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Abstract. Techniques for efficient and distributed processing of huge, unbound
data streams have made some impact in the database community. Distributed data
stream processing systems have emerged providing a distributed environment to
process these potentially unbound streams of data by a set ofprocessing nodes. A
wide range of real-time applications process stream-baseddata. Sensors and data
sources, such as position data of moving objects, continuously produce data that
is consumed by, e.g., location-aware applications. Depending on the domain of in-
terest, the processing of such data often depends on domain-specific functionality.
For instance, an application which visualizes stream-based data has stringent tim-
ing constraints, or may even need a specific hardware environment to smoothly
process the data. Furthermore, users may add additional constraints. E.g., for se-
curity reasons they may want to restrict the set of nodes thatparticipates in pro-
cessing.
In this paper we review context-aware applications which, despite their different
application fields, share common data processing principles. We analyse these
applications and extract common requirements which data stream processing sys-
tems must meet to support these applications. Finally, we show how such appli-
cations are implemented using NexusDS, our extensible stream processing mid-
dleware.

1 Introduction

Nowadays sensors exist producing a huge amount of data that is time-constrained and
should thus be processed on-the-fly. This sensor data results in potentially unbound
streams. Techniques for efficient and distributed processing of huge, unbound data
streams have made some impact in the database community. In the past decade many
studies have been conducted in the field of data stream processing systems. These stud-
ies ranged from architectural proposals to sophisticated processing techniques targeting
the unbound nature of data streams. Nowadays distributed stream processing systems
are state-of-the-art since they scale well with increasingworkload and thus enable an ef-
ficient processing. These systems often provide a declarative query language and allow



(a) Visualization scenario realizing a flow visualiza-
tion of airflows in buildings.

(b) Air flow visualized with stream rib-
bons in real-time.

Fig. 1.Real-time visualization and the respective visualizationscenario.

to continuously process incoming data streams in a distributed fashion. The query is
first mapped to operators and in a second step distributed to available computing nodes.

However, none of the systems reached a general acceptability for a huge number
of applications and application domains, such as databasesdid. This is due to the fact
that they do not consider the specific needs of real-time applications. Depending on
the domain of interest (e.g., visualization) the processing of such data often depends
on highly domain-specific functionality. For instance, an application which visualizes
stream-based data has stringent timing constraints, or mayneed a specific hardware
environment to smoothly process the data. Such a complex application scenario and
the resulting visualization is depicted in Fig. 1(a) and Fig. 1(b) respectively. In this
example, the air flow through a building is simulated and visualized as stream ribbons
in real-time. Thereby the air flow adapts also to changing positions of objects moving
in the building. The processing of such a scenery is a highly complex task and cannot
be reasonably performed on mobile devices. Thus, dedicatedhardware must be used.
See [1] for a in-deep explanation of this example scenario.

Furthermore, users may add constraints. E.g., for securityreasons they may want
to restrict the set of nodes that participates in data processing. As explained in [2],
there is a permanent adaptation necessity in today’s streamprocessing systems. At a
last consequence this means that each application domain has its dedicated process-
ing schemes, although they rely on common processing techniques, i.e., data stream
processing. Therefore, a common basis should be exploited to avoid redundant func-
tionality and code as well as to reduce development time and errors due to usage of
multiple different technologies.

In this paper we argue that many applications, although originating from different
application domains, mostly share common processing principles. This calls for a data
stream processing concept, that allows to express the particular characteristics and re-
quirements of each application under concern. Hence, our data streaming approach,
called NexusDS, has been designed to especially address thespecifics of these domain-
specific applications as well as the heterogeneous execution environment. This tight
integration of applications and system considerably reduces development overhead and
enhances infrastructure exploitation as well as overall performance.



The remainder of this paper is structured as follows: In Section 2 we present real
world application scenarios from different application domains and extract their require-
ments in Section 3. In a next step we show in Section 4 why existing approaches do
not suffice in supporting those applications. In Section 5 weintroduce NexusDS, our
stream processing middleware that supports the tight integration of such applications
and provide an evaluation in Section 6. In Section 7 we conclude this paper with a short
summary.

