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ABSTRACT 
In this paper, we describe our work-in-progress with collaborative 
understanding of distributed ontologies in a multiagent frame-
work.  As reported earlier, the objective of this framework is to 
improve communication and understanding among the agents 
while preserving agent autonomy.  Each agent maintains a dic-
tionary for its own ontology and a translation table.  Our current 
work has focused on how neighborhood profiling, the translation 
tables, and query experience influence the collaborative activities 
among the agents.  We have built an infrastructure prototype and 
conducted a series of comprehensive experiments from the view-
point of agent executions, query scenarios, and translation credi-
bility values.  The specific goals of our analyses are to investigate 
(a) the learning of useful neighbors for sharing queries, (b) the 
efficiency of query handling in different real-time scenarios and 
with different resource constraints (such as the number of threads 
and available translations), and (c) the effects of different concepts 
and query demands on collaborative understanding.  This paper 
reports on the results that we have collected so far. 

Keywords 
Multiagent systems, distributed ontology learning, dynamic profil-
ing 

1.  INTRODUCTION 
In our previous work, we described a distributed ontology learning 
framework in a multiagent environment [1].  There are two ways 
that an agent can learn to improve its ontology.  First, users can 
teach them—by supplying a list of words and what the classifying 
concepts are for that list of words.  Second, an agent can learn 
through its interactions with its neighbors.  As a result, each agent 
learns its own concepts based on its experiences and specialties.  
When a new concept arrives, the agent needs to incorporate it into 
its dictionary and its translation table.  This is supported by three 
important components: conceptual learning, translation, and inter-
pretation, with a Dempster-Shafer belief system [2]. 

Our research focuses on developing and analyzing the operational 
components of our framework, applied to a document retrieval 
problem.  Each agent interacts with a user who submits queries 
based on keywords.  These keywords are known as concepts in the 
agents.  The goal of this problem is satisfy as many queries as 
possible and as well as possible.  An agent may turn to its 

neighbors for help.  Thus, this collaboration facilitates the distrib-
uted ontology learning.   

To improve communication, these agents must be able to under-
stand each other.  Thus, our research goals are to  (1) promote 
understanding among agents of a community, thus reducing com-
munication costs and inter-agent traffic, (2) improve cooperation 
among neighbors of a community, thus enhancing the strength 
(productivity, effectiveness, efficiency) of a neighborhood and 
supporting the distributed effort of the community, (3) encourage 
pluralism and decentralization within a multi-agent community—
specialization of agents of a community since each agent can rely 
on its neighbors for tasks not covered by its capabilities, and (4) 
enable collaborative learning to improve the throughput of the 
community, the intelligence in communication and task allocation, 
the self-organization within the community, and integrity of the 
community.   

At the current phase of our research, the objective is to understand 
how collaborative understanding of distributed ontologies is im-
pacted by operational issues such as queries, the number of com-
munication threads, the variability within the translation tables 
and so on.  Therefore, in this paper, we focus on the operational 
design of our infrastructure and the investigations on how 
neighborhood profiling, translation tables, and query experience 
influence the relationship among collaborative agents.  Our ex-
periments are aimed at studying (a) the learning of useful 
neighbors for sharing queries, (b) the efficiency of query handling 
in different real-time scenarios and with different resource con-
straints, and (c) the effects of different ontological concepts and 
query demands on collaborative understanding.  In Section 2, we 
briefly outline the methodology of our framework.  Then we de-
scribe our implementation.  Subsequently, we discuss our experi-
ments and results.  Finally, we conclude. 

2.  FRAMEWORK 
In our framework, the multiagent system is one in which agents 
can exchange queries and messages to learn about each other’s 
ontology.  To improve the communication and collaboration effi-
ciency, agents determine whether some translation is worth learn-
ing, which neighbors to communicate to, how to handle and dis-
tribute queries, and how to plan for agent activities.  The frame-
work consists of two sets of components.  The operational com-
ponents allow the agents to work together in a multiagent system.  
The ontological components allow the agents to communicate and 



understand each other.  In this paper, we focus on the operational 
components of our framework. 

