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Abstract. Ontology-based data access has received a lot of attention

recently, yet there is no clear methodology to evaluate a “semantically

enriched” information system in general or an ontology based data ac-

cess system in particular. The quality of such an information system

clearly depends on how well your data fits your class-level ontology, and

how well these two components fit your queries. This paper presents

a generic, flexible framework for this kind of analysis: it can be used,

e.g., to compare two class-level ontologies w.r.t. their fitness for a given

kind of data and query set. We apply the framework to an example case

and show how it helps to answer relevant modelling and representation

questions.

1 Introduction

In this paper we present a framework for evaluating the quality of “semantically
enriched” information systems (IS). By that we mean IS that distinguish between
schema and data and are geared towards answering queries. The idea behind
that is to encapsulate domain experts’ background knowledge into the query
answering mechanism in order to improve recall and precision. A typical example
of such an IS is an ontology-based data access (OBDA) system that uses a class-
level ontology (or Tbox) as a schema and stores the data in a database. Queries
retrieve tuples of individuals from the database that answer the query w.r.t. the
schema.

The proposed evaluation framework measures the well-suitedness of the var-
ious components of an IS. It can be applied to any IS that involves a schema,
a collection of data, a collection of information requests and a query language
(QL). We call this a modelling approach (MA) for an IS. Thus, the framework
is generic and can be applied to a variety of scenarios, e.g. for comparing differ-
ent OBDA systems or for comparing different IS using database schemas or for
comparing heterogeneous systems. ODBA has received a lot of attention recently
and can come in many different fashions, e.g. regarding the expressive power of
the ontology or the supported query language [2, 3, 1, 10, 6, 9].
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When applying the framework we look at information requests as abstrac-
tions of queries (they are independent of schema and QL). For each MA the
framework measures if an information request can be answered by a query in
a given QL over the given schema and data and how good the query is. More
precisely, the metrics produced by the evaluation framework are the fitness of
an MA, i.e. the ability of formulating “good” queries, and the flexibility, i.e. the
number of different “good” ways of expressing a query.

These measurements can help IS designers in taking important design de-
cisions, e.g. whether to use an off-the-shelf schema or one that is specifically
tailored to the application or which OBDA technique or tool to use. The mea-
surements also point out which queries can and cannot be answered w.r.t. a
given MA and how complicated it is to formulate these queries. That allows IS
designers to identify, compare and discuss weak and strong points of their MA

and manage trade-offs between modelling effort, maintainability and scalability.
In the following we will explain the technical details of the evaluation frame-

work and its measurements. Furthermore, we will outline a case study in which
we applied the framework to compare different ontology-based MA for medical
image annotations.

Data

Parent(John)
Parent(Mary)
Person(Steve)
hasChild(Steve, Sue)

Answer:

John, Mary, Steve

Schema

Parent ! Person " #hasChild.$

Text

Information Request:

parents: John, Mary, Steve Query:

Text

Parent(x?)

Fig. 1. A modelling approach plus a query and its answers.

2 Information System Evaluation Framework

We start by formalising the relevant components of a (semantically enriched)
information system for which we are then going to evaluate and compare different
modelling approaches. We will use the term “modelling approach” to describe
the whole system consisting of data, schema, (an abstraction of) queries, and a
query language as depicted in Figure 1.

2.1 Modelling Approach

A modelling approach MA = (S, D,R, QL) consists of

– a schema S: a finite description of the semantics of the data, e.g. a database schema,

a logic program, or the TBox of an ontology, which can be empty.
– the data D: e.g. tables and rows in a relational database, ground facts, or ontology

ABox assertions.



– a set of information requests R: each r ∈ R represents the answer to a query of D,

and is given as a set (of tuples) over D. Ideally, R should be representative for the

queries to be answered by the information system to be built.

– a query language QL: e.g. SQL, (union of) conjunctive queries, OWL class expres-

sions.

