Combining Multiple Dimensions of Knowledge in API Migration

Thiago Tonelli Bartolomei', Mahdi Derakhshanmanesh?, Andreas Fuhr?, Peter Koch?,
Mathias Konrath2, Ralf Limmel2, and Heiko Winnebeck?
L University of Waterloo, Canada
2 University of Koblenz-Landau, Germany

Abstract—We combine multiple dimensions of knowledge
about APIs so that we can support API migration by
wrapping or transformation in new ways. That is, we
assess wrapper-based API re-implementations and provide
guidance for migrating API methods. We demonstrate our
approach with two major GUI APIs for the Java platform
and two wrapper-based re-implementations for migrating
between the GUI APIs.

Keywords-Software migration, API migration, API analy-
sis, Wrapping, Mining software repositories

I. INTRODUCTION

API migration is a kind of software migration; it may
be necessary to meet requirements for software modern-
ization, application integration, and others. API migration
is realized by wrapping or transformation. We refer to [1]],
(21, 131, 141, [S1], 6], [Z], [8] for recent work on the subject.

For instance, consider the following re-engineering sce-
nario. Two Java applications need to be integrated, but they
use different GUI APIs, say SWING and SWT. Based on
the exercised features and possibly other considerations,
one of the two APIs is favored for the integrated ap-
plication. The disfavored API (the “source API”) can be
re-implemented in terms of the favored API (the “target
APT”) as a wrapper so that the migration requires little, if
any, rewriting of the application’s code. Incidentally, there
are two advanced open-source wrappers that serve both
directions of migration: SWINGWT[| and SWTSwING}

In previous work [6], [8]], we substantiated that migra-
tion between independently developed source and target
APIs may be complex because of significantly different
generalization hierarchies, contracts, and protocols.

Contribution: In the present paper, we describe an
approach for the combination of multiple dimensions of
knowledge about APIs so that API migration can be
supported in new ways. That is, we assess wrapper-
based API re-implementations and provide guidance for
migrating API methods. To this end, we leverage a model-
based approach to the integration of knowledge about APIs
into a repository for convenient use in declarative queries.
Throughout the paper, we use the SWING/SWT APIs and
the above-mentioned wrappers as subjects under study.

Road-map: Sec. [ll| describes the integrated reposi-
tory. Sec. |Ill}and Sec. [[V| cover different forms of support-
ing API migration. Related work is discussed in Sec. [V]
and the paper is concluded in Sec. [VII The paper and
accompanying material are available onlineE]

lhttp://swingwt.source’forge.net/: re-implements SWING in terms of SWT
2http://sv\/tswingsourcefnrgenet/: re-implements SWT in terms of SWING
3http://softlang.uni—koblenz.de/apirep/

Acknowledgement We are grateful to Daniel Ratiu for providing
us with data related to the programming ontology of [9], [10].
We are also grateful to four anonymous MDSM 2011 reviewers
for their excellent advice.

II. THE INTEGRATED REPOSITORY

We integrate three data sources with API knowledge
into a repository. Let us describe those data sources, the
metamodel of the integrated repository, and the repository
technology as such.

A. Data sources

« APIMODEL (developed by the present authors)—a
model of API implementations (including SWING,
SWT, SWINGWT, SWTSWING) with an underlying
metamodel that is a (very) limited Java metamodel
for structural properties and calling relationships;

o APIUSAGE (developed by Lammel et al. [11])—a
fact base (say, database) with usage properties of
1476 open-source Java projects at SourceForge, in
particular with facts for API method calls within the
projects’ code;

o APILINKS (developed by Ratiu et al. [9], [10])—
an ontology for programming concepts that were
extracted semi-automatically from APIs in different
programming domains, complete with trace links
between concepts and the API source-code elements
from which they were derived.

The APIMODEL source contributes basic knowledge
about types and methods of genuine API implementations,
and their coverage by the typically incomplete wrapper-
based re-implementations. The APTUSAGE source helps to
assess, for example, the relevance of genuine methods that
are not implemented in a wrapper. The APILINKS source
helps to derive candidate classes and methods that could
be used in a wrapper-based API re-implementation.

