
A Query Algebra for
Quantum Information Retrieval

Annalina Caputo1, Benjamin Piwowarski2, Mounia Lalmas3

1 University of Bari, Italy. acaputo@di.uniba.it
2 University of Glasgow, UK. benjamin@bpiwowar.net

3 Yahoo! Research, Spain. mounia@acm.org

Abstract The formalism of quantum physics is said to provide a sound
basis for building a principled information retrieval framework. Such a
framework is based on the notion of information need vector spaces,
where events, such as document relevance, correspond to subspaces, and
user information needs are represented as weighted sets of vectors. In
this paper, we look at possible ways to build, using an algebra defined
over weighted sets, sophisticated query representations and report on
corresponding experiments on TREC.

1 Introduction

Quantum physics offers a formalism based on the mathematics of Hilbert spaces,
to describe the behaviour of matter at (sub-)atomic scales. As van Rijsbergen
claims [1], the “language” of quantum physics can be used to express the vari-
ous geometrical, probabilistic and logical IR models within a unified framework.
Driven by this motivation, research in quantum-inspired IR is investigating how
the mathematical framework of quantum physics can address diverse challenges
in IR. These efforts led to the recent proposal of a quantum IR (QIR) frame-
work [2].

In this framework, the system view on the user information need (IN) is a set
of weighted vectors, where each vector represents a possible atomic IN, i.e., an
IN that cannot be further refined. Computing a query representation from the
terms forming the query is more complex in the QIR framework, than in standard
vector space models. In the latter, the query is represented as the sum of the
vectors representing each query term; in the former, each term corresponds to a
weighted set of vectors (the possible atomic INs corresponding to this term), and
thus it is not straightforward to extend this summation technique. In addition,
many different operators (beside an extension of the sum) can be used [2].

In the QIR framework, a query is processed in two steps. First, the different
aspects of an IN are identified, where each aspect address a different requirement
on the topic of a document (see Section 2.2). The aspects representations are
computed using two possible operators, namely, the extension of the sum, which
corresponds to a mixture of superpositions, and another operator, mixture. In [3],
the best strategy was equalling each term to a different aspect. In [2], the two

operators led to an increase in performance depending on how some or all the
terms forming a query were related to each other; more precisely, whether the
terms together formed a “concept” (e.g. “social network”) or whether they were
(more) independent (e.g. “blue car”).

Based on the findings in [2], and that it is possible to freely combine operators
when representing a query (hence, to define an algebra with these operators), this
paper explores how complex query representations can be built using an algebra
based on quantum operators. In order to do so, we exploit query segmentation
and computational linguistics techniques to identify relationships between terms
in a query, and extract phrases. We propose a number of strategies, making use
of the terms and phrases in the query, to build a structured query representation.

Structured queries have been used in the past in IR and when properly ex-
pressed, retrieval performance is often excellent [4]. The fact that structured
queries, in general, are not widely used (e.g. [5]) stem from users difficulties to
express them correctly, although this can be somehow tackled through (pseudo)
relevance feedback. In this paper, we study operators from quantum physics as
a means to express structured queries in the QIR framework.

The outline of this paper is as follows. We first introduce the QIR framework
(Section 2). Section 3 contains the two paper contributions: We first define the
query algebra (Section 3.1) and then define how to transform a query into the
algebra (Section 3.2). These constructions are evaluated in an ad hoc retrieval
scenario (Section 4). Finally, we conclude.

2 The quantum IR framework

2.1 Information Need Spaces

The basic assumption of the QIR framework [2] is that there exists a Hilbert
space H of information needs (IN), called information need space, where each
vector corresponds to what we call an atomic IN. The concept of an “atomic”
IN4 is central to our framework. It can be compared to the notion of “nugget” [6],
used in summarisation and question-answering to assess the amount of relevant
information a summary or an answer contains.