When an agent receives a query, it checks the query against its 
ontology knowledge base.  A query comes with a concept name 
and the number of documents or links desired.  If the agent cannot 
satisfy the query, it will contact its neighbors.  If the agent recog-
nizes the concept name but does not have enough documents or 
links to fulfill the requirement, then it will approach its neighbors 
to obtain more links.  If the agent does not recognize the concept 
name, then it passes the query to its neighbors. Every agent is 
equipped with N number of negotiation threads.  For each contact, 
an agent has to activate one of these threads.  So, if an agent does 
not have available inactive negotiation threads, it will not be able 
to collaborate with other agents.  Hence, even if the agents do 
understand each other’s ontologies, it is possible that due to the 
query frequency and the resource constraints, the agents may not 
be able to utilize that understanding to help solve a query problem. 
Since this collaborative activity requires   Please refer to [3] and 
[1] for details on our original design of operational and ontologi-
cal components, respectively. 

2.1. Operational Components 
There are three important operational components: query process-
ing, action planning, and query composition.  Note that in our 
framework, an agent sends out a query to its neighbor when it 
needs to find some additional links for that some classifying con-
cepts.  Agents are required to compose queries as well as they also 
need to relay or distribute queries to other agents by modifying the 
queries in their own words.  Finally, for the system to be effective, 
the query distribution and the ontology learning behavior are sup-
ported by an action planning component that makes decision 
based on the agent’s environment such as message traffic and 
neighborhood profile.  

2.2. Ontological Components 
There are three important ontological components in our frame-
work: conceptual learning, translation, and interpretation.  We 
represent an ontology item as a vector.  Each vector consists of the 
classifying concept and then a list of words describing that con-
cept.  A concept may have many different supporting documents.  
Different concepts may be used to classify the same list of words, 
resulting in different supporting items.  Moreover, for each con-
cept, the agent also learns the description vector, combining all 
relevant experience cases together.  This allows the system to 
incrementally learn and evolve existing ontologies.  Currently, we 
are still implementing the ontological components and thus will 
not report further on them in this paper.   

3.  METHODOLOGY & DESIGN 
An agent performs two types of learning.  It learns incrementally, 
refining its concepts whenever there is a new submission.  It also 
learns collaboratively, refining its translation table whenever there 
is a query that prompts the agent to ask for help from its 
neighbors.  Figure 1 depicts the current status of operational com-
ponents of an agent in our framework.  

As shown in Figure 1, there are nine important modules: 

(1) Interface:  This module interacts with the user to obtain que-
ries and to provide queried results.  Currently, we have (simu-
lated) software users that automatically generate timed queries for 

our experiments.  Each software user submits its queries through a 
socket connection with the interface. 

 
Figure 1  The current design of the operational components of an 

agent in our framework. 
(2) Query Processor:  This module receives a query from the In-
terface module and processes it.  It first checks the agent’s ontol-
ogy base.  If the query matches one of the concepts in the ontol-
ogy, the module retrieves the number of links available.  If the 
query does not find a match in the ontology, the module examines 
its translation table.  If there are available translations, that means 
a collaboration is possible.  

(3)  Action Planner:  This module serves as the main reasoning 
component of the agent: (a) If the number of internal links satis-
fies the query, then the action planner simply provides those links 
to through the Interface module to the user; (b) otherwise, if the 
agent understands the query and finds available translations, it 
initiates its collaborative activities; (c) if the agent does not under-
stand the query, it will relay the query to another agent; and (d) 
finally, if there are no available translations, the link retrieval 
process stops and the agent reports back to the user.  Whether a 
collaboration is feasible depends on the current status of the agent, 
as recorded by the Activity Monitor and Thread Manager mod-
ules.  If the agent does not have enough resources for a collabora-
tion, the link retrieval process terminates. 

(4)  Collaboration Manager:  When the action planner calls for a 
collaboration, this module takes over.  The objective of this mod-
ule is to form an appropriate group of neighboring agents to ap-
proach and distribute the query demands (link allocations) accord-
ingly among them.  To design such a collaboration plan, this 
module relies on the Neighborhood Profiler module, and the 
translation table.  Each neighbor is given a utility measure based 
on the translation credibility value, the past relationship and the 
current relationship.  Note that in our original thesis [1], each 
translation has a credibility value: two concepts are similar to only 
a certain degree.  The past relationship is the viewpoint of the 
agent of its neighbor of their interactions (or negotiations in our 
framework) monitored and stored by the Profiler module.  The 
current relationship is captured by the Activity Monitor module to 
indicate whether the agent is currently engaged in any negotia-
tions with the particular neighbor.  A neighbor has a high utility if 
the translation credibility of the query in question is high, if the 



lation credibility of the query in question is high, if the past rela-
tionship is strong, and if there is not any current interaction.  The 
collaboration manager ranks these neighbors based on the utility 
measure and then assigns the query demands accordingly, with the 
help of the Query Composer.  The manager assigns more links to 
neighbors with higher utility proportionally to maximize the 
chance of retrieval success.  It also collects the negotiation results, 
sorts the received links based on the credibility, and filters out 
low-credibility links when it has more links than desired. 

