
Collaborative Understanding of Distributed Ontologies in a
Multiagent Framework: Design and Experiments

Leen-Kiat Soh
Computer Science and Engineering

University of Nebraska
115 Ferguson Hall

Lincoln, NE
(402) 472-6738

lksoh@cse.unl.edu

ABSTRACT
In this paper, we describe our work-in-progress with collaborative
understanding of distributed ontologies in a multiagent frame-
work. As reported earlier, the objective of this framework is to
improve communication and understanding among the agents
while preserving agent autonomy. Each agent maintains a dic-
tionary for its own ontology and a translation table. Our current
work has focused on how neighborhood profiling, the translation
tables, and query experience influence the collaborative activities
among the agents. We have built an infrastructure prototype and
conducted a series of comprehensive experiments from the view-
point of agent executions, query scenarios, and translation credi-
bility values. The specific goals of our analyses are to investigate
(a) the learning of useful neighbors for sharing queries, (b) the
efficiency of query handling in different real-time scenarios and
with different resource constraints (such as the number of threads
and available translations), and (c) the effects of different concepts
and query demands on collaborative understanding. This paper
reports on the results that we have collected so far.

Keywords
Multiagent systems, distributed ontology learning, dynamic profil-
ing

1. INTRODUCTION
In our previous work, we described a distributed ontology learning
framework in a multiagent environment [1]. There are two ways
that an agent can learn to improve its ontology. First, users can
teach them—by supplying a list of words and what the classifying
concepts are for that list of words. Second, an agent can learn
through its interactions with its neighbors. As a result, each agent
learns its own concepts based on its experiences and specialties.
When a new concept arrives, the agent needs to incorporate it into
its dictionary and its translation table. This is supported by three
important components: conceptual learning, translation, and inter-
pretation, with a Dempster-Shafer belief system [2].

Our research focuses on developing and analyzing the operational
components of our framework, applied to a document retrieval
problem. Each agent interacts with a user who submits queries
based on keywords. These keywords are known as concepts in the
agents. The goal of this problem is satisfy as many queries as
possible and as well as possible. An agent may turn to its

neighbors for help. Thus, this collaboration facilitates the distrib-
uted ontology learning.

To improve communication, these agents must be able to under-
stand each other. Thus, our research goals are to (1) promote
understanding among agents of a community, thus reducing com-
munication costs and inter-agent traffic, (2) improve cooperation
among neighbors of a community, thus enhancing the strength
(productivity, effectiveness, efficiency) of a neighborhood and
supporting the distributed effort of the community, (3) encourage
pluralism and decentralization within a multi-agent community—
specialization of agents of a community since each agent can rely
on its neighbors for tasks not covered by its capabilities, and (4)
enable collaborative learning to improve the throughput of the
community, the intelligence in communication and task allocation,
the self-organization within the community, and integrity of the
community.

At the current phase of our research, the objective is to understand
how collaborative understanding of distributed ontologies is im-
pacted by operational issues such as queries, the number of com-
munication threads, the variability within the translation tables
and so on. Therefore, in this paper, we focus on the operational
design of our infrastructure and the investigations on how
neighborhood profiling, translation tables, and query experience
influence the relationship among collaborative agents. Our ex-
periments are aimed at studying (a) the learning of useful
neighbors for sharing queries, (b) the efficiency of query handling
in different real-time scenarios and with different resource con-
straints, and (c) the effects of different ontological concepts and
query demands on collaborative understanding. In Section 2, we
briefly outline the methodology of our framework. Then we de-
scribe our implementation. Subsequently, we discuss our experi-
ments and results. Finally, we conclude.

2. FRAMEWORK
In our framework, the multiagent system is one in which agents
can exchange queries and messages to learn about each other’s
ontology. To improve the communication and collaboration effi-
ciency, agents determine whether some translation is worth learn-
ing, which neighbors to communicate to, how to handle and dis-
tribute queries, and how to plan for agent activities. The frame-
work consists of two sets of components. The operational com-
ponents allow the agents to work together in a multiagent system.
The ontological components allow the agents to communicate and

understand each other. In this paper, we focus on the operational
components of our framework.