An information request asks for tuples of the given data that are relevant for
the user. The request needs to be distinguished from the actual query, which is a
specific manifestation of the information request formulated in QL, see Figure 1.
An information request r can correspond to 0, 1 or more queries in a given query
language. The former is the case if there are no queries in QL whose answers
would be exactly the tuples in r when asked over S and D, i.e., if QL is unable to
express the information request over the given schema and data. In the case that
there are one or more queries, some of them might be more easily expressible
than others. In Figure 1, we sketch a case where the user wants to retrieve three
individuals, John,Mary,Steve, from the database that are known to be parents—
but not all of which are explicitly stored as parents. Still, in the presence of the
given schema, the query Parents(?x) can be formulated to retrieve exactly those
three individuals.

The only assumptions we make is that the query language QL comes with a
semantics that identifies, for a given query q of arity n in QL, data D, and schema
S, the set of certain answers [4]. More precisely, we assume the existence of an
entailment relation |=, and use Ind(D) for the set of individuals or constants in
D to define cert(·) as follows:

cert(q, S, D) = {w ∈ Ind(D)n | S ∪D |= q(w)}.

2.2 Applying the Framework

The basic characteristics we want to evaluate is the fitness of an MA, i.e. how
well the schema and the data are suited to enable the formulation of “fit” queries
for answering the given information requests, and the flexibility of an MA, i.e.
the number of “fit” queries that can be formulated for answering the given
information requests. The fitness and flexibility of an MA can be determined
by analysing the syntactic, semantic and/or cognitive complexity of the queries
that correspond to the information requests and depends on the fitness function.

The Fitness Function Different queries that correspond to an information
request can vary in length and be more or less complex, e.g. in terms of using
relations and constructors such as conjunctions, disjunctions, etc. They can also
be more or less difficult to understand from a cognitive perspective. For example,
a human user might find a query that uses terms that are actual words (in the
sense that they exist in a domain expert’s dictionary) easier to understand than



one that uses anonymous identifiers. The purpose of the fitness function is to
capture this complexity.

The framework is parametrized with a fitness function f that associates each
query q in QL with some value f(q) that is intended to capture its fitness. We
only require that f maps QL into a totally ordered set (M,<), e.g. R or N4, which
we call the query’s fitness value. Obvious examples of fitness functions are (i) a
query’s length, (ii) a query’s length combined with the number of constructors
involved, either via some (weighted) summation or into a vector, or (iii) a query’s
length combined with the number of terms not to be found in Wikipedia or a
suitable lexicon, or any combinations or extensions of these.

The smaller the fitness value, the “better” the query. We read f(q) < f(q′) as
q being “better” or “fitter” than q′. The framework evaluates the “best queries”
for an information request, e.g., the shortest queries. The fitness function induces
a partial order on the queries.

The Query Space Each information request r ∈ R has an associated query
space: first, we define correct queries cQ(r, S, D) as those that answer exactly
an information request r over S and D:1

cQ(r, S, D) = {q | q is a QL query and cert(q, S, D) = r(D)}.

Next, we define best queries bQ(r, S, D, f) as those correct queries whose
fitness is maximal. Clearly, best queries depend on how we measure fitness, and
thus on the fitness function f :

bQ(r, S, D, f) = {q ∈ cQ(r, S, D) | there is no q′ ∈ cQ(r, S, D) :

f(q′) < f(q)}.

Since the bQ(·) are the “fittest” queries among the correct queries, any two
queries in bQ(·) are equally fit, and we can abbreviate their fitness as follows:
for f(qi) = f(qj), we set f({q1, ..., qk}) to be f(q1). For an empty set, e.g.,
if an information request cannot be expressed in QL over S and D, we set
f(∅) = max<(M) if such a maximum exists, i.e., maximally unfit, or to some
other very unfit value.