An atomic user IN is a unit vector ϕ (aka a state) in H. States determine
statistically any measure made on the user’s IN, as for example the relevance of
a document. Given a state space H and a state vector ϕ, a probabilistic event
is represented as a subspace S of H. A state vector ϕ induces a probability
distribution on events (i.e., the subspaces). The probability of an event is given
by the square of the length of the projection of ϕ onto the corresponding event

subspace S, that is by computing the value
∥∥∥Ŝϕ∥∥∥2 where Ŝ is the projector onto

the subspace S.
In the QIR framework, we suppose that we have a system view on the user

IN. We assume that the system usually does not know what is the atomic IN

4 In this paper, we use “atomic” information need (“atomic IN”) to distinguish it from
information need (“IN”) in its more usual sense in IR.

state of the user, but knows with a probability V (ϕ) that the user is in the state
ϕ. It is convenient to view V as a function that associates a weight V (ϕ) ∈ [0, 1]
to each of its state vectors ϕ. We say that ϕ ∈ V if its weight is greater than
zero – hence V can be thought of as a weighted set of INs. For notations, we use
standard operations on function spaces: Adding two weighted sets V1 + V2, or
scaling by a factor αV. We denote ϕ 7→ w the weighted set that associates w to
ϕ and 0 to the other vectors.

As states are mutually exclusive (a user IN cannot be in two different states
at the same time), we require that a weighted set has weights that sum up to 1.
Given the weighted set V of possible state vectors, we then define the probability
of an event S as

Pr (S|V) =
∑
ϕ∈V
V (ϕ) Pr (S|ϕ) =

∑
ϕ∈V
V (ϕ)

∥∥∥Ŝϕ∥∥∥2 (1)

Note that equation 1 reduces to
∥∥∥Ŝϕ∥∥∥2 if V consists of only one vector ϕ, i.e.

when there is no uncertainty about the user’s IN state. This probability can
be computed efficiently when using low rank approximations (see [2] for more
details).

2.2 Aspect Spaces

As discussed in [2], user INs may consist of several “aspects” that relevant doc-
uments should address. For example, in the TREC-8 topic 408, “What tropical
storms (hurricanes and typhoons) have caused significant property damage and
loss of life?”, we can identify two (topical) IN aspects, namely tropical storms
and significant damage/loss of life. Each IN aspect can be defined within an IN
aspect space, where the state vectors are now called atomic IN aspects. Examples
of atomic IN aspects are the vectors representing “hurricane” and “typhoon” for
the first IN aspect (tropical storms). We use the terminology atomic IN aspect,
since one atomic IN aspect addresses one aspect of the IN (tropical storms) in
the same way that an atomic IN addresses an IN. In this paper, following [2] we
only consider one aspect space, the topical space T , and equal it to the standard
term space where each term corresponds to a dimension.

In this topical space, we can represent the event Sd that a document is
relevant to a given weighted set of topical IN aspects as a subspace. We give
here a quick overview of the construction process, which is described in more
details in [2]. The document representation is based on the assumption that a
typical document answers various (atomic) IN aspects. It also assumes that each
document can be split into (possibly overlapping and non-contiguous) fragments,
where each fragment addresses one atomic IN aspect. This follows from research
in focused retrieval, which states that answers to a query, and hence aspects of
it, usually correspond to document fragments (sentences or paragraphs) and not
full documents. In this work, following [2], a document is decomposed into a set
of overlapping fragments of a fixed length of 10 terms.

Each fragment can be represented in the topical space T by a vector corres-
ponding to the atomic IN this fragment is relevant to, which is approximated by
a binary vector where components corresponding to terms in the fragment are
set to 1. The subspace Sd is then defined as the subspace spanned by the set of
vectors in Vd, i.e. Sd is the smallest subspace such that a document is always a
fully relevant answer to a pure IN aspect it contains, or more formally such that
Pr (Sd|ϕ) = 1 for any ϕ ∈ Vd. The document will be relevant to an atomic IN
with a probability that depends on the length of the projection of the atomic IN
vector onto the subspace Sd.