When an agent receives a query, it checks the query against its
ontology knowledge base. A query comes with a concept name
and the number of documents or links desired. If the agent cannot
satisfy the query, it will contact its neighbors. If the agent recog-
nizes the concept name but does not have enough documents or
links to fulfill the requirement, then it will approach its neighbors
to obtain more links. If the agent does not recognize the concept
name, then it passes the query to its neighbors. Every agent is
equipped with N number of negotiation threads. For each contact,
an agent has to activate one of these threads. So, if an agent does
not have available inactive negotiation threads, it will not be able
to collaborate with other agents. Hence, even if the agents do
understand each other’s ontologies, it is possible that due to the
query frequency and the resource constraints, the agents may not
be able to utilize that understanding to help solve a query problem.
Since this collaborative activity requires Please refer to [3] and
[1] for details on our original design of operational and ontologi-
cal components, respectively.

2.1. Operational Components
There are three important operational components: query process-
ing, action planning, and query composition. Note that in our
framework, an agent sends out a query to its neighbor when it
needs to find some additional links for that some classifying con-
cepts. Agents are required to compose queries as well as they also
need to relay or distribute queries to other agents by modifying the
queries in their own words. Finally, for the system to be effective,
the query distribution and the ontology learning behavior are sup-
ported by an action planning component that makes decision
based on the agent’s environment such as message traffic and
neighborhood profile.

2.2. Ontological Components
There are three important ontological components in our frame-
work: conceptual learning, translation, and interpretation. We
represent an ontology item as a vector. Each vector consists of the
classifying concept and then a list of words describing that con-
cept. A concept may have many different supporting documents.
Different concepts may be used to classify the same list of words,
resulting in different supporting items. Moreover, for each con-
cept, the agent also learns the description vector, combining all
relevant experience cases together. This allows the system to
incrementally learn and evolve existing ontologies. Currently, we
are still implementing the ontological components and thus will
not report further on them in this paper.

3. METHODOLOGY & DESIGN
An agent performs two types of learning. It learns incrementally,
refining its concepts whenever there is a new submission. It also
learns collaboratively, refining its translation table whenever there
is a query that prompts the agent to ask for help from its
neighbors. Figure 1 depicts the current status of operational com-
ponents of an agent in our framework.

As shown in Figure 1, there are nine important modules:

(1) Interface: This module interacts with the user to obtain que-
ries and to provide queried results. Currently, we have (simu-
lated) software users that automatically generate timed queries for

our experiments. Each software user submits its queries through a
socket connection with the interface.

Figure 1 The current design of the operational components of an

agent in our framework.
(2) Query Processor: This module receives a query from the In-
terface module and processes it. It first checks the agent’s ontol-
ogy base. If the query matches one of the concepts in the ontol-
ogy, the module retrieves the number of links available. If the
query does not find a match in the ontology, the module examines
its translation table. If there are available translations, that means
a collaboration is possible.

(3) Action Planner: This module serves as the main reasoning
component of the agent: (a) If the number of internal links satis-
fies the query, then the action planner simply provides those links
to through the Interface module to the user; (b) otherwise, if the
agent understands the query and finds available translations, it
initiates its collaborative activities; (c) if the agent does not under-
stand the query, it will relay the query to another agent; and (d)
finally, if there are no available translations, the link retrieval
process stops and the agent reports back to the user. Whether a
collaboration is feasible depends on the current status of the agent,
as recorded by the Activity Monitor and Thread Manager mod-
ules. If the agent does not have enough resources for a collabora-
tion, the link retrieval process terminates.