(5)  Query Composer: Based on the allocation of query demands, 
this modules composes a specific query for each neighbor to be 
approached.  As previously mentioned, each query is associated 
with a link requirement that specifies the number of links desired.  
A query will also include the name of the originator and a time 
stamp when it is first generated.  If the query is based on a transla-
tion, then the translated concept name is used.  If the agent does 
not recognize a concept and needs to relay a query it has received 
to a neighbor, it simply uses the queried concept directly.   

(6)  Neighborhood Profiler:  The design of this module is based on 
our work in coalition formation.  As we will later in Section 4, we 
keep track of the past relationship between the agent and each 
neighbor.  The relationship is a composition of four basic num-
bers: _numHelp (the number of times the agent provides help to 
the neighbor), _numSuccess (the number of times the agent suc-
cessfully solicits help from the neighbor), _numRequestFrom (the 
number of times the agent receives a request from the neighbor), 
and _numRequestTo (the number of times the agent initiates a 
request to the neighbor) [4].  Based on these numbers, we can 
derive helpfulness, usefulness, importance, and reliance of each 
neighbor, from the viewpoint of the agent. 

(7)  Activity Monitor:  This modules keeps track of the activities 
in a job vector—whether the agent is processing a query on its 
own, or negotiating with other neighbors for more links, or enter-
taining a request by a neighbor.  Each job is described with a list 
of attributes such as the originator, the executor, the task descrip-
tion, the current status, and so on. 

(8)  Thread Manager:  This module housekeeps the threads of the 
agent.  It is a low-level module that activates the threads, updates 
and monitors the thread activity. 

(9)  Negotiation Manager:  This module manages the negotiation 
tasks.  In our current design, the interaction between two agents 
does not involve negotiations as the two simply exchange infor-
mation.  However, our long-term plan views negotiation as an 
important part of ontology interpretation in a distributed environ-
ment.  Negotiations that are too time consuming, stagnant, or no 
longer useful will be modified or aborted; negotiations that are 
successful will be learned; and so on.  We will adapt our previous 
work in reflective negotiations [5] to distributed ontology in this 
framework. 

Together with these nine operational components are three dy-
namic knowledge or data bases: ontology, translation table, and 
profiles.  The profiles keep track of the relationships between the 
agent and its neighbors, updating the neighborhood parameters.  
The ontology is a dictionary listing the concepts that the agent 
knows.  Each concept has a list of supporting documents or links.  
The translation table consists of translations between each concept 
that the agent knows and its neighbors.  Each translation is ac-
companied with a credibility value.  Some neighbors may not 
have concepts that are similar to a concept that the agent knows 

and the credibility value for those entries in the translation table is 
NIL.   Table 1 shows an example of a translation table for agent 
A1.  In the example, A1 has four neighbors.  It knows of concepts 
such as “basketball” and “car”.  For “basketball”, it is similar to 
N1’s “NBA” with a credibility of 2.1, N2’s “Bball” with a credi-
bility of 1.0, and N4’s “Basketball” with a credibility of 3.4.  
However, it does not have a translation for “basketball” between 
itself and N3. 

Concepts N1 N2 N3 N4 
basketball NBA 2.1 Bball 1.0 NIL Basketball 3.4 
car NIL Auto 2.1 Car 1.0 Move 1.0 
…     

Table 1  A translation table example. 

4.  IMPLEMENTATION 
We have implemented all the nine modules of our agent as de-
picted in Figure 1 in C++.  Each agent receives its user queries 
from a software user through a socket connection, and communi-
cates with other agents through a central relay server module 
through socket connections as well.  Each agent generates and 
maintains its neighborhood profile during runtime dynamically.   

For our experiments, each agent is equipped with a translation 
table right from the start.  Note that in our original distributed 
ontology framework [1], the entries in a translation table is 
learned over time based on the experience of each agent.   In this 
paper, we focus on the operational design of collaborative under-
standing of distributed ontologies and assume that each agent has 
a translation table to begin with.   