2.3 Information Need and Aspect Spaces

The IN space is then defined as a tensor product of aspect spaces, i.e. of topical
spaces T . Tensor products are a generalisation of the product of probabilistic
spaces for Hilbert spaces. We consider the simple case where the events in each
space are independent from each other, i.e. where aspects are independent.

If we identify n aspects in a query, each represented by the weighted set of
atomic aspects Vi, then the IN space H is a tensor product of topical spaces⊗n

i=1 T . In this space H a document is represented by S⊗d =
⊗n

i=1 Sd, where Sd

is the subspace that represents the document in the topical space T (see previous
section). The actual IN is a tensor product of weighted sets V =

⊗n
i=1 Vi. We

describe several constructions of V based on a query q in Section 3.2 using
the algebra defined in Section 3.1. Given a document representation S⊗d and a
weighted set V, we then compute the probability of relevance for the document
d as:

Pr
(⊗

Si

∣∣∣⊗Vi
)

=
∏
i

Pr (Si|Vi) (2)

Users might give different importance to certain aspects. This motivates the
introduction of a weighting scheme for aspects that would enable us to express
the fact that some aspects are more important than others. In our Hilbert space
of aspects, we chose to introduce a new “don’t care” dimension, defined by the
state vector ϕ>. We then modify each document subspace Sd so that the sub-
space contains the “don’t care” dimension. This implies that any document is

relevant to the “don’t care” aspect ϕ>, since Pr (Sd|ϕ>) =
∥∥∥Ŝdϕ>

∥∥∥2 = 1; with

respect to Equation 2, the probability of a document to be relevant to Vi is now
Pr (Si|Vi) = Vi (ϕ>)+(1− Vi (ϕ>)) Pr (Si|Vi \ {ϕ>}), and hence Vi (ϕ>) defines
how important the ith IN aspect is within the product in Equation 2.

3 Representing queries

We formally define an algebra over weighted sets of atomic IN aspects (Section3.1).
A query (sequence of terms) q is then transformed into a a structured represent-
ation Vq expressed in this algebra (Section 3.2). The algebra provides the mean

to express relationships between query terms, thus allowing for more complex
query representations.

3.1 An algebra of weighted sets of atomic INs

We now define our algebra over weighted sets, i.e., its constants and operators.
Constants are used to represent the set of atomic INs corresponding to a term
or a phrase. This constant can be computed for each term/phrase at indexing
time from the corpus (Section 3.1.1). We use two operators, each corresponding
to one way to combine atomic INs: mixture (Section 3.1.2), where the possible
atomic aspects are drawn from the weighted sets; and mixture of superposi-
tions (Section 3.1.3), where the possible atomic aspects are (linear) combinations
of the atomic IN aspects drawn from each weighted set. Other operators could
be defined (e.g. projection), but we omit them due to the lack of space.

3.1.1 Constants The constants of the algebra correspond to weighted set
of aspects associated with phrases. Let p = t1 . . . tm be a phrase made of m
terms, where m ≥ 1. We assume that the documents fragments that possibly
answer a query/phrase p are all the fragments containing this exact phrase.
From Section 2.2 a fragment is mapped to an atomic aspect vector. Thus we can
define over all the documents in the collection (1) the number of fragments Np

associated with the phrase p, and (2) the number of occurrences np (ϕ) of the
atomic IN aspect ϕ in the fragments containing the phrase p.

Each of the Np fragments are associated with a vector, and as we have a
priori no way to distinguish between these different vectors, we assume that
each is equally likely to be a atomic IN aspect of a user that typed the phrase
p as a query. Hence, we define a first weighted set V• (p) for a phrase p as
V• (p) =

∑
ϕ 7→ np (ϕ) /Np. In practice, this representation means that the more

vectors ϕ from V• (p) lie in the document subspace, the higher the relevance of
the document to p.