If we want to consider the flexibility of an MA, we simply need to consider
the number of best queries, i.e., the cardinality of bQ(·). Depending on the
application domain, we can adapt the framework to consider only non-redundant
queries for measuring the flexibility. For example, if S is a class-level OWL

1 Currently, the framework does not consider approximations of correct queries for

measuring the fitness of the modelling approach, see the discussion in Section 4.



ontology and QL are OWL class expressions for instance retrieval, we can count
all elements in bQ(·) that are not structurally equivalent [7].

2.3 Applying the Framework to OWL

We will now specify an instantiation of the framework to evaluate OWL ontology-
based data access approaches. This specification is still quite flexible: e.g., we
cover both the case where the data resides in a database and the case where it
is part of an ontology. An MA = (T, A, R, CL) consists of

– a TBox T, i.e., a set of OWL class-level axioms,2 that describes the conceptual

model and the terminology of the domain, plus possibly a set of mappings in the

sense of [3],

– an ABox A, i.e., a set of OWL assertions about named individuals, or, in the

presence of the above mentioned mappings, tables from a relational database from

which these mappings are defined,

– a set R of information requests r, i.e., sets of tuples of OWL individuals, and

– CL is the set of OWL class expressions as a query language.

OWL class expressions are an obvious choice for a query language, but there
are more expressive ones such as conjunctive queries, unions of conjunctive
queries [4], SPARQL, SPARQL-DL,3 or nRQL [11].

For an ontology-based modelling approach, we suggest a fitness function as
follows: f(q) is a fitness vector (a, b, c, d) that contains (i) a as the length |q| of q,
(ii) b as the number of distinct OWL constructors in q, (iii) c as the role nesting
depth of q, and (iv) d as a flag that is set to 1 if q contains unintelligible codes,
and 0 if all terms in q are human readable otherwise. We compare the fitness of
queries via the lexicographic ordering from the left of their fitness vectors.

A Simple Example We use a simple example to that captures data about
parents and their children. We will use this example to illustrate the components
of the modelling approach as well as the query space for an information request.

Consider the modelling approach MA = (T, A, R, CL) consisting of the fol-
lowing TBox and ABox

T = { A = {
Father ≡ Man # ∃hasChild.%, Father(John),
Mother ≡ Woman # ∃hasChild.%, Mother(Mary),
Father & Parent, hasChild(Mary, Tom),
Mother & Parent} hasChild(John, Tom)}

2 More precisely, OWL 2 class expression axioms, property axioms, datatype defini-

tions, and keys, see http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/.
3 See http://www.w3.org/2009/sparql/wiki/Main_Page and entailment regimes.



Now consider the information request r(A) = {Mary, John}, i.e., r retrieve
“all parents”. Using OWL class expressions as a query language, the following
queries could be considered:

q1 = Parent q2 = Father 'Mother
q3 = ∃hasChild.% q4 = Woman 'Man
q5 = Father q6 = Mother

The correct queries for r are cQ(r, T, A) = {q1, q2, q3, q4}, and not all of them
are equivalent. The queries q5 and q6 are not correct because they return only
incomplete answers. W.r.t. the above mentioned fitness function, we have only
one best query, q1, because it is the shortest correct query.

Please note that, w.r.t. the data given here, q4 is correct for r, and it would
be interesting to see what would happen if we extended A with, say, Man(Tom):
either r will change as well to include Tom, or q4 ceases to be a correct query.

2.4 Using the Evaluation Framework to Compare Modelling
Approaches
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Fig. 2. General and comparative measurements for modelling approaches.

On the left hand side of Figure 2, we have sketched an evaluation of a mod-
elling approach MA where, for each information request ri ∈ R, we have com-
puted the best queries for ri, and then their fitness and cardinality. Clearly, if we
want to compare two modelling approaches MA1 and MA2, we can do the same
and compare, for each information request ri ∈ R and each of the two modelling
approaches, the fitness and cardinality of the best queries. This can unveil the
strengths and weaknesses of the information system to the system designer. For
example, if there are information requests for which the set of correct queries
is empty, then f(bQ(r, S, D, f)) is prohibitively bad. To overcome this, we can
then decide whether to select a different, more powerful query language or to
change the schema or the way the data is modelled—or whether perhaps that



particular information request is of too little importance for such a change. The
measurements can also help to point out where the trade-offs between modelling
effort and benefits in terms of easier query answering are. For example, consid-
ering an ontology-based modelling approach, whether more modelling effort for
a more expressive TBox would be justified for the sake of simpler queries.