B. Metamodel of the repository

Fig. |1| shows the metamodel (a UML class diagram) of
our integrated repository where metaclasses are tagged by
data sources APIMODEL, APIUSAGE, and APILINKS. We
must note that the metamodel does not cover all elements
of the sources, but is streamlined to fit our objectives.

The metaclass NamedElement represents package-
qualified names of packages, classes, and methods. Be-
cause of the composition relationships in the metamodel,
NamedElements are also qualified by the name of an
API, in fact, by a particular implementation, which could
be a genuine implementation or a wrapper-based re-
implementation.

http://swingwt.sourceforge.net/
http://swtswing.sourceforge.net/
http://softlang.uni-koblenz.de/apirep/

«ApiModel»
API

~name : String
- version ; String

ContainsPackage
1
AoModeh HasSubPackage

Package

HasClass
HasNestedClass
«ApiModel» . «
|| NamedEtement «ApiModel»

Class

* IsClass
Extends . -
pilinks»

Concept

<t
- qualifiedName : String

HasMethod - name : String

«ApiModel»

Method
Calls " T

0.1

IsMethod

HasMethodUsage

«ApiUsage»
] MethodUsage

- numberOfCalls : Integer
- percentageCalls : Double

Figure 1. Metamodel of the integrated repository with API knowledge

The metaclasses Package, Class, and Method represent
the package hierarchy with the Java classes and their
methods, further with extension relationships between
classes (see association Extends) and calling relationships
between methods (see association Calls). As a means of
prioritization, we leave out interfaces; they are trivially
copied by wrappers.

Classes of genuine API implementations are linked with
the corresponding classes of wrappers (see association
CorrespondsTo). Here we note that wrappers may use
different package prefixes. Also, these links improve con-
venience for those queries that need to navigate between
the different API implementations. The metaclass Concept
models concepts in the sense of APILINKS’ ontology.
Classes and methods can be linked with concepts; see
associations IsClass and IsMethod. Hence, classes and
methods of different APIs may be linked transitively.

The metaclass MethodUsage represents the usage data
that was integrated from APIUSAGE. That is, for each
API method, we maintain the number of calls to the
method (if any) within the SourceForge projects covered
by APIUSAGE [11]. We translated this number also into a
relative measure in the sense of the percentage of the calls
to the given method relative to the number of all calls to
methods of the APL

C. Repository technology

The repository leverages the model-based TGraph ap-
proach [12]. The metamodel of Fig. [T] is represented as
a TGraph schema; converters instantiate the schema from
the different data sources. All analysis is performed by
means of queries on TGraphs using the language GReQL
(Graph Repository Query Language) [13]. For brevity,
we describe all queries (“measurements”) only informally
in this paper, but here is a simple, illustrative GReQL
example for retrieving all classes ¢ of an API a that are
not implemented by a wrapper:

using a:

from c: V{Class}

with c.qualifiedName =" a and count(c——>{CorrespondsTo}) = 0
reportSet c

end

That is, a is an argument of the query for the name of
the API; the query selects (“reports”) all classes ¢ such
that the qualified name of ¢ matches with a and there
are no outgoing edges of the type CorrespondsTo (see
—-->{CorrespondsTo}) from c.

III. WRAPPER ASSESSMENT

Consider again our introductory scenario for API migra-
tion. Which wrapper, SWINGWT or SWTSWING, should
we favor? Such decision making should take into account
wrapper qualities, e.g., its completeness or compliance—
both relative to the genuine API implementation. In case
we want to improve a given wrapper, we should also track
progress by simple metrics. Accordingly, we propose some
concepts for wrapper assessment.

A. Coverage of source API

We can trivially compare the APIMODEL data between
genuine API implementation and wrapper to get a basic
sense of completeness in terms of (the percentage of)
genuine packages, classes, and methods that are covered
(say, re-implemented) by the wrapper. Table[[|collects such
metrics for the SWING/SWT wrappers. The numbers show
that the wrappers are highly incomplete.

| SWINGWT | SWTSwING
Packages 25 (78.12 %) 16 (51.61 %)
Classes 533 (18.61 %) 372 (56.97 %)
Methods | 4533 (26.60%) | 3426 (42.59%)
Table 1