(4) Collaboration Manager: When the action planner calls for a
collaboration, this module takes over. The objective of this mod-
ule is to form an appropriate group of neighboring agents to ap-
proach and distribute the query demands (link allocations) accord-
ingly among them. To design such a collaboration plan, this
module relies on the Neighborhood Profiler module, and the
translation table. Each neighbor is given a utility measure based
on the translation credibility value, the past relationship and the
current relationship. Note that in our original thesis [1], each
translation has a credibility value: two concepts are similar to only
a certain degree. The past relationship is the viewpoint of the
agent of its neighbor of their interactions (or negotiations in our
framework) monitored and stored by the Profiler module. The
current relationship is captured by the Activity Monitor module to
indicate whether the agent is currently engaged in any negotia-
tions with the particular neighbor. A neighbor has a high utility if
the translation credibility of the query in question is high, if the

lation credibility of the query in question is high, if the past rela-
tionship is strong, and if there is not any current interaction. The
collaboration manager ranks these neighbors based on the utility
measure and then assigns the query demands accordingly, with the
help of the Query Composer. The manager assigns more links to
neighbors with higher utility proportionally to maximize the
chance of retrieval success. It also collects the negotiation results,
sorts the received links based on the credibility, and filters out
low-credibility links when it has more links than desired.

(5) Query Composer: Based on the allocation of query demands,
this modules composes a specific query for each neighbor to be
approached. As previously mentioned, each query is associated
with a link requirement that specifies the number of links desired.
A query will also include the name of the originator and a time
stamp when it is first generated. If the query is based on a transla-
tion, then the translated concept name is used. If the agent does
not recognize a concept and needs to relay a query it has received
to a neighbor, it simply uses the queried concept directly.

(6) Neighborhood Profiler: The design of this module is based on
our work in coalition formation. As we will later in Section 4, we
keep track of the past relationship between the agent and each
neighbor. The relationship is a composition of four basic num-
bers: _numHelp (the number of times the agent provides help to
the neighbor), _numSuccess (the number of times the agent suc-
cessfully solicits help from the neighbor), _numRequestFrom (the
number of times the agent receives a request from the neighbor),
and _numRequestTo (the number of times the agent initiates a
request to the neighbor) [4]. Based on these numbers, we can
derive helpfulness, usefulness, importance, and reliance of each
neighbor, from the viewpoint of the agent.

(7) Activity Monitor: This modules keeps track of the activities
in a job vector—whether the agent is processing a query on its
own, or negotiating with other neighbors for more links, or enter-
taining a request by a neighbor. Each job is described with a list
of attributes such as the originator, the executor, the task descrip-
tion, the current status, and so on.

(8) Thread Manager: This module housekeeps the threads of the
agent. It is a low-level module that activates the threads, updates
and monitors the thread activity.

(9) Negotiation Manager: This module manages the negotiation
tasks. In our current design, the interaction between two agents
does not involve negotiations as the two simply exchange infor-
mation. However, our long-term plan views negotiation as an
important part of ontology interpretation in a distributed environ-
ment. Negotiations that are too time consuming, stagnant, or no
longer useful will be modified or aborted; negotiations that are
successful will be learned; and so on. We will adapt our previous
work in reflective negotiations [5] to distributed ontology in this
framework.

Together with these nine operational components are three dy-
namic knowledge or data bases: ontology, translation table, and
profiles. The profiles keep track of the relationships between the
agent and its neighbors, updating the neighborhood parameters.
The ontology is a dictionary listing the concepts that the agent
knows. Each concept has a list of supporting documents or links.
The translation table consists of translations between each concept
that the agent knows and its neighbors. Each translation is ac-
companied with a credibility value. Some neighbors may not
have concepts that are similar to a concept that the agent knows

and the credibility value for those entries in the translation table is
NIL. Table 1 shows an example of a translation table for agent
A1. In the example, A1 has four neighbors. It knows of concepts
such as “basketball” and “car”. For “basketball”, it is similar to
N1’s “NBA” with a credibility of 2.1, N2’s “Bball” with a credi-
bility of 1.0, and N4’s “Basketball” with a credibility of 3.4.
However, it does not have a translation for “basketball” between
itself and N3.

