a meaning, i.e. making data readable for machines. Ontologies build axiom
systems, and every data imports such ontology should conform to such axiom
systems which are very hard to build. Therefore, ontologies are normally built
by experts which is also a bottleneck for the development of the Semantic Web.
The Semantic Web is the most promising embodiment of artificial intelligence.
It brings huge benefits for integrating, organizing, indexing and searching in-
formation accurately and effectively. In a not so far future, the Semantic Web
technologies will substantially improve our Web experience.

The higher layer of the Semantic Web architecture has attracted a lot of at-
tention, while the backend of the RDF (Resource Description Framework) data
store suffers from performance issues with the currently existing databases which
are not originally designed for storing RDF data. There is currently not so much

raul
Texto escrito a máquina
Proceedings of the International Workshop on Evaluation of Semantic Technologies (IWEST 2010). Shanghai, China. November 8, 2010.

2 Ontology and Statistics Based SPARQL Optimization

effort on the performance aspects of the Semantic Web. The performance stud-
ies usually lack of comparison of various RDF data stores with specific storage,
inference and query methods. In fact, the performance is a vital drawback of the
Semantic web. The goal of this work is to design and implement a data inde-
pendent standalone developer-centric tool to provide evaluation of performance
and optimization/tuning during the development process.

The structure of this paper is the following: In Section 2, we give a brief
overview of related work in the performance study area. In Section 3, we present
in detail our performance study framework. In Section 4, we evaluate some ex-
isting semantic databases using our proposed framework. And finally, we give
some concluding remarks in Section 5.

2 Related work

Jena Framework 1 is the most popular Java implementation for Semantic Web.
Jena maintains RDF triples in memory with a hash map-based data structure.
Jena also keeps triples in a so-called GraphTripleStore which consists of three
hash maps named as Subjects, Properties, and Objects respectively. In Jena,
each triple will be stored three times in GraphTripleStore, because each field
can be treated as key that such triple will be put into Subjects, Properties and
Objects with subject, property and object as key respectively. This design trades
off more memory space for finding a triple quicker.

There are also a number of benchmarks developed for studying the perfor-
mance of semantic web. Each benchmark implements its own framework. LUBM
stands for Lehigh University Benchmark [5] which is a de facto benchmark for
Semantic Web technology vendors presently. It is easy for generating and cus-
tomizing data. It partially supports OWL (Web Ontology Language) Lite and
assumes a university case with generated data of user-defined number of univer-
sity, department, student, etc. LUBM provides 14 non-optional queries according
to the published university ontology. UOBM(University Ontology Benchmark)
is an extension of LUBM which embraces better inference capability support,
i.e. partial of OWL DL. It provides also better scalability support, because they
add more interlinks between the isolated university assumption in LUBM [3].
SP 2Bench(SPARQL Performance Benchmark) [4] uses a real dataset of DBLP
Computer Science Bibliography. It considers RDF layouts and RDF data man-
agement approaches.

From these benchmarks, we found that they are only valuable if the target
domain being evaluated is similar with the benchmark’s simulated dataset, oth-
erwise it is not accurate. In the view of development process, these benchmarks
focus on the production process in the sense of they are intended to help vendors
to enhance their products and encourage application developers to choose the
appropriate products, rather than assisting developers to optimize or tune the
performance of products.

1 http://jena.sourceforge.net/

A Framework for Performance Study of Semantic Databases 3

3 Evaluation Framework

In this work, we designed and implemented a novel evaluation framework to
explore the performance issue precisely and comprehensively. According to the
extracted requirements introduced below, a highly customizable architecture of
this evaluation framework is designed and implemented.

3.1 Requirements

Each requirement item is denoted in the form of EFR-Number, where EFR
stands for Evaluation Framework Requirement. All requirements are illustrated
in Table 1 below.