2 Application Scenarios

We will present three non-trivial applications: (A.)Visualization application for mo-
bile devices, (B.) storing moving objects’ traces, and (C.)management support in
smart factories.

2.1 Visualization Application for Mobile Devices

A complex data stream scenario that goes beyond the current state of the art is an
interactive and location-aware visualization application as depicted in Fig. 1(a) (the re-
sulting visualization is shown in Fig. 1(b)). In this example, the air flow in a room is
simulated and visualized. TheEnvironment source provides room data. Objects moving
in the room are tracked by thePosition Tracker source whereas the status of the win-
dows is tracked by theWindow Tracker source. TheFluid Solver source simulates the
velocity field which depends on the tracked objects. TheCalculate Stream Lines oper-
ator seeds and calculates streamlines based on the velocityfield. To visualize the twist
induced by the velocity field, stream ribbons are calculatedfrom the streamlines by the
Calculate Stream Ribbons operator. The obtained geometry is rendered by theRender-
ing operator, which produces image output. This image output can then be displayed
on a Mobile Client which do not have the capabilities to render complex sceneries
themselves. Preferably, the rendering step is executed on specialized hardware having a
graphics processing unit (GPU) which provides all the capabilities (GL extensions) re-
quired to deliver high quality renderings with good performance. User interaction, such
as to rotate and pan the scene, can be modelled as parameter updates for the operators.

Thus, the system must support domain-specific operators, such as the Render oper-
ator and the corresponding constraints. E.g., for the effective execution of the domain-
specific Render operator the presence of a GPU with certain capabilities is mandatory.

2.2 Storing Moving Objects’ Traces

With the increasing use of sensor technology, the compression of sensor data streams is
getting more and more important to reduce both the costs of further processing as well
as the data volume for persistent storage. An example scenario is depicted in Fig. 2(a).
A Mobile Device with GPS Sensor produces a stream of position updates, which is first
processed by aSelection operator to reduce the stream to positions within a given area.
The resulting stream is partitioned by theWindow operator, which form the input for the



(a) Storing of moving objects’ traces. (b) Management support in smart factories.

Fig. 2.Real-time visualization and the respective visualizationscenario.

Compression operator. The compressed position information can be stored in a position
History Server for later analysis or can be further processed by subsequentoperators.

This allows to move the generic part of the functionality outof the compression op-
erator and to implement it as an additional operator. This increases the performance, as
the different operators can be deployed on different nodes and also enhances reusability
of the generic parts [3].

2.3 Management Support in Smart Factories

A lot of influencing factors can cause disturbances in production processes in today’s
factories [4]. Unsteadiness of the demand for a product, changes of orders of a cus-
tomer, delayed delivery of raw materials, failures of machines or decreasing quality of
the products require quick adaptation of the production process. To perform such quick
adaptation, it is necessary that the responsible persons, e.g., production managers or
maintenance staff, can get information on the current stateof the production facilities,
failures or required actions at any time. The NexusExploreris a tool which communi-
cates with the back-end systems via an interface which is tailored to consume dynamic
data. This interface constitutes a sink for data streams which may run on aDesktop
Computer or Mobile Device. Selections based on time, type and location can easily be
implemented as aFiltering operator in a data stream system, as shown in Figure 2(b). In
such scenarios, the data stream system can also be used to propagate measured values
from theSensors to aHistory Server, making the data available for retrospective failure
analysis.

Data required by the NexusExplorer is often a business secret of the company own-
ing the factory. Thus it is important that applications suchas the NexusExplorer can
restrict the set of nodes for data processing to nodes owned or controlled by the com-
pany.