Concepts N1 N2 N3 N4
basketball NBA 2.1 Bball 1.0 NIL Basketball 3.4
car NIL Auto 2.1 Car 1.0 Move 1.0
…

Table 1 A translation table example.

4. IMPLEMENTATION
We have implemented all the nine modules of our agent as de-
picted in Figure 1 in C++. Each agent receives its user queries
from a software user through a socket connection, and communi-
cates with other agents through a central relay server module
through socket connections as well. Each agent generates and
maintains its neighborhood profile during runtime dynamically.

For our experiments, each agent is equipped with a translation
table right from the start. Note that in our original distributed
ontology framework [1], the entries in a translation table is
learned over time based on the experience of each agent. In this
paper, we focus on the operational design of collaborative under-
standing of distributed ontologies and assume that each agent has
a translation table to begin with.

In addition, each agent is equipped with an ontology database.
This database lists all the concept terms that an agent knows. For
each concept, there is a list of links (or documents) that are exam-
ples that illustrate the concept. Indeed, when interpreting two
concepts, we simply compare the similarities of the two lists of
links supporting the two concepts. Currently, we are building this
interpretation module.

5. DISCUSSION OF RESULTS
We have performed a comprehensive set of experiments. In this
Section, we will describe our experimental setup and then discuss
the results.

5.1. Experimental Setup
Here is the setup of our experiments:

There are five agents supporting a software user each. All agents
are neighbors and can communicate among themselves. All five
agents and their threads are run on the same CPU.

Every agent has a unique set of nine concepts in its ontology.
Each concept has five supporting links.

Each agent has a translation table where each cell of the table
indicates the translation between a local concept and a foreign
concept in a neighbor and the translation’s credibility value. If a
translation is not available, we use the symbol NIL.

Each software user has a query configuration file. Thus, instead of
manually submitting these queries, the software user simply reads
them from the file and sends them to the corresponding agent. For
each query in a configuration file there are (a) a cycle number, (b)

the queried concept name, and (c) the number of link desired. The
cycle number indicates when the query will be submitted to the
agent. (A cycle’s time varies as this measures a loop of activities
of an agent.) Each configuration file has about 300 cycles, and
two batches of exactly the same query scenarios. We want to
investigate whether the agents are able to improve in their re-
sponse time in the second batch after learning how to form col-
laborations better through neighborhood profiling.

In the first batch of query scenarios,

(1) Cycles 0-10: Every user queries about all different concepts
its agent has in the ontology. Each agent is also able to satisfy the
query demand on its own. During this segment, each agent does
not need to collaborate. All queries across the users are submitted
at the same cycles.

(2) Cycles 11-40: Every user queries about all different concepts
its agent has in the ontology. However, each agent is not able to
fulfill all queries on its own. During this segment, each agent
needs to collaborate. All queries across the users are submitted in
a staggered manner. User 1 submits all its nine queries first; user
2 submits its queries after 3 cycles; and so on.

(3) Cycles 41-70: Every user queries about all different concepts
its agent has in the ontology and each agent is not able to satisfy
the queries on its own. Also, the number of links desired for
every query is twice that in the second segment. Extensive col-
laborations are needed. Queries are also staggered in this seg-
ment.

(4) Cycles 71-80: Every user queries about different concepts its
agent does not have in its ontology. This forces the agent to relay
the queries to other neighboring agents. Queries are packed and
not staggered in this segment.

(5) Cycles 81-110: The setup of this segment is similar to that
during cycles 11-40, but with concepts that each agent does not
have in its ontology. Queries are staggered.

(6) Cycles 111-120: During this segment, two users query about
concepts that their agents do not have in their respective ontolo-
gies, two users query about only some concepts that their agents
do not have in their respective ontologies, and one user queries
about concepts that its agent has in its ontology. The queried
number of links is small and no negotiations are needed.