A query can be composed with more than one phrase; thus to give more or less
importance to a given phrase while composing the weighted sets, we use the fake
state (Section 2.2) with a given weight. This weight will be useful to determine
the contribution of a weighted set when combining it with other weighted sets
in a structured query. Thus, given an aspect Vp, we include the state ϕ> as one
of its possible atomic IN aspect states with a probability f(p). We thus modify
V• (p) as follows:

V (p) = (1− f (p))V• (p) + (ϕ> 7→ f(p)) (3)

The second part of the sum assigns the weight f(p) to the don’t care atomic
IN aspect, whereas the first part scales the previous weights so that the sum
of all weights is 1 again. Equations 3 and 1 imply that the probability of a
document to be relevant for the aspect defined by the phrase p is Pr (Sd|V (p)) =
f (p) + (1− f (p)) Pr (Sd|V• (p)).

3.1.2 Mixture Mixture (by analogy with a probabilistic mixture) is the
simplest operator combining n weighted sets of IN aspects V1 . . .Vn. The un-
derlying assumption in our context is that the atomic IN aspect can be an
aspect coming from any of the Vi. Unless there is a special reason to believe that
the user atomic aspect is more likely to be from one than the other weighted
sets, we can assume that each weighted set have an equal probability of being
the one (that is, a probability of 1

n). We define formally the mixture operator
}n

i=1Vi of all the atomic IN aspect vectors associated with the weighted sets
V1 . . .Vn:

}n
i=1Vi =

1

n

n∑
i=1

Vi (4)

The mixture can be used when each IN aspect (weighted set) is an equally
important alternative to describe the user IN aspect.

3.1.3 Mixture of superpositions In standard IR, a query is represented by
a vector corresponding to a linear combination of the vectors associated with the
query terms. In quantum physics, a normalised linear combination corresponds
to the principle of superposition (normalised linear combination), where the
description of a system state can be superposed to describe a new system state.

In our case, a system state is a user atomic IN aspect, and we use the su-
perposition principle to build new atomic IN aspects from existing ones. For
example, let ϕp, ϕuk and ϕusa be three pairwise orthogonal vectors in a three-
dimensional IN space which, respectively, represent the atomic IN aspects“I want
a pizza”, “I want it to be delivered in Cambridge (UK)” and “I want it to be de-
livered in Cambridge (USA)”. The atomic IN aspect vector “I want a pizza to be
delivered in Cambridge (UK)” would be represented by a superposition ϕp/uk of
ϕp and ϕuk. We can similarly build the atomic IN aspect for Cambridge (USA).
To represent the ambiguous query “pizza delivery in Cambridge” where we do
not know whether Cambridge is in the USA or the UK, and assuming there is no
other source of ambiguity, we would use a mixture of the two possible superposed
atomic IN aspects. This brings us to another variant of combination of atomic
INs, the mixture of superpositions, which forms our second algebra operator.

Each aspect vector weighted set resulting from the mixture of superpositions
is constructed as follows. We first randomly select a vector from each set Vi. In
our previous example, the set V1 would be just one vector (ϕp), whereas V2 would
contain two vectors (ϕuk and ϕusa). We then superpose the selected vectors (one
for each term), and obtain a new vector ϕ. The above process is repeated for all
the possible selections of vectors. The associated weighted set is thus formally
defined using the mixture of superpositions operator:

sn
i=1Vi =

∑
ϕ1∈V1

. . .
∑

ϕn∈Vn

(∑
ϕi

‖
∑
ϕi‖
7→
∏
i

Vi (ϕi)

)
(5)

In the weighted set, each atomic IN aspect is a linear combination
∑n

i=1 ϕi of
the IN aspect from each of the terms composing the query which is normalised

to ensure it is a unit vector. Each of these linear combinations is associated with
a weight that is the product of the weights5

∏
i Vi (ϕi).