3 Requirements of Stream-based Applications

The presented sample applications illustrate that many different requirements exist
at different levels of query processing as well as integration process. As an example,
we refer to theRender operator which typically requires a GPU. Another example is
the compression of moving object traces. Here, the integration of specific compression



algorithms within the data stream processing pipeline is needed. An alternative case,
where we do not need dedicated processing capabilities but an adaptation at infrastruc-
ture level, is given by the scenariomanagement support in smart factories in Section 2.3.
Here it is crucial, that sensitive factory data remains within certain predefined bound-
aries and is not propagated arbitrarily. All applications share the usage of streamed and
static context data to adapt the actual processing according to their surroundings. The
single steps of the applications map nicely to complex operators of a stream processing
system, thus using such systems seems reasonable. In summary we have identified the
following main requirements of these applications:

A. Custom data-processing: Applications often require functionality to tailor the sys-
tem behaviour as well as actual data processing to their specific needs. An example
is theRendering operator of the visualization application from Section 2.1. In a
large and distributed computing environment it is essential that new operators can
be added to the stream processing system online, to make the operator available
fast and easily.

B. Structured and unstructured data support: New application domains may in-
troduce new types of data, such as images or video streams. This means that the
system must allow to implement new operators that go beyond those provided by
state-of-the-art data stream processing systems.

C. Deployment and execution specifications: Operators as well as applications may
impose certain constraints to the operator deployment and execution. E.g., opera-
tors may only be deployed on specific hardware, may require a certain amount of
memory at runtime, or may even be allowed to be exclusively executed in a cer-
tain (secure) environment, as for the smart factory examplefrom Section 2.3. For
this reason, the operator model of a data stream processing system must provide a
way to describe operators with their respective deploymentand runtime constraints.
These constraints are defined by operator developers and application developers.

D. Deal with heterogeneous system topology: Certain tasks may be computationally
expensive making the usage of dedicated hardware a necessity [5]. Recent research,
such as [6], shows that creating dedicated operators running on FPGA chips is
beneficial. Data streaming systems must support integration of such highly domain-
specific processing logic to exploit this potential. This results in a broad variety of
participating computing nodes, which must be managed by thestream processing
system.

E. Exploit mobile devices as data source and execution nodes: In the scenarios de-
scribed beforehand, mobile devices consume data but also provide data relevant for
correct processing. E.g., for the visualization pipeline scenario the client receives
a video stream of the rendered scene but must also provide thecurrent position
and viewing direction to set the viewport correctly. In the trajectory compression
scenario the mobile client provides data of the current position.

4 Related Work

Complex data stream scenarios, as discussed in Sections 2 and 3, raise requirements
that go beyond state-of-the-art data stream processing systems. To support domain-
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Table 1.Comparison of data stream processing systems

specific requirements and to attract a wide range of streaming applications, stream pro-
cessing systems should support the efficient integration ofdomain-specific functionality.
All systems considered in this paper allow to access and process data in a distributed
fashion, which is a key feature to efficiently process data. Table 1 compares state-of-the-
art distributed data stream systems according to the requirements from Section 3.

StreamGlobe [7] provides a fixed set of operators at each computing node. Custom
operators must be included with each query that is submittedto the system, thus lim-
iting the usability of that operator for this particular query. Later queries have to send
the custom operator again in order to use it. StreamGlobe does not support the process-
ing of unstructured data and does not provide a way to define custom deployment and
execution rules.

PLACE* [8] is a spatio-temporal distributed stream processing system for moving
objects. The integration of custom operators is not considered and unstructured data
is not supported. The whole execution of queries is performed in backbone servers
that also track the moving objects as they move along. Therefore, mobile devices are
exploited as data source but not integrated with the actual query execution.

In Borealis [9], a system developer must install operators manually at each process-
ing site which makes them locally available. Only structured data is supported limiting
the usage for the scenarios sketched. Borealis neither supports heterogeneous system
topologies, nor operator constraints.

SystemS [10] allows to add custom operators locally at each processing site, pro-
vided they do not require third party libraries. Otherwise,a system administrator must
configure and install additional software packages before the operator can be used. To
the best of our knowledge, beside NexusDS, SystemS is the only data stream processing
system that is capable of handling structured as well as unstructured data. SystemS is
designed for clusters of computing nodes and thus assumes homogeneous computing
nodes according to our classification.