The second batch starts around Cycle 150, and repeats the above
query scenarios. Figure 2 gives a brief overview of our query
scenarios.

Our query scenarios are staggered and packed to investigate the
response behaviors of the agents. Since the number of negotiation
threads is limited for each agent, packed queries with high link
demands may lead to only partial link retrievals. Our query sce-
narios also come with low and high link demands. Low link de-
mands do not require or require fewer collaborations, while high
link demands prompt the agents to plan for collaborative actions.
Finally, an agent may or may not know some of the queried con-
cepts. The agent’s ontology specifies this knowledge. When an
agent knows the queried concept, it has more options, approaching
different neighbors for help. When it does not know the queried
concept, then it shifts the responsibility to one of the neighbors,
essentially making itself a relay station.

The number of links desired for query vs.
cycle numbers

0

5

10

15

20

25

30

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

Cycles

User 1
User 2
User 3
User 4
User 5

Figure 2 The number of links for the queries submitted by the

software users to the agents for each cycle.
Given the above query scenarios, we further vary two sets of pa-
rameters: the number of negotiation threads and the credibility
values in the translation tables. We vary the number of negotia-
tion threads between 0 and 5. When the number is 0, the agents
do not have collaborative capabilities since they can contact other
agents. When the number is 5, an agent can simultaneously con-
duct 5 negotiations. Thus, this number directly impacts the re-
sources that the agents have to collaborate to satisfy queries. This
is relevant to operational constraints. There are also six sets of
translation tables. In the first set, all credibility values of all trans-
lations are above zero. In this situation, every concept that one
agent knows has four translations. In the second set, one of the
agents has what term as a “narrow ontology”. That is, its transla-
tion table contains many NIL translations, above 50%. (See Table
1.) In the third set, two agents have narrow ontologies. In the
fourth set, three agents do; in the fifth set, four agents do; finally,
all agents do. With these sets, we want to see how successful the
agents are in satisfying high-demand queries. This is relevant to
ontological constraints.

Given the six different numbers of negotiation threads and six sets
of translation tables, we carry out a total of 36 runs using the same
set of query scenarios.

5.2. Parameters Collected
Our long term effort is to study the learning of distributed ontolo-
gies, including the self-modification of the translation credibility
values, and the exchange of ontological knowledge among the
agents. However, at the time of the writing of this paper, we have
not conducted a focused analysis on that.

Instead, our current experiments concentrate on two sets of pa-
rameters:

(1) Neighborhood Profile Parameters: For each neighbor, an
agent collects parameters documenting the outcomes of their past

interactions. These parameters are also used in the computation of
a neighbor’s utility measure, as described in Section 3. Table 2
documents the definitions of these parameters.

(2) Query Result Parameters: For each query, an agent collects
parameters documenting the characteristics of the query and the
query outcome. Table 3 documents the definitions of these pa-
rameters.

Parameters Definitions
_numSuccess The number of successful negotiations that

the agent has initiated to neighbor i
_numHelp The number of successful negotiations that

the agent has received from the neighbor i
_numRequestTo The total number of negotiations that the

agent has initiated to the neighbor i
_numRequestFrom The total number of negotiation requests

that the agent has received from neighbor i
_successRate _numSuccess/_numRequestTo
_helpRate _numHelp/_numRequestFrom
_requestToRate _numRequestTo/_totalRequestTo where

_totalRequestTo is the sum of all negotia-
tions that the agent has initiated

_requestFromRate Presently this number is not updated, as
our negotiation design does not incorpo-
rate the argumentative reasoning in [5].
However, we plan to re-visit this number
in the future once the interpretation mod-
ule is completed. This number tells the
agent how much neighbor i relies on the
agent

Table 2 Neighborhood profile parameters.

