
Model-Driven Migration of Scientific Legacy Systems to Service-Oriented
Architectures

Jon Oldevik, Gøran K. Olsen
SINTEF Information and Communication Technology

Forskningsvn 1, 0373 Oslo, Norway
jon.oldevik | goran.olsen at sintef.no

Ute Brönner, Nils Rune Bodsberg
SINTEF Materials and Chemistry

Brattørkaia 17c, 7465 Trondheim, Norway
ute.broenner | nilsrune.bodsberg at sintef.no

Abstract—We propose a model-driven and genera-
tive approach to specify and generate web services for
migrating scientific legacy systems to service-oriented
platforms. From a model specification of the system
migration, we use code generation to generate web
services and automate the legacy integration. We
use a case study from an existing oil spill analysis
application developed in Fortran and C++ to show
the feasibility of the approach.

Keywords-Model-driven engineering, legacy migra-
tion, web services

I. Introduction

A large number of existing systems, especially within
data and computationally intensive domains, are based
on implementations that are becoming increasingly diffi-
cult to maintain and evolve [1], typically in languages like
Cobol and Fortran. Competent personnel with know-
ledge of these technologies is also becoming a scarce
resource. Modernisation toward a service-oriented archi-
tecture may also open for new business opportunities.

In this paper, we investigate a model-driven approach
for migrating legacy systems to service-oriented archi-
tectures. Our migration strategy is wrapping of existing
legacy components. We use the Unified Modelling Lan-
guage (UML) to specify migration models, or wrappers,
that are fed to model-driven code generators to generate
a deployable service. This work has been done in the
SiSaS project1, which has an overall focus of methods
and tools for migrating scientific software to service-
oriented architectures.

We define a migration profile in UML that contains
concepts for integrating with existing legacy, such as
native libraries, executable programs, and databases, as
well as for integrating with existing web services. We
establish a modelling approach – a method – for how
to specify services using the migration concepts, as well
as concepts from SoaML [2]. Our modelling comprises
the interfaces and structure of a service, as well as the
behaviour of different service parts.

Our goal is to create effective and usable means for
migrating legacy systems to service-oriented platforms.

1SINTEF Software as a Service

Our conjecture is that model-driven and generative tech-
niques can provide these means.

II. Motivating Case Study: Oildrift Simulation

In SINTEF Materials and Chemistry, they have a
commercial legacy product for simulating oil drift, which
can help predicting the spreading of oil in case of an
accidental spill. The system is implemented by a Fortran
simulation back-end and a C++ front-end. Now, they
want a transition to a service-oriented paradigm to
more easily adapt to new customer needs and more
flexible business models. Figure 1 illustrates the existing
application.

Oil databaseOil database

Simulation 
Engine

(Fortran)

Simulation 
Engine

(Fortran)

Environmental 
Data (wind, current, etc)

Front-end – set up scenario,
Visualise results (C++)

Figure 1. Oildrift Prediction – Legacy Application

The Fortran simulation core is responsible for simu-
lating oil drift based on numerical models. It is invoked
from a presentation layer written in C++. All input is
file based, and simulation runs in batch mode from some
minutes to several days. This approach has worked fine
for many years, but there are some apparent challenges
with respect to interoperability, integration, and scala-
bility. The goal is to migrate the application to meet new
market needs while coping with these challenges.

III. Our approach

We use model-driven engineering techniques to de-
velop the oil drift prediction as a service that wraps
the existing simulation engine. UML models are used
to specify the service interfaces and the details of the
wrapper architecture. From these models, we generate



XML schemas for the web service, Java interface and
class implementations of the web service, the architec-
ture of the wrapper, and its behavioural implementation.
Wrapping of the C++ front-end is out of our scope, since
this will be re-designed to fit a web-based interaction
paradigm.

We define a UML migration profile to represent se-
mantics of different types of migration features, such
as executables, databases, and native libraries. The code
generators use this semantics to generate the necessary
integration code. Figure 2 illustrates the high-level ap-
proach.

Executable
components

Native
Share libsDatabases

External
libraries

Generated Web Service

UML Models

Model 2 Text Transformations

interfaces
Structured

classes behaviour

Migration profile

Data 
transformations

Web 
services

SoaML profile

Figure 2. Approach Overview

We use UML interfaces and classes to model the
structural parts of the system. Service interfaces define
the behaviour, and classes define the internal structure
of the services. UML composite structures are used for
specifying the service de-composition into parts. The
service is decomposed by legacy component parts, which
is orchestrated by the service to provide its operations.
The behaviour of the service and its contained legacy
wrapper components is defined by UML activity dia-
grams.

To relate the migration models to the service-oriented
modelling domain, we use some SoaML concepts to
describe services: the stereotype «serviceInterface» is
used to denote a service, i.e. the service that wraps the
legacy systems. The stereotype «MessageType» is used
to specify the data types passed as message input and
output of the service.

