Model-driven Modernisation of Java Programs with JaMoPP

Florian Heidenreich, Jendrik Johannes, Jan Reimann, Mirko Seifert,
Christian Wende, Christian Werner, Claas Wilke, Uwe Assmann
Technische Universitdt Dresden
D-01062, Dresden, Germany
Email: firstname.lastname @tu-dresden.de

Abstract—The history of all programming languages exposes
the introduction of new language features. In the case of Java—
a widespread general purpose language—multiple language
extensions were applied over the last years and new ones are
planned for the future. Often, such language extensions provide
means to replace complex constructs with more compact ones.
To benefit from new language extensions for large bodies of
existing source code, a technique is required that performs the
modernisation of existing source code automatically.

In this paper we demonstrate, how Java programs can be
automatically migrated to new versions of the Java language.
Using JaMoPP, a tool that can create models from Java source
code, we enable the application of model transformations to
perform model-driven modernisation of Java programs. Our
approach is evaluated by applying two concrete transforma-
tions to large open source projects. First, we migrate classical
for loops to the new for-each style (introduced in Java 5).
Second, we convert anonymous classes to closures (planned for
Java 8). Furthermore, we discuss how tracing transformations
allows to quantify the impact of planned extensions.

1. INTRODUCTION

Programming languages evolve over time: new features
are added and occasionally old ones are removed. A promi-
nent example of a language that undergoes such an evolution
is Java. For example, generics were introduced in Java 5.

All changes—with a few exceptions—that were intro-
duced to Java, preserved backward compatibility. Programs
written in older versions do still compile and run with new
versions. Still, old programs could be updated using new
language features, assuming this improves code readability
and therewith maintainability. For small programs, old code
fragments can be replaced manually, but for large code bases
automatic code modernisation transformations are required.

Source code transformations are known for quite a while
and specialised tools exist to perform this task (cf. Sect. V).
However, with the advent of Model-Driven Software Devel-
opment (MDSD) [1], standardised transformation languages
(e.g., Query View Transformation (QVT)!) became avail-
able. If one could use these languages for code transforma-
tion, the need for specialised languages would vanish.

To apply a model transformation language to source
code, a model of the respective code is required. Also, a
metamodel of the language that is subject to transformation

Uhttp://www.omg.org/spec/QVT/

is needed. In earlier work, we presented JaMoPP [2], [3]—
the Java Model Printer and Parser—a tool that entails a
complete metamodel for Java and tooling to convert Java
source code to Eclipse Modeling Framework (EMF) [4]
models and vice versa. Therefore, JaMoPP enables arbitrary
EMF-based tools to work on Java programs.

In this paper, we show how JaMoPP and a standardised
model transformation language can be combined to migrate
Java code to a new version of the Java language. We present
two concrete migration examples. First, existing for loops
are transformed to the for-each style that was introduced in
Java 5. Second, the conversion of anonymous inner classes
to closures, which are planned for the Java 8 release, is
performed. We apply the two transformations to a set of large
open source Java projects. The results of this transformation
can be used to quantify the impact of new language features.

The paper is structured as follows. After giving a brief
overview on JaMoPP in Sect. II, we discuss the transforma-
tions for the two migration examples in Sect. III. The result
of performing the transformations of larger bodies of source
code can be found in Sect. IV. We compare our work with
related approaches in Sect. V, and conclude in Sect. VI.

II. JAMOPP—BRIEF OVERVIEW

In MDSD, many generic modelling tools exist that can
be used in combination with arbitrary languages. This is
possible because the tools can be configured with metamo-
dels. A metamodel describes the concepts of a language; also
referred to as the abstract syntax of a language. To exchange
metamodels between tools, the OMG has standardised the
metamodelling languages Meta-Object Facility (MOF) and
Essential Meta-Object Facility (EMOF)?. A widely used
implementation of EMOF is Ecore as part of EMF. To use
a generic modelling tool that supports Ecore with a certain
language, a metamodel of that language needs to be provided
together with tooling to parse (and print) sentences written
in the language’s concrete syntax (e.g., a Java program) into
typed graphs that conform to the metamodel.

With JaMoPP, we provide such an Ecore metamodel
and the tooling to parse and print source code for the
Java language (currently supporting Java 5). This allows

Zhttp://www.omg.org/spec/MOF/2.0

http://www.omg.org/spec/QVT/
http://www.omg.org/spec/MOF/2.0

developers to apply generic modelling tools on Java source
code and hence to use the same tools to work with models
(e.g., UML models) and source code. An example of such
a tool, which we show in the next section, is the QVT
transformation language.