In addition, we can aggregate the fitness and flexibility of a modelling ap-
proach: this can be interesting if we want to compare two such modelling ap-
proaches en gros. In what follows, we use AGG to stand for an aggregation
function such as min, max, avg, or count. This function can be fixed in the
particular application of the framework.

We can aggregate both the fitness and the flexibility of a modelling approach:
the overall fitness of a modelling approach f(MA) is aggregated over the fitness
vectors of all best queries for all information requests, i.e.,

m = AGG
[

r∈R

f(bQ(r, S, D, f)).

The overall flexibility of a modelling approach aggregates over the cardinality
of all best queries for all information requests, i.e.,

! = AGG
[

r∈R

| bQ(r, S, D, f)|.

As illustrated in Figure 2, applying the framework to one modelling approach
MA = (S, D,R, QL) reveals

– for each r, the fitness value of the best queries: f(bQj). In particular, it will identify

information requests for which it is hard to specify a query in QL and those for

which this is impossible.

– for each r, the number of best queries: |bQj |
– the aggregated fitness value m for the entire MA

– the aggregated flexibility ! of the entire modelling approach MA

When comparing different modelling approaches (as shown in Figure 4) we
can compare the

– point-to-point fitness for each information request

– overall (aggregated) fitness m of the modelling approaches

– point-to-point flexibility for each information request

– overall (aggregated) flexibility ! of the modelling approaches

3 A Case Study: Ontology-Based Annotations

We will now present the application of the evaluation framework in a case study
about ontology-based annotations of medical images and their descriptions. The
study is described in more detail in [8].



The modelling process involved a number of design decisions. First, we chose
to use a module of the established medical ontology SNOMED CT4 as the TBox
of our annotation ontology5 and translated natural language radiology reports
of 50 medical images to ABox assertions of that ontology. The textual descrip-
tions contain medical information such as image type, image modalities, clinical
findings, body structures and diagnoses. Next, we had to be decide whether the
ABox assertions should be simple class assertions of the relevant medical terms
occurring in the text or whether the ABox should contain class and object prop-
erty assertions, trying to closely reflect the meaning of the text. Furthermore,
the SNOMED CT TBox has a very complex structure containing role groups [5]
that are used e.g. to model diseases that relate findings to body structures. We
had to find a way to translate the textual descriptions in accordance with this
complex structure.

3.1 The Modelling Approaches

In the following, we present three different modelling approaches. MA1 models
the data with a simple ABox that contains almost only class assertions: indi-
viduals are only linked by a single object property shows in order to relate an
image to the individuals shown in it. MA2 uses class and object property asser-
tions that capture the relational structure of the image descriptions. MA3 uses
a slightly different TBox than MA1 and MA2 in the sense that we created an
additional set of roles and a role hierarchy in order to bypass the SNOMED CT
specific role groups. An example of a disease in SNOMED CT that is defined
using role groups is NeoplasmOfLung. The concept is defined as follows:6

NeoplasmOfLung ≡ DisorderOfLung #
∃roleGroup( ∃AssociatedMorphology.Neoplasm #

∃FindingSite.LungStructure)

For MA3, we introduced three additional object properties: shows, hasFinding
and hasLocation and defined the following role hierarchy:

roleGroup o AssociatedMorphology & hasFinding
roleGroup o FindingSite & hasLocation

shows o hasFinding & shows
shows o hasLocation & shows

If we want to find all images that show neoplasms in MA3,
we can formulate a simple OWL class expression query like
Image # ∃shows.Neoplasm and would retrieve images labelled with
4 http://www.ihtsdo.org/snomed-ct/
5 http://www.cs.man.ac.uk/\~opitzj/snomed/snomedLungModuleImageAnnotations.

owl
6 To improve readability, we use slightly abbreviated class names and DL syntax.