The mixture of superpositions differs from the mixture in the way we combine
weighted sets. As an example, consider two terms t1 and t2 that always occur in
a document, but half of the time in the same fragments, the other half in distinct
fragments. A mixture V (t1) } V (t2) retrieves all the documents containing the
terms, but a mixture of superpositions V (t1)sV (t2) gives a higher probability
to the documents that contain both in the same fragments. The mixture of
superpositions is better suited for terms whose meaning should be combined, i.e.
forming phrases. Terms co-occurrence could, for instance, be used to determine
whether two terms should be combined to form a phrase, e.g. “social network”.

3.2 From queries to structured queries

In the previous section, we defined an algebra, i.e. its constants and operators,
over weighted sets of IN aspects. In our QIR framework, a weighted set of IN
aspects V is used to compute to which extent a document is relevant to the
IN aspects in V. With this algebra, we can express more sophisticated, aka
structured, query representations, where the relationships between query terms
are accounted for. In this section, we describe how a query q (a set of terms) is
mapped to a structured query expressed as a weighted set V (q) in our algebra.

In [2], two main strategies were applied to construct the (non-structured)
query representation: (1) the query had only one aspect and the weighted sets of
each query term were combined using a mixture } or a mixture of superposition
s (2) each query term corresponded to an aspect or a tensor product (of n
aspects). The latter strategy has been shown to perform best for a variety of
TREC collections. Both strategies were, however, simple translations into our
algebra.

Building a structured query involves two steps. First, we must indentify the
different IN aspects, i.e. compute how many aspects the query has, and which
query terms are linked to each. Second, we must characterise the relationships
among terms within each aspect. We therefore make use of query analysers. The
use of such tools is an active topic in IR, e.g. [7]. In this paper, the following
tools are employed:

Chunkers Tools that splits a query into a series of chunks corresponding to
the query “concepts”. In this paper, we experimented with Two-stage query Seg-
mentation (TSQS) [8], a machine learning-based chunker, and META (Meta), a
Natural Language Processing tool [9];

Dependency parser A more powerful query analyser tool is MaltParser
(Malt) [10], a dependency parser that builds a term graph based on grammatical
relationships. Particular to MaltParser is that term dependence can be between
non-adjacent terms. For example, in “the cat saw the black mouse”, “saw” will be
connected to “cat” (subject) and “mouse” (object), and “mouse” to “black” (mod-
ifier) and “the” (determinant).

5 In practice, we used a modified formula for computational reasons (see [3]).

These tools were used to build a structured query representation V (q). A
number of strategies have been experimented with; we associate with each an
identifier (in bold between parenthesis), and a formula V (q) representing
the query q, expressed within our algebra, i.e. phrase constants V (p), mixture
}, mixture of superpositions s, and finally tensor product ⊗.

Two-term queries We wanted to compare all possible uses of operators. Thus to
limit the number of possibilities, we restricted ourselves to queries composed of
only two terms, t1 and t2

6. We started with four such strategies (names prefixed
by 2t) three using our operators: tensor (2tT) V (q) = V (t1) ⊗ V (t2), mixture
of superpositions (2tS) V (q) = V (t1)sV (t2), mixture (2tM) V (q) = V (t1) }
V (t2) and one considering the two terms as forming a phrase (2tP) V (q) =
V (t1t2). For the latter, we observed that in 30% of the cases, the phrase t1t2 does
not appear in the document collection, resulting in an empty weighted set. We
hence performed two additional experiments on two-term queries where V (t1t2)
is combined with either a tensor product (2tP-T) V (q) = V (t1t2)⊗V (t1)⊗V (t2)
or a mixture (2tP-M) V (q) = V (t1t2)}V (t1)}V (t2). In this way, V (t1t2) has
no effect if the phrase t1t2 does not exist in the collection.