Important properties of JaMoPP are: (1) JaMoPP supports
both parsing and printing Java code which allows modelling
tools (e.g., model transformation engines) to both read and
modify Java source code. This conversion preserves the
layout of Java source code. (2) In addition to parsing,
JaMoPP performs name and type analysis of the source code
and establishes links (e.g., between the usage and definition
of a Java class). These links can be exploited by modelling
tools to ensure correctness of static semantics properties of
the Java source files they generate or modify. (3) JaMoPP
itself was developed using our modelling tool EMFText [5].
There, the concrete syntax of Java is defined in an EBNF-
like syntax definition. Based on the metamodel and this
definition, the parser and printer tooling is generated. This
allows us to extend JaMoPP by extending the metamodel
and the syntax definition without the need to modify code.
With this, JaMoPP can co-evolve with future Java versions
and can, in particular, be used to prototype and experiment
with new features. An example of this is closure support,
which is used in Sect. IV.

JaMoPP has been tested with a large body of source code
from open-source Java projects through which stability and
support for all Java 5 language features is assured (see [2]
for details). Initially [2], we focused on using JaMoPP for
forward engineering to generate and compose Java code.
In [3] we presented how JaMoPP is used for reverse engi-
neering. In the next section, we demonstrate how JaMoPP
is used in combination with QVT for modernisation, which
is a combination of reverse and forward engineering.

III. MODEL-DRIVEN SOURCE CODE TRANSFORMATION

In this section we first exemplify Model-Driven Moderni-
sation using our first migration example—the transformation
of for loops to the for-each loops. Afterwards we discuss
the benefits and challenges we experienced in applying
model transformations for source code modernisation in
both migration examples (for-each loops and closures). The
complete transformation scripts can be found online?.

To implement our modernisation transformations we used
QVT-Operational provided by the Eclipse M2M project*.
We consider the declarative language QVT-Operational a
pragmatic choice for the unidirectional transformations typ-
ically required for source-code modernisation. In contrast,
its declarative counterparts (QVT-Relations, QVT-Core) are
more suitable for bi-directional transformation.

3http://jamopp.org/index.php/JaMoPP_Applications_Modernisation/
“http://www.eclipse.org/m2m/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

mapping transformForLoopToForeachLoop
(forLoop : JAVA::statements :: ForLoop)
: JAVA::statements :: ForEachLoop
when {
forLoop.
forLoop.
forLoop.
forLoop.
H
var listType : JAVA::types:: TypeReference
;= getlteratedCollectionType (counterldentifier);
var loopParameter
:= object JAVA:: parameters :: OrdinaryParameter {

checkLooplInit() and
checkLoopCondition () and
checkLoopCountingExpression () and
checkLoopStatements ()

name := "element”;
typeReference := listType };
result.next := loopParameter;

result.statement :=
map replaceCollectionAccessorStatements (
forLoop, loopParameter);

20 }

Listing 1. QVT Transformation to replace for loops with for-each loops.

A. Example of Model-Driven Modernisation of For Loops

Listing 1 shows a mapping taken from the transfor-
mation of for loops to for-each loops. An example of
the expected replacement and a description of the loop
elements used in the transformation is given in Fig. 1.
The mapping consists of a when-clause (lines 4-9) and
a mapping body (lines 10-20). The when-clause defines
a number of preconditions that need to be satisfied by a
given for loop to be replaced. For instance, that the init-
statement initialises the loop counter variable with
0, that the loop condition ensures iteration among all
collection elements, or that the counting expression
always increases the loop counter variable by 1.
Furthermore, the 1oop statements are not allowed to
refer to the counter variable aside from accessing
the collection for the next element. If all preconditions are
satisfied we calculate the generic type of the collection
that is iterated (lines 10-11) and create an iteration
parameter for the for-each loop that is initialised with
this type (line 12-15). Finally, the new for-each loop is
initialised with this parameter and its body is filled with the
statements of the original for loop, where all statements for
collection access are replaced with references
to the iteration parameter of the for-each loop.

B. Applicability of QVT for Model-Driven Modernisation

For the specification of both transformation scripts we
used a set of tools provided by the M2M project for
QVT-Operational. The included editor provided advanced
editing features like syntax highlighting, code navigation,
and code completion. Especially code completion helped a
lot in writing expressions that traverse and analyse Java
models. A second tool that helped a lot in developing
transformations was the QVT debugger. It allows the step-
wise evaluation of transformation execution and was indis-
pensable to understand and fix problems in our complex
transformation scripts. Third, the QVT interpreter generates

http://jamopp.org/index.php/JaMoPP_Applications_Modernisation/

|J] FTestl.orig.java &3
counter variable collection condition

List\§tring> [ist]= new \Ar‘r‘ayList<Str‘ing>();
for (fint 1]= @; L < Tist.sizeQ;[1+4 { O

init —“S'Emg next =[list.get(i);
// oop body counting &

Y
} loop statements collection access expression v
€ : R

Figure 1.

tracing information for each execution of the transformation.
The trace records all mappings applied and enabled the
quantitative analysis of our examples. We think that the
reusability and maturity of these generic tools provide some
good arguments for applying a standardised transformation
language.