EFR ID Requirements

EFR-1 Generic architecture

1. It should be easy to integrate different data stores and
inference engines.
2. Data independent.

EFR-2 Diverse SPARQL queries

1. Fine-grained query design with specific granularity, e.g. different
combinations of SPARQL elements

EFR-3 Comprehensive evaluation

1. A large set of test cases covers various aspects of SPARQL and
data store layouts

EFR-4 Cost-aware monitor

1. Time-aware
2. Memory-aware

EFR-5 Smart & Trustable Logger

1. Apache Log4j-like logger, but with addition service as keeping
track of log files
2. Evaluated results are able to be plotted automatically

EFR-6 Backward compatible testing

1. Adaptive to frequently changing versions
Table 1. Requirements for designing evaluation framework

3.2 Architecture

According to the previous analysis, we propose an architecture as in Figure
1. Note that the gray colored components are existing framework or software
incorporated into this architecture, and the white colored components are our
contributions. Presently, the framework is only available for Jena’s API, which
means that all the components being integrated should provide interfaces to
Jena. This is also a restriction in designing this framework.

4 Ontology and Statistics Based SPARQL Optimization

Fig. 1. Architecture of evaluation framework

The lowest layer mainly focuses on the maintenance of data. All the compo-
nent names are written in italic style. The component RDF Dump provides the
plain RDF file in RDF/XML, N3, Turtle, etc. While the D2RQ Engine above the
Data Stores can convert RDBMS data into RDF data in runtime, and translate
SPARQL to SQL (Structured Query Language) on the fly. So we say these two
components answer the queries, i.e. either from the plain text or converted from
relational data. The Data Stores component consists of a set of data stores, e.g.
five data stores are used, MySQl, Oracle 11g, Virtuoso, Jena TDB and SDB.
Each data store may have several storage layouts.

The adaptor layer adapts different interfaces to general interfaces for storing
and querying. The component Store Adaptors adapts different storage requests
into a general format, which is specified in the Store Module component. The
component Query Adaptors converts various query implementations into a gen-
eral interface, and process query in a uniform style. The two kernel modules Store

Module and Query Module are responsible for data storage and query handling.
The Store Module component defines a general style to store data according to
various storage plans. The component Query Module integrates different query
forms and query execution implementations into a general format.

Jena Framework with Inference Module provides all necessary API for RDF
models and SPARQL specification. The Assembler is used to load RDF data or
configurations. All the configurations are also RDF models, the ontology used is
predefined in Jena. ARQ is also integrated in Jena Framework, it allows querying
with SPARQL. Jena Framework is the underlying package we used through

A Framework for Performance Study of Semantic Databases 5

this work as well. The Inference Module component provides the capability of
reasoning over RDF triples with rules, e.g. Jena rules engine, Pellet, PelletDb,
Oracle rules and Virtuoso rules.

The top layer defines a scripting system which allows user to define storage
plans or test cases arbitrarily without interfering with the underlying compo-
nents. The Store Plans component specifies various layouts for different data
stores as well as data sources. The component Testcases allows scripting work
for various queries against diverse store plans.

The Monitor and SPLogger are two components for keeping track of run-
ning status and evaluation results of the evaluation framework. The component
Monitor keeps track of the time consumption, memory cost as well as the data
statistics. SPLogger is an Apache Log4j-like logger, which is used for recoding
the produced results by the evaluation framework into Microsoft Excel, and plot
them using MATLAB.

3.3 Implementation

D2RQ Engine [1] is modified to adapt to our evaluation framework so that it
can map RDB to RDF and to establish a bridge between SQL and SPARQL.
Note that we use manually mapping scheme, i.e. design a mapping file according
to D2RQ specification rather than automatically generated the mapping file,
because the latter one may lose semantics we need.

The Store Module makes the framework independent of either specific non-
RDF store or RDF store, i.e. add or remove a data store is simply an update of
scripts from Store Plans.

The Store Adaptors component consists of four types, they are Oracle Store
Adaptor(OSA), TDB Store Adaptor(TSA), SDB Store Adaptor(SSA) and Vir-
tuoso Store Adaptor(VSA). OSA loads RDF model with an assemble file fed
into Store Module and store it in Oracle 11g with JenaAdaptor 2 (released with
Oracle’s semantic web technology softwares). TSA executes in the same way but
stores RDF model in TDB with triple or quad layouts. SSA stores model with
layout1, layout2, layout2/hash, layout2/index schemes. VSA follows triple and
quad layouts as TDB does.