COVERAGE OF SOURCE API

B. Wrapper compliance issues

Some forms of non-compliance of a wrapper with the
genuine API implementation can be determined by simple
queries on our repository, e.g., differences regarding gen-
eralization hierarchies or the declaring classes for meth-
ods. Consider the following extension chain for SWING’s
AbstractButton:

java.lang.Object
|_ java.awt.Component
|_ java.awt.Container
|_ javax.swing.JComponent
|_ javax.swing.AbstractButton

The chain itself is preserved by SWINGWT. However,
SWING declares the method addActionListener on the
class AbstractButton whereas SWINGWT declares the
method already on the class Component.

| SWINGWT | SWTSWING

® Declarations on supertypes 516 161
* Empty implementations 1006 230
® Missing methods 12506 4618
o Class missing 9604 3698
o Class present 2902 920
Table II

WRAPPER COMPLIANCE ISSUES

Table [[I| shows numbers for some metrics for (lack of)
wrapper compliance. In reference to the above example
of the method addActionListener, we measure the number
of methods that are declared “earlier” on a supertype in
the wrapper. Further, we measure methods with empty
implementations, i.e., implementations without any out-
going method calls, while the corresponding genuine im-
plementations had outgoing method calls. (The substantial
number of empty implementations may be surprising,
but these wrappers are nevertheless reportedly useful in
practice.) Finally, we also subdivide missing methods into
those that are implied by missing classes vs. those that are
missing from existing classes.

C. Relevance in terms of usage

Let us qualify wrapper (in-) completeness with
APIUSAGE data. If the developers of the wrappers ap-
plied the right judgement call for leaving out classes and
methods, then the missing methods should be less relevant
in practice than the implemented ones. Table [[T]] lists usage
metrics for the SWING/SWT wrappers.

SWINGWT | SWTSWING

Unimplemented methods

® Any usage 9,01 % 2,90 %
* Cumulative usage 2,88 % 2,35%
Empty methods

® Any usage 42,53 % 25,71 %
¢ Cumulative usage 11,41 % 1,49 %
Non-empty methods

® Any usage 48,46 % 71,39 %
® Cumulative usage 85,72 % 96,17 %

Table III

USAGE OF API METHODS IN SOURCEFORGE

In the table, we break down SWING’s and SWT’s
methods into categories according to the wrappers as fol-
lows: unimplemented, empty, and non-empty implemented
methods. For each category, we show the percentage of
methods with “any usage” (say, any calls) in the Source-
Forge projects in the scope of the APTUSAGE source. We
also show “cumulative usage” for each category, i.e., the
contribution of the category to all API method calls. These
are contrasting numbers which show, for example, that
the many unimplemented and empty methods (see again
Table [lI)) are exercised much less frequently than the fewer
non-empty methods.

IV. GUIDANCE FOR MIGRATION

A given wrapper may be effectively incomplete in that
a missing method is actually exercised by the application
under API migration. In this case, we seek guidance for
migrating the API method in question. Such guidance is
universally useful for API migration—even when transfor-
mation is used instead of wrapping. A practical approach
to guidance would need to combine elements of API type
matching, IDE support (such as autocompletion and stub
generation), and others. We focus here on the aspect of
proposing method candidates to be called in methods of
wrapper-based API re-implementations.

A. Concept-based method candidates

We can use APILINKS’ trace links between API meth-
ods and concepts to propose method candidates. The idea
is that if methods of the source and target APIs are
related to the same concept, then the latter may be useful
in re-implementing the former. Further, let us sort all
such candidates by their cumulative usage, say, by their
relevance as far as APIUSAGE is concerned.

Qualified candidate name Cumulative usage (%)

swing.javax.swing.Imagelcon.Imagelcon 0,4816
swing.java.awt.image.Bufferedlmage.BufferedImage 0,1063
swing.java.awt.Frame.getlconImage 0,0059
swing.java.awt.....MemoryImageSource 0,0046
swing.java.awt.Frame.setlconlmage 0,0042
swing.javax.swing.text.html.ImageView.ImageView 0,0005
swing.java.awt.....ImageGraphicAttribute N/A

Table IV
CANDIDATES FOR RE-IMPLEMENTING SWT’S Button.setlmage

Suppose you need to migrate SWT’s Button.setImage to
SWING. Table [V] shows the method candidates that were
automatically determined by a GReQL query. Consider the
first line with the constructor of Imagelcon. We show the
line in bold face to convey the fact that there is an existing
wrapper, SWTSWING, whose method implementation of
setlmage readily involves the constructor of Imagelcon.