Image # ∃roleGroup.∃AssociatedMorphology.NeoplasmOfLung without having
to use the complicated role group construct in the query.

We compare the following modelling approaches:
MA1 = (T1, A1, R, CL) MA2 = (T1, A2, R, CL) MA3 = (T2, A3, R, CL)
where T1 is the original SNOMED CT TBox and T2 the TBox with the additional
role hierarchy. A1 is an ABox with the data formulated in terms of simple class
assertions whereas A2 and A3 use class assertions as well as object property
assertions.

3.2 The Information Requests

The set of information requests R is derived from the content of the original,
natural language image descriptions: clinical findings, findings located in body
parts, complex findings (involving role groups), image types and modalities and
combinations of the former. We will now list some representative information
requests.

– r1: An information request that involves one clinical finding: “All images that show

neoplasms.”

– r2: An information request that involves two concepts, an image type and an image

projection: “All X-ray images with PosteroAnterior (PA) projection.”

– r3: An information request that involves a clinical finding combined with a qualifier

value: “All images that show left-sided pleural effusions.”

– r4: An information request that involves a clinical finding combined with a body

structure: “All images that show soft tissue masses in the pleural membrane.”

We expect that MA1 is good for formulating queries for simple requests (such
as those that ask for just one concept, e.g. r1 and r2) whereas MA2 is more
appropriate for formulating queries for complex requests that involve relations
between concepts, such as r3 and r4. However, we also expect that it is difficult
to formulate queries for the more complex requests r3 and r4 in MA1 because
simple class assertions cannot capture the semantics of findings that are related
to qualifier values or body structures. Furthermore, the measurements should
highlight that MA3 allows the formulation of simpler queries as opposed to MA2

because the TBox contains the additional role hierarchy that allows use to bypass
role groups.

3.3 Results

Tables 1 – 3 illustrate the findings for the three proposed modelling approaches
MAi w.r.t. the information requests r1 to r4. For each of the information requests,



the best queries as well as the fitness values for length, number of distinct con-
structors and role nesting depth as well as the flexibility (!) are listed for the
three modelling approaches.

rj bestQueries Length Consts Nesting
Depth

Flex

r1 Image ! ∃shows.Neoplasm 3 2 1 1
r2 Image !

∃shows.PlainChestXray !
∃shows.PAProjection

5 2 1 1

r3 Image !
∃shows.PleuralEffusion !
∃shows.LeftSided

5 2 1 1

r4 none 100 100 100 0
Table 1. Findings for MA1.

rj bestQueries Length Consts Nesting
Depth

Flex

r1 Image ! ∃shows.(Disease !
∃roleGroup.(∃AssociatedMorphology.Neoplasm)

6 2 2 1

r2 Image !
∃hasImageType.PlainChestXray !
∃hasImageProjection.PAProjection

5 2 1 1

r3 Image !
∃shows.(PleuralEffusion!
∃hasQualifierValue.LeftSided)

5 2 2 1

r4 Image ! ∃shows.(Disease !
∃roleGroup.(
∃AssociatedMorphology.SoftTissueMass !
∃FindingSite.PleuralMembraneStructure)

8 2 3 1

Table 2. Findings for MA2.

rj bestQueries Length Consts Nesting
Depth

Flex

r1 Image ! ∃shows.Neoplasm 3 2 1 1
r2 Image !

∃hasImageType.PlainChestXray !
∃hasImageProjection.PAProjection

5 2 1 1

r3 Image !
∃shows.(PleuralEffusion !
∃hasQualifierValue.LeftSided)

5 2 2 1

r4 Image !
∃shows.(∃hasFinding.SoftTissueMass !
∃hasLocation.PleuralMembraneStructure)

6 2 2 2

Image !
∃shows.(∃AssociatedMorphology.SoftTissueMass !
∃Findingsite.PleuralMembraneStructure)

Table 3. Findings for MA3.