In addition, each agent is equipped with an ontology database.  
This database lists all the concept terms that an agent knows.  For 
each concept, there is a list of links (or documents) that are exam-
ples that illustrate the concept.  Indeed, when interpreting two 
concepts, we simply compare the similarities of the two lists of 
links supporting the two concepts.  Currently, we are building this 
interpretation module.   

5.  DISCUSSION OF RESULTS 
We have performed a comprehensive set of experiments.  In this 
Section, we will describe our experimental setup and then discuss 
the results. 

5.1. Experimental Setup 
Here is the setup of our experiments: 

There are five agents supporting a software user each.  All agents 
are neighbors and can communicate among themselves.  All five 
agents and their threads are run on the same CPU. 

Every agent has a unique set of nine concepts in its ontology.  
Each concept has five supporting links. 

Each agent has a translation table where each cell of the table 
indicates the translation between a local concept and a foreign 
concept in a neighbor and the translation’s credibility value.  If a 
translation is not available, we use the symbol NIL.   

Each software user has a query configuration file. Thus, instead of 
manually submitting these queries, the software user simply reads 
them from the file and sends them to the corresponding agent.  For 
each query in a configuration file there are (a) a cycle number, (b) 



the queried concept name, and (c) the number of link desired.  The 
cycle number indicates when the query will be submitted to the 
agent. (A cycle’s time varies as this measures a loop of activities 
of an agent.) Each configuration file has about 300 cycles, and 
two batches of exactly the same query scenarios.  We want to 
investigate whether the agents are able to improve in their re-
sponse time in the second batch after learning how to form col-
laborations better through neighborhood profiling.   

In the first batch of query scenarios, 

(1)  Cycles 0-10:  Every user queries about all different concepts 
its agent has in the ontology.  Each agent is also able to satisfy the 
query demand on its own.  During this segment, each agent does 
not need to collaborate.  All queries across the users are submitted 
at the same cycles.   

(2)  Cycles 11-40:  Every user queries about all different concepts 
its agent has in the ontology.  However, each agent is not able to 
fulfill all queries on its own.  During this segment, each agent 
needs to collaborate.  All queries across the users are submitted in 
a staggered manner.  User 1 submits all its nine queries first; user 
2 submits its queries after 3 cycles; and so on.   

(3)  Cycles 41-70:  Every user queries about all different concepts 
its agent has in the ontology and each agent is not able to satisfy 
the queries on its own.  Also, the number of links desired for 
every query is twice that in the second segment.  Extensive col-
laborations are needed.  Queries are also staggered in this seg-
ment. 

(4)  Cycles 71-80:  Every user queries about different concepts its 
agent does not have in its ontology.  This forces the agent to relay 
the queries to other neighboring agents.  Queries are packed and 
not staggered in this segment. 

(5)  Cycles 81-110:  The setup of this segment is similar to that 
during cycles 11-40, but with concepts that each agent does not 
have in its ontology.  Queries are staggered. 

(6)  Cycles 111-120:  During this segment, two users query about 
concepts that their agents do not have in their respective ontolo-
gies, two users query about only some concepts that their agents 
do not have in their respective ontologies, and one user queries 
about concepts that its agent has in its ontology.  The queried 
number of links is small and no negotiations are needed. 

The second batch starts around Cycle 150, and repeats the above 
query scenarios.  Figure 2 gives a brief overview of our query 
scenarios. 

Our query scenarios are staggered and packed to investigate the 
response behaviors of the agents.  Since the number of negotiation 
threads is limited for each agent, packed queries with high link 
demands may lead to only partial link retrievals.  Our query sce-
narios also come with low and high link demands.  Low link de-
mands do not require or require fewer collaborations, while high 
link demands prompt the agents to plan for collaborative actions.  
Finally, an agent may or may not know some of the queried con-
cepts.  The agent’s ontology specifies this knowledge.  When an 
agent knows the queried concept, it has more options, approaching 
different neighbors for help.  When it does not know the queried 
concept, then it shifts the responsibility to one of the neighbors, 
essentially making itself a relay station.  