Parameters Definitions
_originator The originator of the query, either from a

software user (ID) or another agent
_cycle The cycle ID when the query is first gen-

erated
_numLinksDesired The number of links desired by the query
_numLinksRetrieve
d

The number of links retrieved at the end of
the retrieval process and presented to the
user, always smaller than
_numLinksDesired

_conceptName The query keyword
_successQuality numLinksRetrieved/numLinksDesired
_duration The actual elapsed time between the re-

ceipt of a query and the presentation of the
query results to the user

_listLinks The list of links retrieved and presented to
the user at the end of the retrieval process

Table 3 Query result parameters.

5.3. Results
Our overall, longterm plan of analysis aims at analyzing the re-
sults at eight different levels. At level 0, we derive an overview of
the correctness and assessment of the results. At level 1, we want
to analyze the agents’ retrieval quality in the two similar batches
of queries. At level 2, we aim to compare across the agents and
see whether there are significant patterns. At level 3, we want to
look into the retrieval results of each segment. Note that each

segment has its unique set of characteristics (Section 5.1). At
level 4, we want to investigate the role of the concepts. Some
concepts may have few supporting links and some have many. At
level 5, we will analyze the impact of different queries on the
quality of the retrieved results. A query with a high-link demand
may not necessary result in poorer results than one with a low-link
demand. At level 6, we plan to examine closely the impact of the
translation tables with narrow and wide ontologies, and how dis-
tributed ontology learning may help improve the tables for better
query effectiveness. Finally, at level 7, we will study the opera-
tional impact of the threads as a constrained resource.

In this paper, we report on some preliminary level-0 analyses.
Figures 3-7 show the graphs of _successQuality vs. the number of
threads for each software user. Here are some observations:

(1) The average _successQuality of a user’s queries increases as
expected when the number of threads increases. This is because
for high-demand queries that call for collaborations, the agent has
more resources (i.e., negotiation threads) to use.

(2) The average _successQuality of a user’s queries drops signifi-
cantly whenever the corresponding agent has a narrow ontology.
However, the drops are more significant when the number of
threads is smaller. This indicates that link retrieval, in our appli-
cation, benefits from the collaborative distributed ontology design.
When agents are able to collaborate more often, the
_successQuality of a query is higher.

_successQuality vs. number of threads

0

0.2
0.4

0.6
0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 3 The average _successQuality value of each user’s que-
ries vs. the number of threads where no agents have narrow on-

tologies.

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 4 The average _successQuality value of each user’s que-
ries vs. the number of threads where agent 1 has narrow ontology.

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 5 The average _successQuality value of each user’s que-
ries vs. the number of threads where agents 1 and 2 have narrow

ontologies.

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 6 The average _successQuality value of each user’s que-
ries vs. the number of threads where agents 1, 2, and 3 have nar-

row ontologies.

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 7 The average _successQuality value of each user’s que-
ries vs. the number of threads where agents 1, 2, and 3 have nar-

row ontologies.

(3) Figure 8 shows the average _successQuality and standard
deviation of all queries for each number of threads. As we can
see, with a higher number of negotiation threads, queries are satis-
fied more successfully (high average values), and also more con-
sistently (low standard deviation values).

(4) Figure 9 shows the average _successQuality for agents with
narrow ontologies and those with non-narrow ones. Note that if
agent A1 does not have a translation for mapping its concept name
C1 to any of agent A2’s, that does not necessarily mean that A2
does not have a translation mapping one of its concepts to A1’s
concept name C1. This is by design as we ultimately aim to show
how collaborative agents can learn new translations or refine old
ones as they help each other in satisfying queries. As observed,
the number of narrow ontologies does not impact the success qual-
ity. From the operational point of view, this is unexpected. When
the number of narrow ontologies within the multiagent system
increases, we expect that more agents would relay queries to their
neighbor, and that would cause the negotiation threads to be used
more frequently.