A benefit of model-driven modernisation was the graph-
structure of models, which, compared to tree-structures often
provided by code parsing tools, allow for more convenient
navigation and analysis of references between declarations
and uses of code elements (e.g., variables). For example, this
eased the specification of the preconditions for the for loop
migration that searches the method body for statements that
use the counter variable declared in the loop header.

In both examples it is not trivial to come up with an
exhaustive set of patterns that identify source code that can
be modernised. We consider this a challenge for source code
modernisation in general. However, we also learned that
some idioms (like the for loop presented in Fig. 1) are quite
common and occurred in all Java projects we investigated,
as can be seen in the next section.

Some drawback of using model transformations for code
modernisation was the focus on abstract syntax, i.e., the
language metamodel. It required a good knowledge of the
JaMoPP metamodel and some training to represent patterns
of source code in abstract syntax. On the other hand, the
strict structure of an explicit metamodel was beneficial to
ensure the well-formedness of the produced source code.

IV. EVALUATION

To evaluate the performance of our source code mod-
ernisation approach, we applied the transformations from
Sect. III to a set of Java frameworks available to the public.
Our goal was to answer the following questions: First,
we wanted to know whether a general purpose modelling
environment like EMF is scalable enough to handle such a
large set of models. Second, we were curious how many
resources are required to perform a transformation of this
scale with QVT—a generic model transformation language.
To answer these questions, we transformed 16.402 Java files
from 10 open source projects.

A. Performance

To evaluate the transformation performance, we measured
the time needed to perform the transformations on individual

[J] FTestl.java 83 =0

iteration parameter
List<String>\list = new ArraylList<String>=();
for ([String element]: list) {
String next — O

¢ 1oop; bady reference to
iteration parameter v
€ P« »

Example of for loop replacement explaining the elements of for- and for-each loops.

compilation units. This includes all types referenced by this
unit, but excludes other, unrelated parts of the source code.
We used a machine with a Dual Core AMD Opteron running
at 2.4 GHz with 4 GB RAM. We used only one core of the
machine to avoid problems with Eclipse plug-ins that are
not thread-safe.

Framework Files For loops Closures
min repl/occur. min repl./occur.
AndroMDA 3.3 698 3 4/959 8 8/201
Apache Ant 1.8.1 829 5 24/1028 21 12/99
Comns. Math 1.2 395 1 25/845 5 0/25
Tomcat 6.0.18 1127 4 65/1437 15 52/125
GWT 1.5.3 1850 5 29/1044 23 26/670
JBoss 5.0.0.GA 6414 16 472/2744 70 197/591
Mantissa 7.2 242 1 7/652 3 18/29
Spring 3.0.0.M1 3096 8 82/680 43 31/1403
Struts 2.1.6 1035 3 7/130 13 8/158
XercesJ 2.9.1 716 3 21/1111 12 62/94
16402 49 736/10630 213 414/3395

Figure 2. Transformation time and ratio of found and replaced elements.
The results of our measurements are shown in Fig. 2.

From these numbers one can derive that the pure average
transformation time per source file is 0.2 seconds (for-each
loops) and 0.8 seconds (closures). These values can be
obtained by dividing the total time (given in minutes in
columns 3 and 5) by the number of total source files. In
addition to the transformation time one must also take into
account the time needed to load the input models. This can
take up to a few minutes for very complex source files, but is
usually done within few seconds. For a migration task, which
is performed once for every new release of a programming
language, this renders the approach still feasible.

B. Quantification of Language Extensions

To quantify the impact of a planned language extension,
one can count the number of replaceable language con-
structs. This is usually only a subset of all cases where a new
language construct is applicable. Some potential applications
of a language construct may simply not be detected, because
developers used structures not covered in the transformation
script.

Nonetheless, the number of places in existing source code
where a new language construct can be applied, does at least
give some indication about its impact. The ratio for loops
that can be replaced by for-each loops to all for loops found,
and the ratio of anonymous inner classes that are replaceable
by closures to all inner classes found is shown in Fig. 2.

On average, 6.9% of all for loops were transformed to
the for-each style. The percentage of anonymous classes
that were replaced by closures was 12.2%. Certainly, these
numbers can be increased if more patterns are covered by the
transformation scripts. However, given the very restrictive
scripts which we used, the numbers are quite high. Thus,
one can reason that actual benefit can be gained by using
automatic transformations here and that both language ex-
tensions are useful additions to the Java language.