A. The migration profile

The migration profile contains a set of stereotypes
used for adding migration semantics to the UML models.
The main purpose of the migration model is to integrate
existing legacy functionalities and expose them through
well-defined interfaces. To this end, we use standard
UML models extended with migration semantics from
a profile.

The Component Types: The component types rep-
resent different sorts of legacy components that take

part in fulfilling the responsibilities of the legacy system.
This might be existing shared libraries, executables, Java
libraries, databases, or web services. Figure 3 specifies
the set of component types that are in the current profile.

Figure 3. Component types

The stereotype «WebService» denotes the wrapping
of an external web service, i.e. a web service client.
«RestfulWebService» denotes the wrapping of a restful
web service. Its endpoint is an URI that acts as a data
source, which is fetched by the wrapper and used locally.
«exe» denotes the wrapping of an executable program.
«JNI» denotes the wrapping of a native library, such
as a windows shared DLL, using Java Native Interface
(JNI). «external» denotes integration with external Java
libraries, e.g. provided by a jar file. «db jdbc» denotes
the wrapping of a JDBC database. Operations defined
in classes of this type represent database SQL queries.

The profile additionally provides stereotypes for spe-
cific types of operations, such as «asynch» for asyn-
chronous operations and «RSOp» for restful service
operations. Exceptions can be specified explicitly by
classes stereotyped «exception». Throwing and catching
of exceptions are specified by dependencies stereotyped
«throws» and «catches».

Behaviour – Activities and Actions: Behaviour is
declared by operations in components. The behaviour
of these operations are defined by associated activity
diagrams. An activity diagram defines behaviour by
sequences and branches of actions that are mapped to
statements in code generation. Standard (opaque) ac-
tions contain embedded Java code. CallOperationActions
are used for defining invocations to defined operations
of related components. In addition, we define a set of
stereotypes in the migration profile for simplifying the
action specification:

«return» is used to denote a return from the method
execution with a specific value; «assign» is used to
denote an assignment of a value to a variable; «setState»
is used to denote the setting of an internal state variable,
specifically used for asynchronous and long running op-
erations; «setReturn» is used to set the return value of
an asynchronous and long running operation; «param»
is used to define an input parameter to a CallOpera-
tionAction. It references a previously defined variable;



finally, «valueparam» is used to define a literal value as
an input parameter to a CallOperationAction.

B. Modelling the Oildrift Prediction Case

In this section, we exemplify the use of the migration
profile on the oildrift prediction case in terms of struc-
ture and behaviour.

Service Structure and Interface: The service itself
is defined by a SoaML «serviceInterface» class, which
implements the service interface with a set of exposed
operations (Figure 4). The most interesting of these is
the «asynch» operation predictOilDriftAsynch, which
provides the main service in the oildrift prediction case.
Since the execution of a simulation may run for hours,
or even days, the operation is declared as asynchronous.
The operation will return immediately with only a ses-
sion id to identify the session.

Two additional helper operations are provided for
checking execution status (getStatus) and to retrieve the
result upon termination (getPredictOilDriftResult).

Figure 4. Predict Oildrift – Service and Wrapper Components

The PredictOilDriftService is a structured class that
contains a set of parts: the PredictOilDriftServiceCon-
troller is the internal orchestration component for the
service. All incoming calls are delegated to the con-
troller, which implements the operations of the service.
The DataTransformer provides operations for trans-
forming input required by the Fortran simulation en-
gine, and transforming result data after simulation. The
FatesWrapper is an «exe» component, which wraps
the execution of the Fortran simulation program. The
WeatherServiceIntegrator provides operations for inte-
grating with an external weather data provider. It is
further de-composed by two parts: a «restfulWebSer-
vice» called WeatherService and a «JNI»-component
called GribDataTransformer. The getWeatherInfo oper-
ation gets weather data from a restful web service that
provides binary data in the GRIB2 format. To transform
the GRIB-data to the input format used by the sim-
ulation engine, an external native library (in this case

2GRIdded Binary, http://www.wmo.int

DLL) is integrated by the GribDataTransformer. The
OilDatabase is a «db jdbc»-component, which provides
oil type information from an SQL database.

The data types passed in the service interface are
modelled as classes stereotyped using the SoaML stereo-
type «MessageType». Apart from the stereotype, the
data types are specified with standard UML classes with
attributes and associations.

Behaviour: Component behaviour is specified for
different operations in the migration model. Behaviour
is defined by Activity diagrams that are associated with
the operations they implement.

Figure 5 shows the behaviour of the predictOilDrif-
tAsynch operation, which is contained in the Predic-
tOilDriftServiceController. All invocations to the service
PredictOilDriftService is by convention delegated to its
controller part.

The example with the asynchronous operation is in-
teresting, since it also requires handling of the long-
running external executable. In this case, this is handled
by providing a second activity diagram, which specifies
the behaviour upon termination of the executable.

Figure 5. Predict Oildrift Service Behaviour

The first activity diagram specifies the initial be-
haviour of the operation, up until the call to the exe-
cutable component.