Further inspection reveals that SWING’s JButton, which
is a counterpart to SWT’s Button, does not provide an Im-
age property and, hence, we cannot simply migrate SWT’s
Button.setImage to a corresponding setter of SWING. Extra
state and a more complex idiom (indeed involving Image-
Icon) is needed.

B. Assessment of the ontology

The above example shows that APILINKS may suggest
reasonable candidates—in principle. We would like to
assess APILINKS’s relevance more generally. In particular,
we could compare APILINKS-based links with actual
calling relationships in existing wrapper implementations,
as they are available through APIMODEL’s data. Table
lists corresponding metrics for the SWING/SWT wrappers.

| SWINGWT | SWTSWING
Unimplemented methods with links | 10.83 % [035%
Implemented methods with links | 28.06 % | 2498%
Correct links ‘ 42.75 % ‘ 37.20 %

Table V
API LINKS BETWEEN SWING AND SWT

The coverage of API parts by APILINKS’ trace links
is an artifact of the underlying semi-automatic ontology
extraction approach [9], [10]], which involves elements
of name matching and thresholds for the inclusion of
concepts. We cannot expect to retrieve links for arbitrary
methods from APILINKS.

In the table, we break down SWING’s and SWT’s
methods into the categories of unimplemented and im-
plemented methods according to the wrappers. For both
categories, we show the percentage of methods that are
linked (transitively) with one or more methods of the

corresponding target API. The numbers are such that
implemented methods happen to be much better linked
than unimplemented ones.

At the bottom of the table, we also list the percentage
of correct APILINKS’ trace links. We say that a link from
the method m of the source API s to a method m’ of
the target API ¢ is correct, if a given wrapper-based re-
implementation of s in terms of ¢ implements m in a way
that it directly calls m’. When we specify the percentage,
we consider as the baseline (100%) only those methods
m that both have associated trace links to ¢ and actually
call some method of ¢. It turns out that APILINKS predicts
a correct link in more than 1/3 of the cases. We have to
note though that APILINKS typically proposes multiple
candidates—with a median of 8.

V. RELATED WORK

Work on API migration has previously focused on
transformation and wrapper-generation techniques for API
upgrades [2[], [3], [4], [5] and, to a lesser extent, on
migration between independently developed APIs [1]], [6],
[Z], [8]]. The present work is the first to integrate diverse
data sources to assess wrappers and to guide their devel-
opment. Typically, wrappers are assessed by festing (i.e.,
testing whether the application under migration continues
to function, or recovers from any test failures that had to be
addressed by improving a pre-existing wrapper) [6]]. There
is no previous work on guiding API-wrapper development
for independently developed APIs.

Most of the techniques that we integrate are inspired by
program comprehension research. For instance, our com-
parison of different API implementations is a simple form
of object-model matching [14]. Also, our exploitation of
API-usage data is straightforward, when compared to other
scenarios of exploiting such data in the context of API
usability [15] and understanding API usage (patterns) [16],
[L7]. Our proposal for guided migration can be viewed
as one specific approach to advanced (“intelligent”) code
completion systems [18]], [19].

VI. CONCLUDING REMARKS

The complexity of API migration requires many skills
and techniques. Of course, one must understand the API’s
domain, and the application under migration. Basic soft-
ware engineering skills such as testing, design by contract,
effective use of documentation are critical as well. Still
API migrations are largely unstructured today, and they
come with unpredictable costs. We submit that techniques
for assessment and guidance, such as those discussed
in this short paper, are needed to tackle non-trivial API
migrations in the future.

Clearly, our work is at an early state, and makes only
a limited contribution to the larger API migration theme.
There is a need for a comprehensive approach for guided
API migration, which should combine diverse elements
of assessment, mapping, matching, code completion, code
generation, and testing.

REFERENCES

[1] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class
library migration,” in Proc. of OOSPLA 2005. ACM, 2005, pp.
265-279.

[2] J. Henkel and A. Diwan, “CatchUp!: capturing and replaying
refactorings to support API evolution,” in Proc. of ICSE 2005.
ACM, 2005, pp. 274-283.