V. RELATED WORK

There exists a large amount of work and tools for source
code transformation.’ One prominent approach is Strate-
go/XT [6], a tool set for strategic rewriting of source code.
While Stratego/XT and other approaches are proved to be
useful and applicable in academic and industrial projects,
they do not provide a standardised transformation language.
With JaMoPP one can transform source code to a standard-
ised intermediate representation (i.e., EMF-based models)
where we apply a standardised transformation language
(i.e., QVT). This can be generalised to other programming
languages and other transformation languages.

MoDisco [7] aims at discovering models from legacy
applications. It handles Java code as well as other arte-
facts (e.g., configuration files). Based on the Eclipse JDT
parser, MoDisco creates models from source code files. The
metamodel for these models is defined in Ecore similar
to JaMoPP. Thus, transformations can be specified using
existing languages (e.g., QVT). However, MoDisco does not
preserve the layout of the source code when printing back
transformed models back to their original representation
(i.e., Java source code). Approaches for metamodel evolution
(e.g., [8]) are inherently limited to the model level and do
not allow to print models after performing evolution steps.

Architecture-driven Modernisation (ADM)® of the OMG
goes beyond what is presented in this paper by applying
modernisation efforts on all artefacts involved in the software
development process (e.g., source code, database definitions,
configuration files, ...). However, strategies that are built
on top of existing OMG standards (e.g., similar to the
combination of EMOF and QVT in our approach) can fit
nicely in the overall goal of ADM.

VI. CONCLUSION & FUTURE WORK

In this paper, we implemented and evaluated two exam-
ples of Java modernisation to show that JaMoPP in combi-
nation with the standardised model transformation language
QVT can be used for Model-Driven Modernisation of Java
programs. In applying the transformations on a set of open-
source projects we experienced that the transformations
can be performed in acceptable time and transformed a
reasonable part of the code (on average, 6.9% of all for loops

Shttp://www.program- transformation.org/ provides an overview.
Ohttp://adm.omg.org/

and 12.2% of all anonymous classes were considered as
candidates for transformation). So far we only used our own
judgement based on our experience with Java to determine
the semantic correctness of the transformation rules. In fu-
ture we plan to automatically validate correctness by running
the test suites of the open-source projects on the modernised
code. Further, we did not yet compare the effort of writing
QVT transformations for Java with alternatives such as
using Java-specific source code transformation tools or other
model transformation languages. Doing this comparison by
implementing the two modernisation transformations with
different languages and tools is subject to future work.

ACKNOWLEDGMENT

This research is co-funded by the European Commission
within the projects MODELPLEX #034081 and MOST
#216691, by the German Ministry of Education and Re-
search (BMBF) within the projects feasiPLe and SuReal; by
the German Research Foundation (DFG) within the project
HyperAdapt and by the European Social Fund and Federal
State of Saxony within the project ZESSY #080951806.

REFERENCES

[1] M. Vaolter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-
Driven Software Development. John Wiley & Sons, 2006.

[2] FE. Heidenreich, J. Johannes, M. Seifert, and C. Wende, “Clos-
ing the Gap between Modelling and Java,” in Proc. of 2nd Int’]
Conf. on Software Language Engineering (SLE’09), ser. LNCS,
vol. 5969. Springer, Mar. 2010, pp. 374-383.

(3]

, “Construct to Reconstruct—Reverse Engineering Java
Code with JaMoPP,” in Proc. of Int’l Workshop on Reverse
Engineering Models from Software Artifacts (R.E.M. 2009),
Oct. 2009.

[4] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
Eclipse Modeling Framework (2nd Edition). Pearson Edu-
cation, 2009.

[5] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende, “Derivation and Refinement of Textual Syntax for
Models,” in Proc. of ECMDA-FA’09, ser. LNCS, vol. 5562.
Springer, Jun. 2009, pp. 114-129.

[6] E. Visser, “Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9,” in Domain-
Specific Program Generation, ser. LNCS, C. Lengauer, D. Ba-
tory, C. Consel, and M. Odersky, Eds. Spinger, Jun. 2004,
vol. 3016, pp. 216-238.

[7]1 H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: A
Generic and Extensible Framework for Model Driven Reverse
Engineering,” in Proc. of ASE’10. ACM, 2010, pp. 173-174.

[8] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “COPE -
Automating Coupled Evolution of Metamodels and Models,”
in Proc. of ECOOP’09, ser. LNCS, S. Drossopoulou, Ed., vol.
5653. Springer, 2009, pp. 52-76.

http://www.program-transformation.org/
http://adm.omg.org/