Reference For all experiments as a reference, we use the representation where
each term corresponds to a different aspect, which was shown to be the most
successful in [2]. The corresponding query representation is a tensor product
of weighted sets, one for each query term t. We have two such references, one
being specific to TSQS as the terms used by TSQS to construct the query rep-
resentation is different to those used by all other strategies 7 (TSQS-R, R)
V (q) =

⊗
t∈q V (t).

Chunks We used both TSQS and META to decompose queries into chunks.
These are sets of terms that can be considered as a whole, and usually define
a concept. Hence, we decided to map each identified chunk using a mixture of
superpositions, where each chunk is considered as an aspect of the topic. Thus
each aspect is represented as a mixture of superpositions of the terms in the
chunk. Denoting C the set of identified chunks, where each chunk is a set of
terms, we have (TSQS-S, Meta-S) V (q) =

⊗
c∈C st∈cV (t).

Dependency Parsing We used MaltParser to extract term relationships in quer-
ies. In particular, we were interested by the “modifier” relationship, which “de-
scribes a noun phrase or restricts its meaning in some way”8. For example, in
the TREC topic 357, “... Identify documents discussing international boundary

6 This meant, 89 out of the 250 topics from the TREC Robust track (the detail of the
test collection used in our experiments is given in Section 4).

7 TSQS makes use of all query fields (title, description and narrative), in addiction
to some external sources, to segment the original query into chunks. This results in
a different bag-of-word and justify the computation of a separate reference for this
strategy.

8 From the Oxford dictionary.

disputes...”, international and boundary are modifiers of disputes. We denote
Hq the head terms of the query q, i.e. the terms that are not modifiers. In our
example, disputes is a head term. For each head term t, we follow the “modified
by” links of the dependency graph generated by MaltParser, and construct a
set Ph of all the possible maximal sequences t1 . . . tnh, i.e. those where t1 does
not have any “modified by” link associated to it. In our example, the phrases
“international disputes” and “boundary disputes” would be part of Ph.

Obviously (as also observed with 2tP) not all phrases in Ph may occur in
the document collection. For such phrases, the corresponding weighted set will
be empty. We therefore adopt two alternative strategies. In the first, an aspect
corresponds to a mixture of all the possible subsequences of phrases constructed
by following the “modified by” link. Formally (PM):

V(q) =
⊗
t∈Hq

⊗
h∈Hq

t1...tnh∈Ph

(V(t1t2...tnh) } V(t2...tnh) } ...} V(h))

The second strategy is to consider that there are as many aspects as subsequences
following the “modified by” link (PT):

V(q) =
⊗
t∈Hq

⊗
h∈Hq

t1...tnh∈Ph

(
V(t1t2...tnh)

⊗
V(t2...tnh)

⊗
...
⊗
V(h)

)

Following the same rationale as for 2tP, we decided to perform an additional
experiment in which the sequences of phrases are combined with the tensor
product of all the query terms. In that case, a term that is a modifier can have
the same influence on the final query representation. For example, the query “A
B” (where B is modified by A) becomes VAB ⊗ VA ⊗ VB . Thus, a query q is
represented by (PT2):

V(q) =
⊗
t∈q
V(t)

⊗
h∈Hq

t1...tnh∈Ph

V(t1t2...tnh)
⊗
V(t2...tnh)

⊗
...
⊗
V(tnh)

Next, we experiment all these structured query constructions. While not ex-
haustive, they provide a good starting point to study sophisticated query rep-
resentations in our QIR framework.

4 Experiments

4.1 Experimental Setup

We used the TREC ROBUST 2004 collection (topics 301-450, 601-700). All top-
ics were automatically converted into a query using their “title” part, with the
exception of the TSQS strategy (see Footnote 7). We experimented with the
various strategies defined in Section 3.2. To define the weight f(p) of a phrase p

(a sequence of terms), following [2], we used a normalised inverse document fre-
quency. To create the document subspace and compute each term representation,
we define each fragment as a window of 10 words, to which we apply stemming
and remove stop-words before using a binary weighting scheme for the vector
representing the topical aspect covered by the fragment. We then follow [2] for
the computation of the document and query representation.

