SOAMIG Project: Model-Driven Software Migration towards Service-Oriented
Architectures

A. Winter, C. Zillmann
OFFIS Oldenburg
Institute for Information Technology
{zillmann, winter} @offis.de

A. Fuhr, T. Horn, V. Riediger
Institute for Software Technology (IST)
University of Koblenz-Landau
{afuhr, horn, riediger} @uni-koblenz.de

Abstract—The SOAMIG project aims at developing a gen-
eral migration process for model-driven migrations towards
Service-Oriented Architectures. This paper highlights the
model-driven tools developed during the SOAMIG project
for two case studies: A language migration from a COBOL
transactional server to Java web services, and a second study
on an architecture migration from a monolithic Java fat
client to a SOA-based JavaEE web application.

I. MOTIVATION

Today, companies are facing a growing competition in
their markets. Competitors are forced to achieve higher
flexibility and faster time-to-market in order to survive.
Often, so-called legacy software developed in the compa-
nies can not keep up with this highly dynamic environment
and therefore slows down innovation.

For this reason, companies are looking for flexible
software concepts supporting fast adaptability to business
changes. A promising approach to achieve the required
flexibility are Service-Oriented Architectures (SOAS).
SOAs encapsulate functionality in coarse-grained, loosely-
coupled and reusable units, called services.

Adopting SOAs, companies do not want to throw away
their existing systems because much money and knowl-
edge has been put into them. Instead of reimplementing
the service functionality from scratch, companies are striv-
ing to reuse their legacy software as much as possible.
Transferring existing code into a new technology without
changing functionality is called software migration.

The SOAMIG project, partially funded by the German
Ministry of Education and Research (BMBF)!, brings
together both: transition into SOA by migrating the legacy
code. The overall goals are i) to define a reference process
[1], ii) to achieve a high degree of automatic code migra-
tion, and iii) to support the migration process by analysis
and transformation tools.

In this project, two universities and two companies have
been involved: the Universities of Oldenburg (OFFIS) and
Koblenz-Landau (IST) supplying reengineering knowl-
edge and model-driven tools, pro et con, supplying long-
time expertise in industrial migration projects, language
analysis, and migration tools development, and Amadeus
Germany, providing one of the industrial legacy systems
and know-how in migration of large-scaled systems.

'Grant no. 011S09017A-D. See http://www.soamig.de for further in-
formation.

A. Herget, W. Teppe, M. Theurer
Amadeus Germany
{aherget, wteppe, mtheurer } @de.amadeus.com

U. Erdmenger, U. Kaiser, D. Uhlig,
Y. Zimmermann
pro et con GmbH
{uwe.erdmenger, uwe.kaiser, denis.uhlig,
yvonne.zimmermann } @proetcon.de

During the SOAMIG project, two industrial case studies
were selected: the LCOBOL case study deals with a
language migration from a transaction driven COBOL
system to Java Web Services, while the ASPL case study is
about an architecture migration from a Java fat client into
a Java SOA. This short-paper presents the tools developed
during the SOAMIG project.

II. LCOBOL: LANGUAGE MIGRATION

The LCOBOL case study is conducted by pro et con,
one of the industrial partners. The main challenge in this
case study is to yield a very high degree of automation
for a language migration from COBOL to Java. Also,
the resulting Java code has to be understandable and
maintainable. Figure 1 shows the set-up of the tool chain.

Every COBOL source file is parsed into a fine-grained
abstract syntax graph by the COBOL front-end CobolFE.
CobolFE can handle various COBOL dialects. The main
translation to Java is done by the model-to-model trans-
formation Cobol2Java. This tool takes the COBOL
model as input. The actual transformation is defined by
many sophisticated rules defining a semantics-preserving
transformation into a Java model. Project specific rules,
e.g., on how to transform specific transaction monitor
calls, amend the language translation. The transformations
are implemented in C++. Finally, Java source code is
generated by JGen and JFormat. JGen takes a model
of a Java translation unit as input and creates syntactically
correct, but only roughly formatted output. JFormat
is a stand-alone, scriptable Java source code formatter
based on the Eclipse JDT formatter and is individually
configurable to various formatting conventions.