3.4 Evaluation

The results shows that MA1 allows the formulation of relatively simple queries.
However, it is not always possible to formulate a query that returns exactly those
tuples that are the certain answers to the information request. As soon as the
information request involves nesting of entities, e.g. a finding with a location
or a finding with a qualifier, MA1 does not allow the formulation of a query
that is precise enough to return only the correct answers. In this case the fitness
values were assigned an exemplary value max = 100, see Table 1 for r4. In this
information request we want to find images that show soft tissue masses located
in the pleural membrane. In our data set there is one image annotation that
describes a neoplasm in the pleural membrane and a soft tissue mass in some



other body structure. This image would have been returned with a query like
Image # ∃shows.SoftTissueMass # ∃shows.PleuralMembraneStructure, although
it is not an answer to the information request. The problem lies in the nature of
the data modelling paradigm. The lack of relational structure in the ABox makes
it impossible to capture the semantics of the image descriptions appropriately.
MA2 models the data in the ABox using the relational structures defined in
the TBox, in particular the properties shows, roleGroup, associatedMorphology,
etc. This allows us to formulate queries for all information requests. However,
the queries are rather long and nested due to the fact that the complicated role
group construct [5] has to be used. The modelling approach MA3 can capture the
semantics of the image descriptions as well as MA2 and allows us to formulate
queries for all information requests. Furthermore, the queries are significantly
simpler than those in MA2 because MA3 uses a slightly more expressive TBox
than MA2 with which we can bypass role groups.

The three modelling approaches and their measurements expose the evolving
design of the retrieval system built in the case study. We started off with a rela-
tively simple ABox that involves little effort compared to the later versions but
is not expressive enough to allow the formulation of queries for all information
requests. Using a more expressive ABox with object property assertions to relate
the class assertions to each other makes it possible to formulate queries for all
information requests, however, the queries become significantly more complex.
Furthermore, with a little more modelling effort of introducing a small role hi-
erarchy in the TBox we can formulate queries that are as expressive but much
simpler than those that came with the original TBox.

The evaluation framework has highlighted the weaknesses of each modelling
approach, e.g. the inability or difficulty of formulating queries for information
requests. It can also highlight the strengths, e.g. conciseness and flexibility of
a modelling approach. The measurements can guide the system engineer and
support design decisions. For example, the framework can identify the benefits
of changes in the modelling approach and therefore point out whether more
modelling effort would be justified.

4 Conclusion and Future Work

We have presented a generic information system evaluation framework that can
be used to analyse the fitness and flexibility of modelling approaches. It involves
evaluating represenative information requests and the complexity of the queries
that correspond to these requests as well as the well-suitedness of the components
of the modelling approach, i.e. the schema, the data and the queries.

The measurements generated by the framework can be used to highlight
strengths and weaknesses of a modelling approach and to compare the fitness



of similar modelling approaches. It also supports engineers in making important
design decisions, such as using an off-the-shelf schema or creating one that is
tailored to the data or, in general, investing more modelling effort if this leads to
significant benefits in the fitness of the modelling approach. The measurements
can be used as a basis for discussion when building data access applications.

A next step of our work will be to apply the framework in a case study where
we compare more heterogeneous modelling approaches with each other, e.g. an
ontology-based modelling approach with one based on databases. Furthermore,
we want to extend the framework so that it measures the fitness of queries taking
into account not only exact matches to the answers of the respective information
requests but also partial results. Finally, we will extend this approach so that
it not only evaluates the complexity of formulating queries, but also the overal
performance and scalability of query answering.
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11. M. Wessel and R. Möller. A high performance semantic web query answering

engine. In International Workshop on Description Logics. CEUR, 2005.