4.2 Results

Our performance results are reported using Mean Average Precision (MAP).
Results for our three sets of experiments, two-term queries, chunks, and depend-
ency parsing, are shown in Tables 1a, 1b, and 1c, respectively. We also show, for
comparison, results using our Reference (TSQS-R when comparing to TSQS-S,
and R when comparing with all other strategies), and the classic baseline BM25.

Overall, none of the results (except for 2tP-T) have shown an improvement
over BM25. However, as already indicated in [3], although using mixture/mixture
of superpositions to construct query representations do not increase overall per-
formance, they increase the performance of specific types of topics. We return
to this throughout this section.

Generally, all strategies follow similar trends across all three sets of exper-
iments. The tensor product (2tT, TSQS-T, R) outperforms the mixture of su-
perpositions (2tS, TSQS-S, Meta-S). But again, when looking on a per topic
basis, in the chunks set of experiments for instance, we saw that, for 25% of the
queries, the mixture of superpositions gives the best result9.

We now discuss results with respect to the use of phrases in constructing
query representations using our algebra. For two-term queries, the strategy using
the tensor product (2tT) led to better performance than that using phrases made
of the simple concatenation of the two terms (2tP). Furthermore, even when
using a query analyser tool (MaltParser) to indentify phrases (here restricted
to head and modifiers), the tensor product of all query terms (R) led to better
performance than the tensor product of weighted sets, one for each aspect, where
an aspect corresponds to a mixture of all phrases (the set Ph) associated with
the head term h (PM); this is even the case when the tensor product is used to
compute the weighted set for each query aspect, where each aspect corresponds
to a phrase in Ph (PT).

Only two strategies making use of phrases (2tP-T, PT2) led to higher per-
formance compared to the tensor product only strategy (no phrases) was used
(2tT, R). Both 2tP-T and PT2 combine phrases with the tensor product of all
query terms. This would indicate that using the tensor product of the query
terms is important in representing structured queries.

We performed an in-depth manual analysis of the topics used in our two-
term queries experiments. Tensor product works well when the query expresses
distinct aspects that should be contained in the same document (e.g. “poppy cul-
tivation,”“L-tryptophan deaths”). Using the mixture of superpositions increases

9 For space constraint, we do not report performance results per topic.

effectiveness for queries containing terms forming a concept (e.g., “space sta-
tion”, “computer viruses”, “radioactive waste”). Finally, although using phrases
(2tP, 2tP-M, 2tP-T) may allow capturing the narrower meaning coming from the
modifier (e.g. “home schooling”, “marine vegetation”), only the combined use of
the tensor product on both the phrase and the two query terms (2tP-T) results
in effective performance. It is not fully clear whether this comes from and only
the fact that many phrases, as such, do not appear in document fragments, or
whether their representation is not optimal (i.e., the right weighted set is built
due to approximations issues).

Overall our results indicate that retrieval performance depends strongly on
how the relationships between query terms are represented within our algebra
(i.e. which operators are used and how). In future work, we will look at auto-
matic means to assign construction strategies to topics, depending on their type.
We however performed two upper-bound experiments, where we chose the best
performing strategy for each topic, and calculate MAP over these best perform-
ing strategies. The first experiment was conducted over the two-term queries
strategies (2tM, 2tS, 2tT, 2tP, 2tP-M and 2tP-T), and the resulting MAP value
is 0.2801, which corresponds to an increase of +13% over BM25 (0.2552). The
second experiment considered R, TSQS-S, TSQS-T, Meta-S, PM, PT, and PT2,
leading to a MAP value of 0.2726, which corresponds to an increase of +12.59
over BM25 (0.2421).