 (5) Figure 10 shows the average _duration (in seconds) for each
query to be processed and presented back to software user 1 (by
only agent 1), for different numbers of negotiation threads. As
observed, when the number of threads increases, it takes longer
for a query to be responded to. This observation was not antici-
pated. However, upon further analysis, we realize the following.
When an agent has more threads, not only it can approach more
neighbors for help, but it also receives more requests for help from
other agents. As a result, the agent manages more tasks and slows
down its processes for retrieving and supplying results to the soft-
ware users. This indicates an oversight in our design with regards
to the efficiency of our implementation. We are currently review-
ing our program code to pinpoint the places where we could opti-
mize the multi-threaded programming portion. We will also
perform the same analysis on all other software users and agents
to see whether the same patterns are observed as well.

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

stdev

average

Figure 8 The average and standard deviation of the
_successQuality for all users vs. the number of threads.

_successQuality vs. # of narrow ontologies

0
0.2
0.4
0.6
0.8

1

0 1 2 3 4
Number of narrow ontologies

_sQnarrow

_sQwide

Figure 9 The average _successQuality for agents with narrow

ontologies and agents with non-narrow ontologies. The
_sQnarrow value for the 0 narrow ontologies is not applicable.

_duration vs. number of narrow ontologies

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5

Number of narrow ontologies

se
co

nd
s

0 threads
1 threads
2 threads
3 threads
4 threads
5 threads
ave

Figure 10 The average _duration for agent 1, for different num-

bers of threads, vs. the number of narrow ontologies.

(6) From Figure 10, the average _duration values for the different
numbers of narrow ontologies are 9.96, 7.66, 7.41, 7.73, 8.15, and
8.24 seconds, respectively. The multiagent system where the
agents do not narrow ontologies, unexpectedly, have the highest
average _duration value. This value drops, has a minimum when
the number of narrow ontologies is two, and then climbs up con-
sistently for the next three sets. We are currently investigating the
reasons behind this curve, to at least explain the data of the 0-
narrow ontology case. Coupling the above observation with that
in from Figure 9, we see that when the number of narrow ontolo-
gies increases (starting from number = 2), even though the
_successQuality value remains mostly the same, the _duration
value starts to dip. This clarifies somewhat our study.

(7) Figure 11 shows the average neighbor profile of agent 1 of its
neighbors: _numSuccess, _numHelp, _numRequestTo, and
_numRequestFrom. The values of _numHelp and

_numRequestFrom are the same; that is, the _helpRate is 100%.
For this agent 1, the number of times it has requested for help is
smaller than the number of times it has entertained other agents’
requests. This indicates that the query scenarios tend to invoke
collaborations, causing the originating agents to ask for help from
many different neighbors. From the graph, we see that the agent
approaches more neighbors for help as it has more negotiation
threads. However, when the number of threads is 5, the rate levels
off just a little, indicating that a convergence may occur when the
number of threads is larger than 5. This means that in our current
experimental setup, our link demand is still more than what the
agents can handle.

Average neighbor profile vs. # of threads

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5
Number of threads

_numSuccess
_numHelp
_numRequestTo
_numRequestFrom

Figure 11 The average neighbor profile for agent 1 of its

neighbors vs. the number of threads

(8) Figure 12 shows the average _successRate vs. the number of
threads available. As observed, the agent is able to negotiate more
successfully when the number of threads increases. This is ex-
pected since with more threads available, an agent is able to enter-
tain more requests. Coupling this with Figure 11, we see that
agent 1 is able to conduct more negotiations more successfully
when the number of threads increases—more effectively and more
efficiently. This is a good indicator that would help guide the
design of distributed ontology learning in our work.