The number of links desired for query vs. 
cycle numbers
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Figure 2  The number of links for the queries submitted by the 

software users to the agents for each cycle. 
Given the above query scenarios, we further vary two sets of pa-
rameters: the number of negotiation threads and the credibility 
values in the translation tables.  We vary the number of negotia-
tion threads between 0 and 5.  When the number is 0, the agents 
do not have collaborative capabilities since they can contact other 
agents.  When the number is 5, an agent can simultaneously con-
duct 5 negotiations.  Thus, this number directly impacts the re-
sources that the agents have to collaborate to satisfy queries.  This 
is relevant to operational constraints.  There are also six sets of 
translation tables.  In the first set, all credibility values of all trans-
lations are above zero.  In this situation, every concept that one 
agent knows has four translations.  In the second set, one of the 
agents has what term as a “narrow ontology”.  That is, its transla-
tion table contains many NIL translations, above 50%. (See Table 
1.)  In the third set, two agents have narrow ontologies.  In the 
fourth set, three agents do; in the fifth set, four agents do; finally, 
all agents do.  With these sets, we want to see how successful the 
agents are in satisfying high-demand queries.  This is relevant to 
ontological constraints. 

Given the six different numbers of negotiation threads and six sets 
of translation tables, we carry out a total of 36 runs using the same 
set of query scenarios. 

5.2. Parameters Collected 
Our long term effort is to study the learning of distributed ontolo-
gies, including the self-modification of the translation credibility 
values, and the exchange of ontological knowledge among the 
agents.  However, at the time of the writing of this paper, we have 
not conducted a focused analysis on that.   

Instead, our current experiments concentrate on two sets of pa-
rameters:  

(1) Neighborhood Profile Parameters:  For each neighbor, an 
agent collects parameters documenting the outcomes of their past 



interactions.  These parameters are also used in the computation of 
a neighbor’s utility measure, as described in Section 3. Table 2 
documents the definitions of these parameters.  

(2)  Query Result Parameters:  For each query, an agent collects 
parameters documenting the characteristics of the query and the 
query outcome.  Table 3 documents the definitions of these pa-
rameters.   

Parameters Definitions 
_numSuccess The number of successful negotiations that 

the agent has initiated to neighbor i 
_numHelp The number of successful negotiations that 

the agent has received from the neighbor i 
_numRequestTo The total number of negotiations that the 

agent has initiated to the neighbor i 
_numRequestFrom The total number of negotiation requests 

that the agent has received from neighbor i 
_successRate _numSuccess/_numRequestTo 
_helpRate _numHelp/_numRequestFrom 
_requestToRate _numRequestTo/_totalRequestTo where 

_totalRequestTo is the sum of all negotia-
tions that the agent has initiated 

_requestFromRate Presently this number is not updated, as 
our negotiation design does not incorpo-
rate the argumentative reasoning in [5].  
However, we plan to re-visit this number 
in the future once the interpretation mod-
ule is completed.  This number tells the 
agent how much neighbor i relies on the 
agent 

Table 2  Neighborhood profile parameters. 

Parameters Definitions 
_originator The originator of the query, either from a 

software user (ID) or another agent 
_cycle The cycle ID when the query is first gen-

erated 
_numLinksDesired The number of links desired by the query 
_numLinksRetrieve
d 

The number of links retrieved at the end of 
the retrieval process and presented to the 
user, always smaller than 
_numLinksDesired 

_conceptName The query keyword 
_successQuality numLinksRetrieved/numLinksDesired 
_duration The actual elapsed time between the re-

ceipt of a query and the presentation of the 
query results to the user 

_listLinks The list of links retrieved and presented to 
the user at the end of the retrieval process 

Table 3  Query result parameters. 

 

5.3. Results 
Our overall, longterm plan of analysis aims at analyzing the re-
sults at eight different levels.  At level 0, we derive an overview of 
the correctness and assessment of the results.  At level 1, we want 
to analyze the agents’ retrieval quality in the two similar batches 
of queries.  At level 2, we aim to compare across the agents and 
see whether there are significant patterns.  At level 3, we want to 
look into the retrieval results of each segment.  Note that each 

segment has its unique set of characteristics (Section 5.1).  At 
level 4, we want to investigate the role of the concepts.  Some 
concepts may have few supporting links and some have many.  At 
level 5, we will analyze the impact of different queries on the 
quality of the retrieved results.  A query with a high-link demand 
may not necessary result in poorer results than one with a low-link 
demand.  At level 6, we plan to examine closely the impact of the 
translation tables with narrow and wide ontologies, and how dis-
tributed ontology learning may help improve the tables for better 
query effectiveness.  Finally, at level 7, we will study the opera-
tional impact of the threads as a constrained resource.   