[3] J. H. Perkins, “Automatically generating refactorings to support
API evolution,” in Proc. of the Workshop on Program Analysis
for Software Tools and Engineering (PASTE). ACM, 2005, pp.
111-114.

I. Savga, M. Rudolf, S. Gotz, and U. ABmann, “Practical
refactoring-based framework upgrade,” in Proc. of the Conference
on Generative Programming and Component Engineering (GPCE).
ACM, 2008, pp. 171-180.

[5] D. Dig, S. Negara, V. Mohindra, and R. Johnson, “ReBA:
refactoring-aware binary adaptation of evolving libraries,” in Proc.
of ICSE 2008. ACM, 2008, pp. 441-450.

[6] T. T. Bartolomei, K. Czarnecki, R. Limmel, and T. van der Storm,
“Study of an API Migration for Two XML APIs,” in Proc. of
Conference on Software Language Engineering (SLE 2009), ser.
LNCS, vol. 5969. Springer, 2010, pp. 42-61.

[71 M. Nita and D. Notkin, “Using Twinning to Adapt Programs to
Alternative APIs,” in Proc. of ICSE 2010, 2010.

[8] T. T. Bartolomei, K. Czarnecki, and R. Lammel, “Swing to SWT
and Back: Patterns for API Migration by Wrapping,” in Proc. of
ICSM 2010. 1EEE, 2010, 10 pages.

[9] D. Ratiu, M. Feilkas, and J. Jiirjens, “Extracting Domain Ontologies
from Domain Specific APIs,” in 12th European Conference on Soft-
ware Maintenance and Reengineering, CSMR 2008, Proceedings.
IEEE, 2008, pp. 203-212.

[10] D. Ratiu, M. Feilkas, F. Deissenboeck, J. Jiirjens, and R. Marinescu,
“Towards a Repository of Common Programming Technologies
Knowledge,” in Proc. of the Int. Workshop on Semantic Technolo-
gies in System Maintenance (STSM), 2008.

[11] R. Liammel, E. Pek, and J. Starek, “Large-scale, AST-based API-
usage analysis of open-source Java projects,” in SAC’11 - ACM
2011 SYMPOSIUM ON APPLIED COMPUTING, Technical Track
on “Programming Languages”, 2011, to appear.

[12] J. Ebert, V. Riediger, and A. Winter, “Graph Technology in Reverse
Engineering: The TGraph Approach,” in WSR 2008, ser. GI-
EditionProceedings, vol. 126. Gesellschaft fiir Informatik, 2008,
pp. 67-81.

[13] D. Bildhauer and J. Ebert, “Querying Software Abstraction
Graphs,” in Query Technologies and Applications for Program
Comprehension (QTAPC 2008), Workshop at ICPC 2008, 2008.

[14] Z. Xing and E. Stroulia, “UMLDIff: an algorithm for object-
oriented design differencing,” in 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005), Pro-
ceedings. ACM, 2005, pp. 54-65.

[15] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: improving API
documentation using usage information,” in Proc. of the 27th
Intern. Conf. on Human Factors in Computing Systems, CHI 2009.
ACM, 2009, pp. 4429-4434.

[16] J. Stylos and B. A. Myers, “Mica: A Web-Search Tool for Finding
API Components and Examples,” in 2006 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC 2006),
Proceedings. 1EEE, 2006, pp. 195-202.

[17] T. Xie and J. Pei, “MAPO: mining API usages from open source
repositories,” in MSR '06: Proceedings of the 2006 international
workshop on Mining software repositories. ACM, 2006, pp. 54—
57.

[18] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, “Jungloid
mining: helping to navigate the API jungle,” in Proc. of the 2005
ACM SIGPLAN conference on Programming language design and
implementation (PLDI 2005). ACM, 2005, pp. 48-61.

[19] M. Bruch, M. Monperrus, and M. Mezini, “Learning from ex-

amples to improve code completion systems,” in Proceedings of
ESEC/SIGSOFT FSE 2009. ACM, 2009, pp. 213-222.

[4

=

	Introduction
	The integrated repository
	Data sources
	Metamodel of the repository
	Repository technology

	Wrapper assessment
	Coverage of source API
	Wrapper compliance issues
	Relevance in terms of usage

	Guidance for migration
	Concept-based method candidates
	Assessment of the ontology

	Related work
	Concluding remarks
	References