NexusDS shares a few concepts with the discussed systems, but differs in several
ways: Arbitrary custom operators can be added to NexusDS andmade available at a
global scope by publishing them via a repository site managed by NexusDS. Further-
more, the operator model of NexusDS supports structured as well as unstructured data
and the operators can be deployed and executed according to application-specific con-
straints specified within the query graph. NexusDS supportsa variety of devices ranging
from simple mobile devices with a reduced set of capabilities to desktop computers with
dedicated hardware installed.

5 NexusDS

NexusDS [11] is a distributed stream processing middlewaretargeting the require-
ments from Section 3, thus providing enhanced support for complex application scenar-
ios demanding for specialized techniques. In the followingwe describe how NexusDS
satisfies each single requirement.

5.1 Custom Data Processing Logic

Applications formulate their data processing scheme by defining a query graph that
represents the data sources as well as the data processing. The operator set of NexusDS
is extensible, i.e., an application developer can integrate even highly specialized and
domain-specific operators. For this, developers of such operators enrich the actual op-
erator implementation by descriptors which are attached tothe operator asmeta data
describing the operator. The operator meta data include characteristics such as theac-
cepted and delivered data types, the number ofinputs and outputs, the operatorexe-
cution requirements specifying special software and hardware requirements, orpresets
allowing to specify commonly used settings for the operatorparameters. When inter-
connecting operators, only inputs and outputs of the same data format can be combined.
By building on this flexible meta data concept arbitrary operators can be integrated into
NexusDS.

5.2 Support Structured as well as Unstructured Data

NexusDS uses the Augmented World Model (AWM) [12] as the basic structured
context-data format. The AWM is an object-oriented, extensible data model tailored
to the needs of location-based applications. Like common object-oriented data models,
the AWM supports (multi-) inheritance. In contrast to those, AWM objects do not have
a fixed structure, but are sets of attributes, where the type of the object is just an addi-
tional attribute. An object can even contain multiple instances of the same attribute, in
which additional meta data can be used to distinguish the instances.

For the Nexus system, this concept has two main advantages. Firstly, it greatly facil-
itates the integration of data coming from different providers. Different representations
of the same object can be integrated by unifying the two sets,which even works, when
the two data providers disagree about the type of the objects. Resolving such incon-
sistencies can be either done by the system in an additional step, or can be left to the



application. Secondly, the concept of multi-attributes allows to represent dynamic at-
tributes like the position of a mobile object. In this case, the object contains multiple
instances of the position attribute, where each instance contains an additional meta data
item representing the temporal validity of this instance.

In addition to AWM objects, NexusDS can also handle application-specific data
streams, which allows, e.g., operators generating a video stream (unstructured data).
For this, application developers have to develop the specific operators processing the
application-specific data. Developers must also provide the respective serialization and
deserialization operators to support distributed processing.

5.3 Definition of the Actual Deployment and Execution

Data processing schemes in NexusDS are formulated as query graphs. TheNexus
Plan Graph Model andNexus Execution Graph Model (NPGM andNEGM) arrange
the operators used for data processing and support the definition of deployment and
runtime constraints. The difference betweenplan graph andexecution graph is that the
execution graph specifies the whole deployment (physical operators, execution environ-
ments, etc.) whereas the plan graph is ahybrid graph model to orchestrate data-flow
graphs composed of boxes. Boxes are an abstraction and can either be sources, sinks, or
operators. Hybrid graph model means NPGM allows to define properties of the query
graph bydeployment and runtime constraints. The annotation of the query graph by
constraints allows to influence the actual deployment process and furthermore defines
the runtime behaviour of the boxes. NPGM query graphs are notdirectly deployable
as there may exist boxes that are not mapped to a concrete physical operator (logical
boxes) and the distribution of the physical operators is still unknown. Before execution,
NPGM graphs must be mapped to an executable representation (NEGM) which in the
next step can be deployed and executed on the available infrastructure.