The Query Module provides a fair and uniform environment for evaluating
queries. Because data stores may have their own interfaces for executing queries,
we have to hide these differences and let them conform to the same specification
for evaluation, both before and after the query processing. It consists of three
subcomponents, they are Load Module, Dispatch Module and Query Agent re-
spectively. The Load Module is responsible for loading test cases, establishing
connections, loading ABox and TBox or other scripts. The Dispatch Module
seeks to feed Query Agent with SPARQL queries for evaluation. The Query
Agent takes responsibility of query evaluation. It supports two paradigms, both
sequentially and concurrently. In sequential evaluation, the adjacent queries have
no interference to each other. They are stateless. We achieve this by the steps of
start service, execute query and close service. Concurrent evaluation is planned
as future work.

6 Ontology and Statistics Based SPARQL Optimization

The component Query Adaptors includes five kinds of adaptors so far, they
are Oracle Query Adaptor(OQA), TDB Query Adaptor(TQA), Virtuoso Query
Adaptor(VQA), SDB Query Adaptor(SQA) and D2RQ Query Adaptor(D2QA)
respectively. OQA takes test cases from the Testcases module and queries against
Oracle 11g (configured with Oracle Jena Adaptor 2). TQA takes test cases and
queries against TDB. VQA takes test cases and queries which are in correspon-
dence with Virtuoso’s SPARQL syntax. D2RQ rewrites SPARQL to SQL in
runtime, it retrieves data from RDB and then converts it to RDF according to
D2RQ mapping language [1].

As the previous sections described, the evaluation framework satisfies the
Generality criteria: it is able to generally support a variety of backends and var-
ious layouts and a wide range of queries with comprehensive query features as
well. It satisfies the criteria of Modularity due to the component base design with
functional cohesion and data coupling specification. And it satisfies the Auto-
maticity criteria as well, thanks to the scripting system design and multithreaded
paradigm.

The framework is still a test version. It does not support other RDF model
implementations other than Jena. Moreover, remote query evaluation is not im-
plemented.

4 Performance Evaluation

4.1 Test Environment

Table 2 shows the evaluation environment of this work.

Name Configuration

Evaluation Tool Self-developed Evaluation Framework

Data Model Media Model and LUBM benchmark model

Data Store Jena TDB, Jena SDB, Oracle 11g, MySQL, Virtuoso

Inference Engine
Jena rule engine, Oracle rule engine, Virtuoso rule engine,
Pellet, PelletDb

Storage Layout TDB: triple layout & quad layout
SDB: layout1, layout2, layout2/hash, layout2/index
Virtuoso: triple layout & quad layout
Oracle: triple layout

PC Configuration CPU: Core2 -2.20 GHz
I/O read: ˜50MB/s
OS: 32-bit Vista enterprise
RAID: None

Table 2. Configuration of evaluation environment

We adopt LUBM for our evaluation work. Trying to cover different dataset
sizes, we choose two settings, LUBM(10) and LUBM(8000), with 10 and 8000 as

A Framework for Performance Study of Semantic Databases 7

random seed respectively. LUBM(10) has approximate 1.3 Million triples, with
113MB as RDF/XML format, and LUBM(8000) has close to 1.1 Billion triples
with 262GB as RDF/XML. For our own research purpose, we also studied the
performance with dataset from an internal project. The data set is used for
movie recommendations. It contains 29 classes, 19 object properties, 47 data
type properties, and a total of 1,256,350 triples.

4.2 Evaluation Results

Figure 2 shows the comparison of time and memory consumption of loading
RDF model to various data stores. The memory cost is calculated only with the
consumption of JVM, other resource consumptions are not considered. There-
fore, the memory cost showed here is only for a reference, rather than a formal
evaluation results due to inaccuracy in some cases. For example, the Virtuoso
Open edition is developed with C++, the consumption is not calculated. As
the pair shows in Figure 2 that Virtuoso Default Inferred only costs 3454 KB.
Default means storing with default mode, i.e. triple layout, Inferred means the
data involves inferred graph as well. Figure 3 illustrates the time cost of loading
model for SPARQL query before query execution. It is obviously that querying
over plain text is impractical. Databases are rather fast and should be used.