In this paper, we report on some preliminary level-0 analyses.  
Figures 3-7 show the graphs of _successQuality vs. the number of 
threads for each software user.  Here are some observations: 

(1)  The average _successQuality of a user’s queries increases as 
expected when the number of threads increases.  This is because 
for high-demand queries that call for collaborations, the agent has 
more resources (i.e., negotiation threads) to use. 

(2)  The average _successQuality of a user’s queries drops signifi-
cantly whenever the corresponding agent has a narrow ontology.  
However, the drops are more significant when the number of 
threads is smaller.  This indicates that link retrieval, in our appli-
cation, benefits from the collaborative distributed ontology design.  
When agents are able to collaborate more often, the 
_successQuality of a query is higher. 
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Figure 3 The average _successQuality value of each user’s que-
ries vs. the number of threads where no agents have narrow on-

tologies. 
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Figure 4 The average _successQuality value of each user’s que-
ries vs. the number of threads where agent 1 has narrow ontology. 



_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

 
Figure 5 The average _successQuality value of each user’s que-
ries vs. the number of threads where agents 1 and 2 have narrow 

ontologies. 
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Figure 6 The average _successQuality value of each user’s que-
ries vs. the number of threads where agents 1, 2, and 3 have nar-

row ontologies. 
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Figure 7 The average _successQuality value of each user’s que-
ries vs. the number of threads where agents 1, 2, and 3 have nar-

row ontologies. 

(3)  Figure 8 shows the average _successQuality and standard 
deviation of all queries for each number of threads.  As we can 
see, with a higher number of negotiation threads, queries are satis-
fied more successfully (high average values), and also more con-
sistently (low standard deviation values).   

(4)  Figure 9 shows the average _successQuality for agents with 
narrow ontologies and those with non-narrow ones.   Note that if 
agent A1 does not have a translation for mapping its concept name 
C1 to any of agent A2’s, that does not necessarily mean that A2 
does not have a translation mapping one of its concepts to A1’s 
concept name C1.  This is by design as we ultimately aim to show 
how collaborative agents can learn new translations or refine old 
ones as they help each other in satisfying queries.  As observed, 
the number of narrow ontologies does not impact the success qual-
ity.  From the operational point of view, this is unexpected.  When 
the number of narrow ontologies within the multiagent system 
increases, we expect that more agents would relay queries to their 
neighbor, and that would cause the negotiation threads to be used 
more frequently.   

 (5)  Figure 10 shows the average _duration (in seconds) for each 
query to be processed and presented back to software user 1 (by 
only agent 1), for different numbers of negotiation threads.  As 
observed, when the number of threads increases, it takes longer 
for a query to be responded to.  This observation was not antici-
pated.  However, upon further analysis, we realize the following.  
When an agent has more threads, not only it can approach more 
neighbors for help, but it also receives more requests for help from 
other agents.  As a result, the agent manages more tasks and slows 
down its processes for retrieving and supplying results to the soft-
ware users. This indicates an oversight in our design with regards 
to the efficiency of our implementation.  We are currently review-
ing our program code to pinpoint the places where we could opti-
mize the multi-threaded programming portion.  We will also 
perform the same analysis on all other software users and agents 
to see whether the same patterns are observed as well. 
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Figure 8 The average and standard deviation of the 
_successQuality for all users vs. the number of threads. 
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Figure 9 The average _successQuality for agents with narrow 

ontologies and agents with non-narrow ontologies. The 
_sQnarrow value for the 0 narrow ontologies is not applicable. 
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Figure 10 The average _duration for agent 1, for different num-

bers of threads, vs. the number of narrow ontologies.  

(6)  From Figure 10, the average _duration values for the different 
numbers of narrow ontologies are 9.96, 7.66, 7.41, 7.73, 8.15, and 
8.24 seconds, respectively.  The multiagent system where the 
agents do not narrow ontologies, unexpectedly, have the highest 
average _duration value.  This value drops, has a minimum when 
the number of narrow ontologies is two, and then climbs up con-
sistently for the next three sets.  We are currently investigating the 
reasons behind this curve, to at least explain the data of the 0-
narrow ontology case.  Coupling the above observation with that 
in from Figure 9, we see that when the number of narrow ontolo-
gies increases (starting from number = 2), even though the 
_successQuality value remains mostly the same, the _duration 
value starts to dip.  This clarifies somewhat our study. 