To create a NEGM graph the NPGM graph is fragmented into subgraphs according
to annotated constraints. These fragments are deployed andexecuted on different het-
erogeneous and distributed nodes. Query graph fragmentation is a highly complex task.
We adopt a meta-heuristic approach that allows us to efficiently find a suitable query
graph fragmentation. By deploying and executing the fragments with their respective
boxes on different computing nodes, NexusDS can efficientlyprocess complex tasks,
such as the streamline calculation scenario.

5.4 Deal with Heterogeneous System Topology

Operators may require specialized hardware, such as a GPU. To find suitable pro-
cessing nodes, NexusDS operators must be annotated with constraints describing the
requirements in terms of hardware and software resources [2]. This meta data is used
during the transformation from NPGM to NEGM to constrain theselection of suitable
nodes for the specific operator and to guarantee a valid deployment decision. Conse-
quently, the execution environments also must be annotatedwith the same kind of con-
straints. This information is used to match operators to concrete execution environments
satisfying the operator requirements.



5.5 Exploit Mobile Devices as Data Source and Execution Nodes

Nowadays mobile devices have multiple sensors that collectdata of the mobile de-
vice’s context. As shown in Section 2.1, this data is often important in order to make a
stream query graph work properly, e.g., for setting the areaof interest according to the
current mobile device’s position. Processing capabilities of modern mobile devices have
increased in the past decade but are still not suited for execution of complex operators,
such as the streamline calculation and postponed renderingof complex sceneries. In
NexusDS, mobile devices can be integrated as data sources aswell as processing nodes
executing certain tasks, e.g., filtering data elements before sending them to subsequent
processing nodes.

6 Performance Evaluation

We have evaluated our work by implementing the scenario presented in Section 2.1
in NexusDS. Different domain-specific operators have been implemented that exploit
the capabilities NexusDS offers. The resulting application is shown in Fig. 1(b). The
test platform consisted of up to four commodity PCs with Q6600 CPUs, 4 GB DDR2
main memory, and GBit Ethernet interconnection. The mobileplatform receiving the
rendered images was a HTC Nexus One. All operators were implemented in C++ (to
fully exploit GPU capabilities) and embedded in NexusDS which is written in Java.
The native visualization application (without the overhead of NexusDS) reached a run-
time of approx. 49.4 seconds on a single node for each rendered image. The same
application, integrated in the NexusDS system, performed the same task on the same
node in approx. 51.1 seconds, resulting in a small overhead due to the NexusDS frame-
work. When exploiting the distribution capabilities of NexusDS we achieve a speed-up
factor for the query graph of approx. 5.9 for a distributed configuration with 16-way
parallelism of performance-critical operators3 using four nodes. If we consider only
performance-critical operations for this configuration even a speed-up factor of approx.
8.4 is measured. This indicates NexusDS scales well with increasing parallelism, show-
ing the scalability of our system w.r.t the parallelism of visualization operators that rely
on the flexibility of NexusDS [1].

7 Conclusion

As demonstrated by the complex examples presented in Section 2, it is mandatory
to provide an adaptable execution environment for streaming applications. In this paper
we have discussed requirements of such applications. Theseapplications, although orig-
inating from different application domains and having different processing constraints,
share a common processing principle, i.e., data stream processing. They are often em-
bedded in a utterly heterogeneous and distributed infrastructure ranging from desktop
computers to mobile devices. Therefore a data stream processing system needs to sup-
ply adequate techniques to provide a tight integration of standard and non-standard

3 Performance-critical operators are operators requiring ahuge amount of computation time
compared to the other operators in the query graph.



processing schemes. These techniques reach from the integration of specific operators
to the manipulation of the actual graph deployment. NexusDSis especially tailored to
meet these requirements. By the unique techniques providedby NexusDS it is possible
to realize applications relying on highly domain-specific concepts.

These features raise new challenges including the development of a query engine
that is aware of the domain-specific constraints and that exploits them when searching
for a query graph distribution.
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