Figure 4 shows the inference cost of combinations of different data stores and
various inference engines. We find that Pellet/PelletDb outperforms Jena rule
engine, Oracle with PelletDb is the fastest choice.

Figure 5 compares the original triples and the count after inference with the
setting of RDFS and several SWRL rules.

We present two examples of the evaluation results of SPARQL queries. The
first query is to find 100 movies. The second query is to find movies which are
released in a specific time range, and without any cover. The query results are
shown in Figure 6 and Figure 7.

SPARQL Example 1:

PREFIX mo: <http://localhost:8080/SwedPevo/ontology/Media.owl#>

SELECT ?S

WHERE

{ ?S rdf:type mo:MovieAsset .

}

LIMIT 100

SPARQL Example 2:

PREFIX mo: <http://localhost:8080/SwedPevo/ontology/Media.owl#>

SELECT ?S ?D

WHERE

{ ?S rdf:type mo:MovieAsset ;

mo:assetInputDate ?D .

FILTER (?D > "2009-03-03T16:00:00"^^xsd:dateTime)

OPTIONAL

8 Ontology and Statistics Based SPARQL Optimization

Fig. 2. Time & memory cost of loading RDF model to data stores.

A Framework for Performance Study of Semantic Databases 9

Fig. 3. Time cost of loading RDF model for SPARQL query

Fig. 4. Inference cost of various combinations of data store and inference engine

10 Ontology and Statistics Based SPARQL Optimization

Fig. 5. Original triples vs. Inferred triples

{ ?S mo:hasCover ?C .}

FILTER (! bound(?C))

}

ORDER BY ?s

4.3 Observations

From the above evaluation results, we can summarize the following observations:

1. Query with inference on the fly is not recommended, due to hours of reason-
ing time.

2. Databases without ACID property (Atomicity, Consistency, Isolation and
Durability) are faster than the those with ACID property, e.g. TDB is the
fastest one in most cases.

3. Databases have poor performance with processing patterns with OPTIONAL
element and nested complex SPARQL query, due to imperfect translation
from SPARQL to SQL.

4. Storage layouts have significant effects on performance.
5. The query optimizer of database does not work very well on triple store

because of lack of available semantics.
6. The order of query patterns has significant effects on performance of query

processing.

Note that, all the evaluation process of databases are performed without
caching. The database service is restarted when a query is evaluated so that
the second observation item is not affected by the first one. But with caching
available, the results will not be accurate. From the evaluation results, we can

A Framework for Performance Study of Semantic Databases 11

Fig. 6. Query results of SPARQL Example 1

Fig. 7. Query results of SPARQL Example 2

12 Ontology and Statistics Based SPARQL Optimization

see that TDB is the fastest RDF data store, while Virtuoso is the fastest SQL-
based database. The combination of OracleJA and PelletDb outperforms other
combinations.

5 Conclusion

In this paper a novel evaluation framework for performance study of semantic
database is presented. Firstly, the requirements are analyzed and the framework
is designed and implemented according to these requirements. Then we further
discussed several components involved in the framework in detail. From the
evaluation results, we can concluded that the performance of existing semantic
databases for RDF storing and query processing is acceptable to a certain level,
but it is still not suitable for real world usage and there is large room for im-
provement. To a large extent, the performance relates to how SPARQL queries
are written. The performance can be improved by SPARQL query optimization.

References

1. The d2rq platform v0.6 user manual and language specification,
http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/index.htm, 2009

2. Berners-Lee, T.: Semantic web road map, http://www.w3.org/DesignIssues/ Se-
mantic.html, 1998

3. Ma, L., Yang, Y., Qiu, Z., et al: Towards a complete owl ontology benchmark. In
European Semantic Web Conference (2006)

4. Schmidt, M., et al: Sp2bench: A sparql performance benchmark. In 8th International
Semantic Web Conference (2009)

5. Y Guo, Z Pan, J.H.: Lubm: A benchmark for owl knowledge base systems. Journal
of Web Semantics 3 (2) 158-182 (2005)