(7)  Figure 11 shows the average neighbor profile of agent 1 of its 
neighbors: _numSuccess, _numHelp, _numRequestTo, and 
_numRequestFrom.  The values of _numHelp and 

_numRequestFrom are the same; that is, the _helpRate is 100%.  
For this agent 1, the number of times it has requested for help is 
smaller than the number of times it has entertained other agents’ 
requests.  This indicates that the query scenarios tend to invoke 
collaborations, causing the originating agents to ask for help from 
many different neighbors.  From the graph, we see that the agent 
approaches more neighbors for help as it has more negotiation 
threads.  However, when the number of threads is 5, the rate levels 
off just a little, indicating that a convergence may occur when the 
number of threads is larger than 5.  This means that in our current 
experimental setup, our link demand is still more than what the 
agents can handle.  
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Figure 11 The average neighbor profile for agent 1 of its 

neighbors vs. the number of threads 

(8)  Figure 12 shows the average _successRate vs. the number of 
threads available.  As observed, the agent is able to negotiate more 
successfully when the number of threads increases.  This is ex-
pected since with more threads available, an agent is able to enter-
tain more requests.  Coupling this with Figure 11, we see that 
agent 1 is able to conduct more negotiations more successfully 
when the number of threads increases—more effectively and more 
efficiently.  This is a good indicator that would help guide the 
design of distributed ontology learning in our work. 
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Figure 12 The average neighbor profile for agent 1 of its 
neighbors vs. the number of threads 

(9)  Figure 13 shows the _requestToRate vs. the number of threads 
available.  As observed, when the number of threads is 1, agent 1 
relies on agent 2 (or N1) almost heavily.  This is due to the fact 
that in the beginning of an agent, all neighbors are weighted very 



similarly; as a result, the agent will approach the first neighbor 
that it knows.  However, as the number of threads increases, the 
agent is able to collaborate more with other neighbors.  As a re-
sult, the reliance on N1 greatly decreases.  Meanwhile, the reli-
ance on the other three neighbors steadily increases.  This is a 
good lesson, as we now know that in order for the system to ex-
hibit un-intended bias favoring one neighbor over next, we need to 
have enough number of threads, laying the groundwork for the 
distributed ontology learning design of our work.   
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Figure 13 The _requestToRate from agent 1 to its neighbors, N1 

(agent 2), N2 (agent 3), N3 (agent 4), and N4 (agent 5) vs. the 
number of threads. 

6.  CONCLUSIONS 
In this paper, we have described our work-in-progress with col-
laborative understanding of distributed ontologies in a multiagent 
framework, focusing on the operational components.  We have 
outlined the methodology and design of our framework.  The 
methodology involves building agents with key operational com-
ponents to support ontological functions such as query processing, 
query composition, negotiation, and collaboration.  We have also 
briefly discussed our implementation.  We have focused mainly 
on our on-going experiments.  We have described our query sce-
narios, translation tables, and ontologies, as well as two key sets 
of parameters colleted from our experiments: neighborhood pro-
file and query result parameters. Our experiments have generated 
a lot of data that we are currently reviewing and investigating.  
We have reported on some preliminary, low-level analyses to give 
an overall assessment of our system’s feasibility and correctness.  
In general, we see that the number of negotiation threads available 

to each agent in the system has a key role in determining the 
_successQuality of a query task, the average _successRate of a 
negotiation, and the degree of collaboration among agents.  We 
also see that the number of “narrow” ontologies influences the 
agents’ behaviors negligibly.  We plan to look into this finding 
further.   

Our immediate future work includes (1) completing the 7 levels of 
analyses identified in this paper to analyze our infrastructure, (2) 
finishing the interpretation module to add complexity into the 
negotiation protocols, (3) activating the learning mechanism so 
that the translation credibility values can be revised dynamically, 
and (4) investigating the usefulness of the utility measure and its 
impact on the accuracy of translation.  For the last item, remember 
that the utility measure of a neighbor is based on the credibility of 
the particular translation as well as the agents’ relationships.  That 
means, even if a neighbor is very knowledgeable (with high credi-
bility), an agent may not approach that neighbor for help if the 
_successRate is low.  As a result, our distributed ontology learning 
may be biased towards how close two agents have collaborated, 
and factor in less importantly the actual accuracy of the transla-
tion.  Thus, in a way, we are addressing a type of operational 
distributed ontology: agents learn ontologies that are useful and 
credible to them, instead of only learning ontologies that are 
highly credible to them. 
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