III. RATLCLIENT: ARCHITECTURE MIGRATION

In the RailClient case study, an architecture migration
from a monolithic Java system into a SOA-based web
application is investigated by all four project partners.
Figure 2 outlines the tools developed in this part of the
SOAMIG project. Amadeus Germany provided the busi-
ness case and the subject system, an order management
and booking system for train tickets. OFFIS contributed
to the definition and realization of the target architecture.

The SOAMIG repository forms a common core of the
tool-chain. In this repository, artifacts used during migra-
tion are stored as models. The main part of the repository

Translator chain

Q—» CobolFE %—»D—y Cobo\zJava%

Cobol Cobol model
Code

—>D—> JGen %—) JFormat %—b@

Java model Java

Code

Transformation rules

Figure 1.

Monolithic legacy system

Tool set-up for the LCOBOL case study

Extractor tools

OV =& —

Java State Message

Business

JavaFE % oSL

Java, Cobol, UML
and DSL Metamodels

parsers

code machines repository processes

Transformation
tools

Analysis tools

Code generation tools

SOAMIG
Extractor

FGM %

—
JFormat € JGen

Isolated

Java model

GReTL %

Dynamic
SOAMIG Analysis
Repository

Toolset

service code

DataModel
Generator

GReQL %

Figure 2.

is based on the TGraph technology developed by IST.
TGraphs are a versatile data structure formally defined by
grUML (graph UML). The TGraph technology is generic
and can represent arbitrary artifacts. In SOAMIG, the
tools are integrated by an XML-based exchange format
for metamodels and models.

To ease initial program understanding and redocumen-
tation, the explorative tool FGM (Flow Graph Manipulator)
by pro et con was used. This partner also provided
JavaFE, an extractor from Java source to fine-grained
abstract syntax graphs stored in the repository. Not only
source code, but also various other parts of the legacy
system, such as automatons controlling GUI behavior,
message descriptions, and redocumented business pro-
cesses are combined into one comprehensive model. Links
between these parts are established by static and dy-
namic analysis. Static analysis is covered by JavaFE and
GReQL (Graph Repository Query Language). Dynamic
analysis of certain test cases covering the selected business
processes is used to detect relevant portions of the source
code, and to mark service candidates [2].

Among the transformation tools in this case study is
GReTL (Graph Repository Transformation Language), a
general-purpose transformation language that allows to
define and execute arbitrary graph transformations. A sys-
tem specific DataModelGenerator combines message
descriptions and dynamic traces to compile service specific
data structures for the target architecture.

The SoamigExtractor tool provides a graphical
interactive user interface to enable model transformations.
Examples are incorporating dynamic traces, pruning gen-
eralization hierarchies, selection and completion (slicing)
of multi-class Java models based on execution traces, es-
tablishment of traceability links between source and target
models, and export of translation unit models to the above

Tool set-up for the RailClient case study

mentioned JGen and JFormat tools. The generated Java
code requires manual rework. It contains human readable
as well as machine processable annotations to link to the
relevant legacy sources.

IV. CONCLUSION

Summarizing, a set of powerful model-driven tools
and technologies has been developed to support various
tasks during the migration process. Most of the tools are
independent of the concrete legacy system and are reusable
as-is, others have to be configured or have even been
built from scratch. The SOAMIG repository technology
is largely generic, enabling integration of additional meta-
models and traceability to the already existing parts.

Every migration project requires adaption and special-
ization of process, repository, and tools to the specific
needs of the legacy and target systems, the organizational
requirements, and other factors. While the complete mi-
gration of the case study systems is out of scope of the
project, the model-driven tools have proven to be appli-
cable in real-world scenarios. Transfer to other business
cases and different migration tasks is an opportunity to
further evolution of the SOAMIG process and technology.

REFERENCES

[1] U. Erdmenger, A. Fuhr, A. Herget, T. Horn, U. Kaiser,
V. Riediger, W. Teppe, M. Theurer, D. Uhlig, A. Winter,
C. Zillmann, and Y. Zimmermann, “The SOAMIG Process
Model in Industrial Applications,” in Proceedings of the
15th European Conference on Software Maintenance and
Reengineering, T. Mens, Y. Kanellopoulos, and A. Winter,
Eds. Los Alamitos: IEEE Computer, 2011, pp. 339-342.

[2] A. Fuhr, T. Horn, and V. Riediger, “Dynamic Analysis for
Model Integration (Extended Abstract),” Softwaretechnik-
Trends, vol. 30, no. 2, pp. 70-71, 2010.