The second activity diagram from Figure 5 specifies
the behaviour occurring when the execution of the ex-
ternal program has terminated. When the final action is
executed, the service state (for this particular session id)
is set to a ready state, and the client can fetch the result
of the service.

Our approach for behavioural modelling is tied to the
target language, in this case Java, since we in some
cases embed small portions of code inside actions. We



could get around this by incorporating a richer set of
UML actions that can cope with variable declarations,
property references, and object creation. This extension
will be investigated as part of future work.

C. Code generation

The purpose of the migration models is to automate
as much as possible the legacy system migration process.
We have developed a set of transformations, or code
generators, to support the transition from models to
deployable services. They were implemented with the
model to text transformation tool MOFScript[3].

IV. Related Work

Dorda et al.[4] give a survey of legacy system moderni-
sation approaches. They distinguish between two main
types of modernisation: white-box and black-box mod-
ernisation. White box modernisation requires an under-
standing of the internal parts of a system, and involves
re-structuring, re-architecting, and re-implementing the
system. Black-box modernisation is only concerned with
the input/output, i.e. the interfaces, of the legacy sys-
tem, and is often based on wrapping. Our approach
can be seen as a model-driven black-box modernisation
technique. However, the migration also has flavours of
white-box migration to it, in particular in understanding
and transforming the legacy data formats.

Within the Object Management Group (OMG), the
Architecture-Driven Modernization (ADM) task force
[5] is working on standards to support legacy moderni-
sation, such as meta-models for knowledge discovery,
software visualisation, and refactoring.

Razavian and Lago [6] present a SOA migration frame-
work – (SOA-MF) – wherein they establish an overall
process framework for legacy migration, focusing on
recovery and re-engineering, and put it in the context
of migration methods such as SMART [7]. Although our
work has not focused on re-factoring or re-engineering,
the processes targeting legacy discovery and transforma-
tion to new architecture has also been addressed in our
work.

Canfora et al.[8] present an approach for migrating
interactive legacy systems to web services based on
wrapping. They define a model (a state machine) of the
user interactions, which is the basis for integration with
legacy systems through terminal emulation. This process
is then exposed as a web service.

V. Conclusion and Outlook

We have presented a model-driven approach for legacy
migration to service-oriented architectures, where the
focus is black-box migration by wrapping legacy com-
ponents using model-driven and generative techniques.
We have defined a UML profile for migration and a set

of code generators for generating services and wrapper
components. We have tested the migration approach on
an oildrift prediction system, by modelling and gener-
ating the services and wrappers required for integration
with the various legacy components.

At this time, we have not addressed automation of
legacy data mappings, which is a major concern in legacy
modernisation. In the current case study, data mappings
between binary data formats where written manually. In
future work we will investigate appropriate techniques
and tools for specifying data transformations at the
model level, and for mapping these to the implemen-
tation level.

Acknowledgements

The results reported in this paper are from the SiSaS
project (SINTEF Software as a Service). SiSaS is an in-
ternal project within SINTEF that focuses on migration
of scientific legacy scientific software to services.

References

[1] F. Zoufaly, “Issues and challenges facing legacy systems,”
Project Management, developer.com, 2002.

[2] Object Management Group (OMG), “Service Oriented
Architecture Modeling Language (SoaML), FTF Beta 2,”
OMG, Standard ptc/2009-12-09, 2009.

[3] J. Oldevik, T. Neple, R. Grønmo, J. Aagedal, and
A. Berre, “Toward Standardised Model to Text Trans-
formations,” in European Conference on Model Driven
Architecture - Foundations and Applications (ECMDA).
Nuremberg: Springer, 2005, pp. 239–253.

[4] S. Comella-Dorda, K. Wallnau, R. C. Seacord,
and J. Robert, “A survey of legacy system
modernization approaches,” 2000. [Online]. Available:
http://handle.dtic.mil/100.2/ADA377453

[5] Object Management Group (OMG), “ADM White Pa-
per: Transforming the Enterprise,” OMG, White paper
http://www.omg.org/docs/admtf/07-12-01.pdf, 2008.

[6] M. Razavian and P. Lago,“Understanding SOA migration
using a conceptual framework,” Czech Society of Systems
Integration, 2010.

[7] S. Balasubramaniam, G. A. Lewis, E. J. Morris,
S. Simanta, and D. B. Smith, “SMART: Application of a
method for migration of legacy systems to SOA environ-
ments,”in Service-Oriented Computing - ICSOC 2008, 6th
International Conference, Sydney, Australia, December
1-5, 2008. Proceedings, ser. Lecture Notes in Computer
Science, A. Bouguettaya, I. Krüger, and T. Margaria,
Eds., vol. 5364, 2008, pp. 678–690.

[8] G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tra-
montana, “Migrating interactive legacy systems to web
services,” in CSMR. IEEE Computer Society, 2006, pp.
24–36.