Table 1: Mean Average Precision (MAP) values for the TREC Ad Hoc Robust
Track 2004 collection.

Two-term queries
Run MAP

BM25 0.2552

2tM 0.1843
2tS 0.1596
2tT 0.2408
2tP 0.1629

2tP-M 0.0971
2tP-T 0.2612

upper-bound 0.2801

(a)

Chunks
Run MAP

BM25 0.2421

R 0.2262

TSQS-S 0.1557
TSQS-R 0.1659

Meta-S 0.1780

upper-bound 0.2726

(b)

Dependency parsing
Run MAP

BM25 0.2421

R 0.2262

PM 0.1916
PT 0.1993
PT2 0.2301

upper-bound 0.2726

(c)

To summarise, using phrases and the tensor product operator seems to be
the most effective strategy (2tP-T, PT2). However, the best results are achieved
with short queries (2tP-T outperforms BM25 whereas PT2 although better than
R is outperformed by BM25). In future work, we intent to investigate whether
this comes from the tools used to analyse the queries (e.g. we saw that Malt-

Parser failed to identify a large number of head-modifier relationships), or their
representations using our algebra. As shown in our upper-bound experiments,
there is much room for improvement with respect to the latter.

5 Conclusion

This paper describes a query algebra defined within a quantum-inspired approach
to IR[2], where user information needs are represented as weighted sets of vectors.
The algebra, defined over weighted sets, is used to construct more sophisticated,
aka structured, query representations, where relationships between terms are ac-
counted for through the consideration of phrases. We proposed several strategies
to transform a query (set of terms) into a structured query (set of terms and
phrases), using the operators from this algebra. Some of the strategies make use
of query analyser tools to extract proper phrases.

Our experimental results indicate that each specific operator improves per-
formance for a specific type of queries (tensor for multi-aspect queries, mixture
of superpositions for concepts, and phrase operator for queries where a narrower
meaning is given by a modifier). Future work includes looking at automatic
means to assign operators (and strategies) to queries, in particular for represent-
ing phrases. Other query analyser tools will be employed, as properly extracting
phrases is important to build effective structured queries using our algebra.

Acknowledgements This research was supported by an Engineering and Physical Sciences Research
Council grant (Grant Number EP/F015984/2). This paper was written when Mounia Lalmas was a
Microsoft Research/RAEng Research Professor and based on the work done by Annalina Caputo as
an intern, both at the University of Glasgow.

References

1. van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge Univer-
sity Press, New York, NY, USA (2004)

2. Piwowarski, B., Frommholz, I., Lalmas, M., van Rijsbergen, K.: What can quantum
theory bring to IR? In: CIKM, ACM (2010)

3. Piwowarski, B., Frommholz, I., Lalmas, M., van Rijsbergen, K.: Exploring a mul-
tidimensional representation of documents and queries. In: RIAO. (2010)

4. Metzler, D., Croft, W.B.: Combining the language model and inference network
approaches to retrieval. IPM 40(5) (2004)

5. Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the web: The
public and their queries. JASIST 52(3) (2001)

6. Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher,
S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In:
Proceedings of the 31st ACM SIGIR, Singapore, ACM (July 2008)

7. Croft, B., Bendersky, M., Li, H., Xu, G., eds.: SIGIR 2010 Workshop on Query
Representation and Understanding. (2010)

8. Bendersky, M., Croft, W.B., Smith, D.A.: Two-stage query segmentation for in-
formation retrieval. In: Proc. of the 32nd ACM SIGIR, ACM (2009)

9. Basile, P., de Gemmis, M., Gentile, A., Iaquinta, L., Lops, P., Semeraro, G.: META-
MultilanguagE Text Analyzer. In: Proc. of LangTech. (2008)

10. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S.,
Marsi, E.: MaltParser: A language-independent system for data-driven dependency
parsing. Natural Language Engineering 13(02) (2007)