Average _successRate vs. # of threads

0.7
0.75
0.8

0.85
0.9

0.95
1

1 2 3 4 5
Number of threads

Figure 12 The average neighbor profile for agent 1 of its
neighbors vs. the number of threads

(9) Figure 13 shows the _requestToRate vs. the number of threads
available. As observed, when the number of threads is 1, agent 1
relies on agent 2 (or N1) almost heavily. This is due to the fact
that in the beginning of an agent, all neighbors are weighted very

similarly; as a result, the agent will approach the first neighbor
that it knows. However, as the number of threads increases, the
agent is able to collaborate more with other neighbors. As a re-
sult, the reliance on N1 greatly decreases. Meanwhile, the reli-
ance on the other three neighbors steadily increases. This is a
good lesson, as we now know that in order for the system to ex-
hibit un-intended bias favoring one neighbor over next, we need to
have enough number of threads, laying the groundwork for the
distributed ontology learning design of our work.

_requestToRate vs. number of threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
Number of threads

N1

N2

N3

N4

Figure 13 The _requestToRate from agent 1 to its neighbors, N1

(agent 2), N2 (agent 3), N3 (agent 4), and N4 (agent 5) vs. the
number of threads.

6. CONCLUSIONS
In this paper, we have described our work-in-progress with col-
laborative understanding of distributed ontologies in a multiagent
framework, focusing on the operational components. We have
outlined the methodology and design of our framework. The
methodology involves building agents with key operational com-
ponents to support ontological functions such as query processing,
query composition, negotiation, and collaboration. We have also
briefly discussed our implementation. We have focused mainly
on our on-going experiments. We have described our query sce-
narios, translation tables, and ontologies, as well as two key sets
of parameters colleted from our experiments: neighborhood pro-
file and query result parameters. Our experiments have generated
a lot of data that we are currently reviewing and investigating.
We have reported on some preliminary, low-level analyses to give
an overall assessment of our system’s feasibility and correctness.
In general, we see that the number of negotiation threads available

to each agent in the system has a key role in determining the
_successQuality of a query task, the average _successRate of a
negotiation, and the degree of collaboration among agents. We
also see that the number of “narrow” ontologies influences the
agents’ behaviors negligibly. We plan to look into this finding
further.

Our immediate future work includes (1) completing the 7 levels of
analyses identified in this paper to analyze our infrastructure, (2)
finishing the interpretation module to add complexity into the
negotiation protocols, (3) activating the learning mechanism so
that the translation credibility values can be revised dynamically,
and (4) investigating the usefulness of the utility measure and its
impact on the accuracy of translation. For the last item, remember
that the utility measure of a neighbor is based on the credibility of
the particular translation as well as the agents’ relationships. That
means, even if a neighbor is very knowledgeable (with high credi-
bility), an agent may not approach that neighbor for help if the
_successRate is low. As a result, our distributed ontology learning
may be biased towards how close two agents have collaborated,
and factor in less importantly the actual accuracy of the transla-
tion. Thus, in a way, we are addressing a type of operational
distributed ontology: agents learn ontologies that are useful and
credible to them, instead of only learning ontologies that are
highly credible to them.

7. ACKNOWLEDGMENT
The author would like to thank JingFei Xu for her programming
and running the experiments for this project.

8. REFERENCES
[1] Soh, L.-K. 2002. Multiagent, Distributed Ontology Learn-

ing, Working Notes of the 2nd AAMAS OAS Workshop, July,
Bologna, Italy.

[2] Shafer, G. 1976. A Mathematical Theory of Evidence,
Princeton, NJ: Princeton University Press.

[3] Soh, L.-K. 2002. A Mutliagent Framework for Collaborative
Conceptual Learning Using a Dempster-Shafer Belief Sys-
tem, Working Notes of AAAI Spring Symposium on Collabo-
rative Learning Agents, Stanford, CA, Mar 25-27, pp. 9-16.

[4] Soh, L.-K. and Tsatsoulis, C. 2002. Satisficing Coalition
Formation among Agents, Proceedings of AAMAAS’02, July,
Bologna, Italy.

[5] Soh, L.-K. and Tsatsoulis, C. 2002. Reflective Negotiating
Agents for Real-Time Multisensor Target Tracking, in Pro-
ceedings of IJCAI’01, Seattle, WA, Aug 6-11, pp. 1121-
1127.

